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Several new characterizations of strongly irresolvable topological spaces are found and
precise relationships are noted between strong irresolvability, hereditary irresolvability,
and submaximality. It is noted that strong irresolvablity is a faint topological property,
while neither hereditary irresolvablity nor submaximality are semitopological.
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1. Introduction

Throughout, (X ,τ) denotes a topological space and if A⊆ X , τ | A is the subspace topol-
ogy on A. Also, Cl(A) and Int(A) denote the closure and interior, respectively, of A in X .
If B ⊆ A, ClA(B) and IntA(B) are the closure and interior, respectively, of B in the sub-
space A. A subset D of X is dense if Cl(D)= X and the family of all dense subsets of X is
D(X ,τ). A subset C of X is codense if X −C =D is dense, or equivalently, Int(C)=∅. A
subset N of X is nowhere dense if Int(Cl(N))=∅ and the family of nowhere dense sub-
sets of X is N(X ,τ). It is known that a subset N of X is nowhere dense if and only if for
each nonempty open set U , there exists a nonempty open subset V ⊆U with V ∩N =∅.
Further, N(X ,τ) is an ideal. That is, every subset of a nowhere dense set is nowhere dense
and every finite union of nowhere dense sets is nowhere dense. This latter property does
not hold generally for codense sets. In fact, many spaces exist which are the union of two
codense subsets. Equivalently, there exist spaces containing two disjoint dense subsets.

Definition 1.1. A topological space is resolvable if it contains two disjoint dense subsets.
A space is irresolvable if it is not resolvable.

Definition 1.2. A topological space is crowded (or dense in itself) if it has no isolated
points.

Since an isolated point must belong to every dense set, the presence of isolated points
prevents resolvability. Hewitt [3] observed that all classical topological spaces without iso-
lated points are resolvable. In particular, he proved that all crowded first countable spaces
are resolvable. He then constructed crowded spaces which are far from being resolvable.

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 53653, Pages 1–12
DOI 10.1155/IJMMS/2006/53653

http://dx.doi.org/10.1155/S0161171206536531


2 Strongly irresolvable spaces

Definition 1.3. A topological space is submaximal if every dense subset is open.

Definition 1.4. A space is hereditarily irresolvable if every subspace is irresolvable.

If D is a proper dense subset in a space (X ,τ), D is not dense in the space (X ,σ) where
σ = τ(X −D)= τ[D] is the smallest expansion of τ for which D is closed. By a maximal
expansion construction, Hewitt was able to construct submaximal spaces and hereditarily
irresolvable T1-spaces. Anderson [1], also using expansion topologies, found a construc-
tion for submaximal connected Hausdorff spaces. Hewitt did not investigate strongly ir-
resolvable spaces which were later mentioned or used in [2, 4].

Definition 1.5. A space (X ,τ) is strongly irresolvable if each open subspace is irresolvable.

We avoid expansion topologies to present easy examples of submaximal, hereditarily
irresolvable, and strongly irresolvable spaces using ultrafilters and Hewitt’s decomposi-
tion theorem which states that every space X can be expressed as a disjoint union F �G
of a closed resolvable subspace F with an open hereditarily irresolvable subspace G. It can
easily be shown that this decomposition is unique for each space X .

We offer the following obvious but useful fact and then close this section with a proof
of the equivalence of various descriptions of strongly irresolvable spaces that have ap-
peared in the literature.

Proposition 1.6. If U is a nonempty open subspace of a resolvable space, then U is a re-
solvable subspace.

Theorem 1.7. Strong irresolvability of the space (X ,τ) is equivalent to each of the following.
(1) Every open subspace is irresolvable.

(2) Every dense subset has a dense interior.

(3) Every codense set is nowhere dense.

(4) Every subset is the union of an open set and a nowhere dense set.

Proof. (1)⇔(2). If D is dense and U = X −Cl(Int(D)) �=∅, then U −D �=∅ for other-
wise, U ⊆ Int(D)− Int(D)=∅. Also, U ∩D �=∅ since D is dense, and U ∩D is dense in
U since U ⊆ Cl(U)= Cl(U ∩D). But IntU(U ∩D)= Int(U ∩D)=∅ since Int(U ∩D)⊆
U ∩ Int(D)=∅. Thus, U −D is also dense in U and U is resolvable. This contradiction
shows that X −Cl(Int(D))=∅ and hence Int(D) is dense.

(2)⇒(3). A is codense ⇒ X −A is dense ⇒ Int(X −A) is dense ⇒ Cl(Int(X −A)) =
X − Int(Cl(A))= X ⇒ Int(Cl(A))=∅⇒ A is nowhere dense.

(3)⇒(4). A⊆ X ⇒ Int(A)=∅ or Int(A) �=∅. If Int(A)=∅, A∈ C(X ,τ)=N(X ,τ)⇒
A = ∅∪A is the union of an open set with a nowhere dense set. If Int(A) �= ∅, then
Int(A− Int(A))=∅⇒ A− Int(A)∈ C(X ,τ)=N(X ,τ)⇒ A= Int(A)∪ (A− Int(A)) is a
union of an open set with a nowhere dense set.

(4)⇒(1). If U is open, nonempty, and resolvable, then U = U1 �U2 with each Ui

dense in U . So, U1 = V ∪N where V is open and N is nowhere dense. V = ∅⇒ U ⊆
Int(Cl(U1)) = Int(Cl(N)) =∅. So, V �=∅⇒ IntU(U1) = Int(U1) �=∅⇒ U2 ∩ Int(U1) �=
∅⇒U1∩U2 �=∅. This contradiction shows that U is irresolvable. �
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2. Levels of irresolvability

Theorem 2.1. For any space (X ,τ), submaximality ⇒ hereditary irresolvability ⇒ strong
irresolvability⇒ irresolvability.

Proof. If X is submaximal and A is a nonempty resolvable subspace with A= A1�A2 and
each Ai is dense in A, then X −A2 = (X −A)∪A1 is dense in X and hence open. So, A2

is closed and A ⊆ Cl(A2) = A2 ⇒ A1 =∅⇒ A =∅ since A ⊆ Cl(A1). This contradiction
shows that X is hereditarily irresolvable. If X is hereditarily irresolvable, all subspaces in-
cluding the open ones are irresolvable so that X is strongly irresolvable. Certainly strongly
irresolvable spaces are irresolvable. �

Examples will be used to show that these classes of spaces are nonempty and the im-
plications of this theorem are not reversible. Finite spaces can be used for this purpose
but these spaces can only be irresolvable if isolated points are present. In fact, Hewitt
showed that first countable crowded spaces are always resolvable. The class of first count-
able spaces includes all finite spaces and all metric spaces. Thus, our examples of irre-
solvable spaces without isolated points cannot be first countable. The basic unit of con-
struction in these examples is an infinite set X equipped with a free ultrafilter topology
F∗ = F ∪ {∅}, where F is a free ultrafilter on X . It is easy to see that every infinite set
supports a free ultrafilter. For if X is infinite and (P,⊆) is the poset of all filters on X , by
Zorn’s lemma, there is a maximal filter F in P, called an ultrafilter, containing the free
filter of cofinite subsets of X . Clearly F is free and F∗ is a topology on X . Ultrafilters are
known to have the following interesting properties.

Proposition 2.2. If F is an ultrafilter on X and B ⊆ X has the property that B∩A �=∅ for
each A∈ F, then B ∈ F.

Proposition 2.3. If F is an ultrafilter on X , then for all subsets A ⊆ X , A /∈ F ⇒ A′ =
X −A∈ F.

Proposition 2.4. If X is an infinite set, F is a free ultrafilter on X and τ = F∗, then (X ,τ)
is a crowded submaximal T1-space.

Proof. If D is dense in X , then D∩A �=∅ for each A∈ τ −{∅} = F ⇒D ∈ F ⊆ τ so that
X is submaximal. If {x} ∈ F, then for all A ∈ F, {x}∩A �=∅⇒ x ∈ A so x ∈ ∩F which
contradicts the fact that F is free. So, X is crowded. Further X is T1 because each {x} ∈ τc.
To see this, note that {x} /∈ F ⇒ {x}′ = X −{x} ∈ F ⊆ τ. �

In fact, the space of this proposition is hyperconnected in the sense that every non-
empty open set is dense, for if A∈ F and B ∈ τ −{∅} = F, then B∩A �=∅⇒ A is dense.
So, D(X ,τ)= F ⇒ Fc = C(X ,τ)=N(X ,τ) since submaximal spaces are strongly irresolv-
able. The irresolvability of this space is strongly dependent on the ultrafilter property of
F. If F were replaced by simply a free filter, the space might be resolvable. For exam-
ple, if X is any infinite set and ρ is the cofinite topology on X , then the infinite subsets
are dense and since two disjoint infinite subsets can be found, the space is resolvable. It is
also crowded and T1 with N(X ,ρ) is the collection of finite subsets. In particular, if X =N
is the set of natural numbers, the finite sets are the nowhere dense sets and E = {2,4, . . .}
and O = {1,3, . . .} are disjoint dense subsets.

We now construct a hereditarily irresolvable space which fails to be submaximal.



4 Strongly irresolvable spaces

Example 2.5. Let Y and Z be disjoint infinite sets. Let F be a free ultrafilter on Y and let
G be a free ultrafilter on Z. Equip Y and Z with topologies σ and ρ, respectively, with
σ = F ∪{∅} and ρ =G∪{∅}. Let X = Y �Z have topology τ = {A�B | A∈ F and B ∈
ρ}∪{∅}. We claim that (X ,τ) is a crowded T1-space which is hereditarily irresolvable but
not submaximal. First, we see that τ is a topology.A1,A2 ∈ F and B1,B2 ∈ ρ⇒ (A1�B1)∩
(A2�B2)= (A1∩A2)� (B1∩B2)∈ τ since A1∩A2 ∈ F and B1∩B2 ∈ ρ. So, τ is closed
under finite intersection. For closure under arbitrary union, let Ai ∈ F and Bi ∈ ρ for each
i ∈ I . Then,

⋃
i∈I(Ai � Bi) = ∅ ∈ τ if I = ∅ and otherwise,

⋃
i∈I(Ai � Bi) = (

⋃
i∈I Ai)�

(
⋃

i∈I Bi) ∈ τ since Ai0 ⊆
⋃

i∈I Ai for some i0 ∈ I ⇒⋃i∈I Ai ∈ F and since
⋃

i∈I Bi ∈ ρ. To
see that each {x} is closed, note that if x ∈ Y , Y −{x} ∈ F and Z ∈G⇒ (Y −{x})�Z ∈
τ ⇒ {x} ∈ τc. And x ∈ Z ⇒ Z −{x} ∈ G⇒ Y � (Z −{x})∈ τ ⇒ {x} ∈ τc. So, (X ,τ) is a
T1-space. Also, (X ,τ) is crowded since U ∈ τ −{∅} ⇒ U = A�B for some A ∈ F ⇒ U
is infinite. (i.e., (X ,τ) has inifinite dispersion character.) To show that X is hereditarily
irresolvable, let H ⊆ X be any subspace. If H ∩Y = ∅, then H ⊆ Z ⇒ H is irresolvable
since τ | Z = ρ implies that the subspace Z is hereditarily irresolvable. Otherwise, H ∩
Y �= ∅ and since Y = Y �∅ ∈ τ, H ∩Y ∈ τ | H − {∅}. If H were resolvable, then the
open set H ∩Y would be resolvable. But, H ∩Y is irresolvable being a subspace of Y ,
a hereditarily irresolvable space. Again, note that (Y ,τ | Y) = (Y ,σ) since τ | Y = σ . In
either case, H is irresolvable so that (X ,τ) is hereditarily irresolvable. We now will show
that X is not submaximal. Note now that Y is dense in X . For every A�B ∈ τ −{∅} has
(A�B)∩Y = A �=∅ since A∈ F. Thus, for any x ∈ Z, Y ⊆ Y �{x} ⇒ Y �{x} is dense.
But, Y �{x} /∈ τ since {x} /∈ ρ.

In this last example, had Z been equipped with a free filter topology for which Z is
resolvable, the construction of X as above results in a strongly irresolvable space which is
not hereditarily irresolvable. This is our next example.

Example 2.6. Let Y and Z be disjoint infinite sets. Let F be a free ultrafilter on Y . Equip
Y with the ultrafilter topology σ = F ∪{∅} and let ρ be the cofinite topology on Z. Let
X = Y �Z have topology τ = {A�B | A ∈ F and B ∈ ρ}∪ {∅}. We claim that (X ,τ) is
a crowded T1-space which is strongly irresolvable but not hereditarily irresolvable. As in
the previous example, τ is a topology and (X ,τ) is a crowded T1-space. Let U ∈ τ −{∅}.
Then, U = A�B with A=U ∩Y ∈ F. Since Y ∈ τ, A∈ τ |U . But also, A is irresolvable
as a subspace of Y ⇒U is irresolvable. So, X is strongly irresolvable. But, Z is a resolvable
subspace of X implying that X is not hereditarily irresolvable.

The spaces constructed as disjoint unions of spaces with filter topologies in the two
examples just given are connected. By disconnecting the two components in the previous
example, we obtain the following example of an irresolvable space which is not strongly
irresolvable.

Example 2.7. Let Y and Z be infinite sets, let σ = F ∪{∅} for some free ultrafilter F on
Y , and let ρ be the cofinite topology on Z. Let X = Y � Z have topology τ = {A� B |
A ∈ σ and B ∈ ρ}. As in the previous examples, τ is a topology and (X ,τ) is a crowded
T1-space. The space X is irresolvable since Y is an open irresolvable subspace. But X is not
strongly irresolvable since Z is an open resolvable subspace. The space X is disconnected
since Z is a nonempty proper clopen subset.
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3. Local resolvability and decomposition of irresolvability levels

Hewitt’s paper [3, Theorem 20] states that a space is resolvable if and only if every
nonempty open subset contains a subset which is resolvable as a subspace. He proved
this by transfinite induction. One immediate consequence is that a space is resolvable if
and only if each nonempty basic open subset contains a resolvable subspace.

Corollary 3.1. A space (X ,τ) is resolvable if and only if there is an open cover of X con-
sisting of resolvable subspaces.

Proof. If X =⋃i∈I Ui with each Ui an open resolvable subspace of X , and if ∅ �=W ⊆ X
is open, then W ∩Uj �= ∅ for some j ∈ I , and by Hewitt’s result there is a resolvable
subspace A ⊆W ∩Uj ⊆W . So, X is resolvable. Conversely, if X is resolvable, then {X}
is an open cover consisting of resolvable subspaces. Moreover, every open cover of X
consists of resolvable subspaces since open subspaces of resolvable spaces are resolvable.

�

Definition 3.2. A space (X ,τ) is resolvable at a point x ∈ X if x ∈U ∈ τ for some resolv-
able U . Let R(τ)= {x ∈ X | (X ,τ) is resolvable at x}.

It is clear that R(τ)∈ τ and that R(τ) is the union of all open resolvable subspaces of X .
So, X is resolvable if and only if R(τ)= X . That is, locally resolvable spaces are resolvable.
In fact, since Hewitt showed that the closure of a resolvable subspace is resolvable, we
have that either R(τ) = X or Cl(R(τ)) �= X . In this latter case, X is irresolvable. We have
the following observation.

Proposition 3.3. For a space (X ,τ), the following are equivalent.
(1) X is strongly irresolvable.
(2) R(τ)=∅.
(3) Int(F)=∅ if X = F �G is the Hewitt decomposition with F closed and resolvable.
(4) X has an open hereditarily irresolvable dense subspace.
(5) Every resolvable subspace is nowhere dense.

Proof. (1)⇒(2). Clear since R(τ) is open and resolvable if nonempty.

(2)⇒(3). Also clear since x ∈ Int(F)⇒ x ∈ R(τ).

(3)⇔(4). Int(F) =∅⇒ G is an open dense hereditarily irresolvable subspace. And, if
H was an open dense hereditarily subspace of X = F �G, then H ∩F =∅. For otherwise,
this subset would be both resolvable, being an open subspace of F, and irresolvable. Thus,
H ⊆G⇒G is dense in X so that Int(F)=∅.

(3)⇒(5). If A is resolvable then Cl(A) is resolvable. If A is not nowhere dense, then
Int(Cl(A)) is open, nonempty, and resolvable which implies that Int(Cl(A))∩G = ∅.
Thus, Int(F) �=∅ which contradicts F being nowhere dense.

(5)⇒(1). Clear since nonempty open subsets are not nowhere dense. �

Definition 3.4. A space (X ,τ) is homogeneous if for any pair x, y of distinct points, there
is a homeomorphism h : X → X with y = h(x).

Topological groups are homogeneous spaces.
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Proposition 3.5. If (X ,τ) is homogeneous, then X is strongly irresolvable if and only if X
is irresolvable.

Proof. Either R(τ)=∅ or R(τ) �=∅. If R(τ) �=∅, by homogeneity, R(τ)= X . �

Evidently, homogeneity plus irresolvability implies strong irresolvability. But, this does
not constitute a decomposition of strong irresolvability since homogeneity is not implied
by strong irresolvability.

We introduce three conditions that a space (X ,τ) may have
(i) C1: every proper regular open set is irresolvable,

(ii) C2: every nowhere dense set is irresolvable,
(iii) C3: every irresolvable nowhere dense set is closed.

We also label the levels of irresolvability as follows:
(i) I : The space is irresolvable,

(ii) SI: the space is strongly irresolvable,
(iii) HI: the space is hereditarily irresolvable,
(iv) S: the space is submaximal.

If a label of a property is enclosed in brackets, the class of all spaces having the property
is intended. For example, SI ⇒ C1 can also be indicated by [SI] ⊆ [C1]. The equation
SI= C1 + I denotes a decomposition of strong irresolvability into the join of two strictly
weaker conditions, that is, [SI] = [C1]∩ [I] and [SI] � [C1] and [SI] � [I]. An earlier
example showed that I � SI. The following example shows that C1 � SI. It also shows
that C2 � HI, and the same example shows that C3 � S.

Example 3.6. Let (N ,ρ) be the set of natural numbers with the cofinite topology. Then N
is a crowded resolvable T1-space and it has property C1. For if U is a nonempty regular
open set, U = Int(Cl(U)) = Int(X) = X . Thus, N does not have any nonempty proper
regular open subset. So, N has C1 but not I and hence neither SI nor HI. This space
also has C2, for the nowhere dense sets are the finite subsets. Since infinite sets are dense
and if a set F is finite, it is closed in the cofinite topology and has empty interior. Also
the subspace (F,ρ | F) is discrete and every point is an isolated point in the subspace.
For if x ∈ F, then U =N − (F −{x})∈ ρ and U ∩ F = {x} ∈ ρ | F. So, the subspace F is
irresolvable. Since all nowhere dense sets are irresolvable and all nowhere dense sets are
also closed, C3 is satisfied as well.

Theorem 3.7. SI= C1 + I .

Proof. Clearly, SI⇒ C1∧ I . For the reverse implication, let X = F �G be the Hewitt de-
composition of an irresolvable space with F closed and resolvable. Then, if U = Int(F) �=
∅, U is a nonempty proper regular open subset since Int(Cl(U))= Int(Cl(Int(Cl(F))))=
Int(Cl(F))= Int(F)=U . By property C1, U is irresolvable and this contradicts the resolv-
ability of F. So, Int(F)=∅ and, thus, (X ,τ) is SI. �

Theorem 3.8. HI= SI+C2.

Proof. Clearly, HI⇒ SI∧C2. For the reverse implication, let (X ,τ) be a C2∧ SI space and
let X = F �G be the Hewitt decomposition. Then, G is a nonempty open hereditarily
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irresolvable subspace and Int(F)=∅. It follows that F is nowhere dense and resolvable if
nonempty. Evidently by C2, F =∅ and X =G is HI. �

Theorem 3.9. S=HI+C3.

Proof. Certainly, S⇒ C3 ∧HI. For the reverse implication let (X ,τ) be a C3 ∧HI space
and let D be dense in X . Then X −D is codense and hence nowhere dense and irresolvable
subspace. By C3, X −D is closed and D is open. �

It might be worth noting that the α-space property, X = Xα, has a decomposition C2 +
C3. The α-space for the space (X ,τ) is Xα = (X ,τα), where τα = {U −E | U ∈ τ and E ∈
N(X ,τ)} is the smallest expansion of τ for which all τ-nowhere dense sets are closed [8].
Clearly, X = Xα if and only if C2∧C3. It only remains to see that neither C2 nor C3 alone
implies X = Xα. In the example given earlier of a HI space which is not S, clearly C2 holds
but not C3 for otherwise, so would S.

Example 3.10. Let Y = {0}∪N have topology σ = {∅,{0}}∪ {V ⊆ Y | 0 ∈ V and Y −
V is finite}. Then E = {2,4,6, . . .} is a resolvable nowhere dense set. D1 = {2 + 4n} and
D2 = {4(1 + n)} are disjoint dense subsets of E. But E is not closed since Cl(E) = N . So,
Y does not have C2. However, if F is an irresolvable nowhere dense subset of Y , then F is
codense⇒ 0 /∈ F. But, then to be irresolvable, F must be finite and hence closed. Thus, Y
has C3.

4. Finite products

A basic problem that remained unsolved for several decades following Hewitt’s discovery
of irresolvable spaces was the question of irresolvability of finite product spaces. A prop-
erty is said to be finitely productive if the product space X ×Y has the property whenever
both factor spaces X and Y have the property. It was incorrectly stated in [2], that strong
irresolvability is finitely productive. This claim is strongly negated by the following simple
counterexample.

Example 4.1. Let X be an infinite set, let F be a free ultrafilter on X , and equip X with
the topology τ = F ∪{∅}. Then X is a crowded submaximal T1-space. Let X2 = X ×X
have the product topology π and let D = {(x,x) | x ∈ X} ⊆ X2 be the diagonal subset. We
will show that D is dense and codense in X2. Thus X = D� (X −D) is resolvable being
a disjoint union of dense sets. To see that D is dense, note that every nonempty open
set W ∈ π contains a nonempty basic open set U ×V ⊆W . Since U �= ∅ and V �= ∅,
we have U ,V ∈ F. So, U ∩V ∈ F ⇒ U ∩V �=∅. If x ∈ U ∩V , (x,x) ∈ (U ×V)∩D⇒
W ∩D �=∅ and hence D is dense. Also, Int(D) =∅. For if U ×V is a nonempty basic
open set, then U ,V ∈ F ⇒U and V are infinite sets and if x ∈U , there exists y ∈V with
y �= x. Then (x, y) ∈ (U ×V)−D. So, U ×V � D. Evidently, D is codense and X −D is
also dense.

Malyhin showed in [6] that any infinite sets X and Y have topologies for which these
spaces are irresolvable T1-spaces and yet the product space X ×Y is maximally resolv-
able. Maximal resolvability requires that the number of pairwise disjoint dense subsets
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that exist equals the least number of elements in a nonempty open set, which is the dis-
persion character. Malyhin also showed that if a free ultrafilter exists with the property
that countably infinite intersections of its members are still members, then T1-spaces ex-
ist whose product is irresolvable. Malyhin [7] has shown that it is consistent with ZFC
(Zermelo-Frankel + choice) set theory that all finite products of infinite crowded spaces
are resolvable.

5. Nearly open sets

Definition 5.1. A subset A of a space (X ,τ) is almost open if A ⊆ Int(Cl(A)) and A is
semiopen if A⊆ Cl(Int(A)). The collection of all almost open subsets is denoted AO(X ,τ)
and SO(X ,τ) denotes the family of semiopen subsets of (X ,τ).

It is easy to show that AO(X ,τ) and SO(X ,τ) are closed under arbitrary union but not
generally under arbitrary intersection. It is also known that τα = AO(X ,τ)∩ SO(X ,τ).
Further, A ∈ AO(X ,τ) if and only if A = U ∩D for some U ∈ τ and some dense sub-
set D. Note that every dense set D is almost open. For any set A ⊆ X , the AO-interior
of A is IntAO(A) = ∪{B ⊆ A | B ∈ AO(X ,τ)} and the SO-interior of A is IntSO(A) =
∪{B ⊆ A | B ∈ SO(X ,τ)}. It is known that IntAO(A) = A∩ Int(Cl(A)) and IntSO(A) =
A∩Cl(Int(A)).

Definition 5.2. A subset A of a space (X ,τ) is faintly open if either A=∅ or Int(A) �=∅.
The collection of faintly open sets is FO(X ,τ).

The nonempty faintly open sets are the noncodense sets. Evidently, complements of
nonempty faintly open sets cannot be dense. In particular, a set is dense if and only if it
intersects nonemptily every nonempty faintly open set.

Proposition 5.3. A space (X ,τ) is irresolvable if and only if every dense set is faintly open.
That is, D(τ)⊆ FO(X ,τ).

Proof. A space is irresolvable if and only if no dense set is codense. �
Definition 5.4. A subset D is AO-dense if every nonempty A∈ AO(X ,τ) has A∩D �=∅.
The smallest topology containing AO(X ,τ) is τA = 〈AO(X ,τ)〉. D is τA-dense if every
nonempty U ∈ τA has U ∩D �=∅.

Lemma 5.5. A set D is AO-dense if and only if D∪Cl(Int(D))= X .

Proof. It is known that the union of all almost open subsets of X −D is (X −D)∩
Int(Cl(X − D)). If D is AO-dense, (X − D) ∩ Int(Cl(X − D)) = ∅ so that X = D ∪
Cl(Int(D)). �

Theorem 5.6. The following are equivalent for a space (X ,τ).
(1) X is strongly irresolvable.

(2) AO(X ,τ)⊆ SO(X ,τ).

(3) AO(X ,τ)⊆ FO(X ,τ).

(4) Every dense set is AO-dense.

(5) Every dense set is τA-dense.

(6) Xα is submaximal.
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Proof. (1)⇒(2). If (X ,τ) is SI and A = U ∩D ∈ AO(X ,τ) for some U ∈ τ and dense
D, then Int(D) is dense and Cl(U ∩ Int(D)) = Cl(U) so that U ∩D ⊆ U ⊆ Cl(Int(U ∩
Int(D)))⊆ Cl(Int(U ∩D)). Thus, A∈ SO(X ,τ).

(2)⇒(3). This is clear since SO(X ,τ)⊆ FO(X ,τ).
(3)⇒(4). This is clear since every nonempty faintly open set has nonempty interior

which must then intersect every dense set.
(4)⇒(1). If D is dense in (X ,τ) then D is AO-dense and by Lemma 5.5, X = D ∪

Cl(Int(D)). Then if Int(D) is not dense, U = X −Cl(Int(D)) ∈ τ is nonempty and U ⊆
D⇒U ⊆ Int(D)− Int(D)=∅. This contradiction shows that Int(D) is dense and hence
(X ,τ) is strongly irresolvable.

(2)⇒(5). Since (2)⇒(4), we have that every dense set is AO-dense and since by (2),
τα = AO(X ,τ), also τA = τα and every dense set is τA-dense.

(5)⇒(4). This is clear since AO(X ,τ)⊆ τA.
(1)⇒(6). If (X ,τ) is strongly irresolvable and D is a dense subset of (X ,τα), then D is

dense in (X ,τ) and Int(D) is dense in (X ,τ). Since X − Int(D) is closed and codense, it
is nowhere dense. Thus, X −D ⊆ X − Int(D)⇒ X −D is nowhere dense in (X ,τ). Thus,
X −D is closed in (X ,τα) and so, D ∈ τα.

(6)⇒(1). If (X ,τα) is submaximal and D is dense in (X ,τ), then D is dense in (X ,τα)
for if U − E ∈ τα for some nonempty U ∈ τ and nowhere dense E, then U −Cl(E) ∈ τ
and nonempty implies (U −Cl(E))∩D �=∅ and thus (U − E)∩D �=∅. So, D = V − F
for some V ∈ τ and F nowhere dense. Also, V −Cl(F)∈ τ and Cl(V −Cl(F))= Cl(V)⊇
Cl(D) = X ⇒ Cl(Int(D)) = X , so that Int(D) is dense. Therefore, (X ,τ) is strongly irre-
solvable. �

Proposition 5.7. If (X ,τ) is crowded, then (X ,τA) is discrete if and only if (X ,τ) is resolv-
able.

Proof. Suppose first that (X ,τ) is resolvable and that for some dense set D, X −D = E
is also dense. If x ∈ X , then D∗ = D ∪ {x} and E∗ = E∪ {x} are dense. So, D∗,E∗ ∈
AO(X ,τ) ⊆ τA ⇒ {x} = D∗ ∩ E∗ ∈ τA. Evidently (X ,τA) is discrete. Conversely, if (X ,τ)
is crowded, letX = F �G be the Hewitt decomposition. The sketch of the argument is that
τA |G= (τ |G)A since G∈ τ. Then, since (G,τ |G) is SI, (τ |G)A = (τ |G)α is a crowded
topology since (G,τ | G) is crowded. This is a contradiction unless G = ∅. Therefore,
X = F is resolvable. �

Corollary 5.8. If (X ,τ) is crowded and irresolvable, then τA is not discrete.

Definition 5.9. A space X is ED (extremally disconnected) if Cl(U) is open for every open
set U .

Proposition 5.10. A space (X ,τ) is ED if and only if SO(X ,τ)⊆ AO(X ,τ).

Proof. If SO(X ,τ)⊆AO(X ,τ) andU∈τ, then Cl(U)∈SO(X ,τ)⇒Cl(U)⊆Int(Cl(Cl(U)))
= Int(Cl(U))⇒ Cl(U) ∈ τ and hence (X ,τ) is ED. Conversely, if (X ,τ) is ED and A ∈
SO(X ,τ), then A⊆Cl(Int(A))∈τ⇒A⊆ Int(Cl(Int(A)))⊆ Int(Cl(A)) and A∈ AO(X ,τ).

�
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In [1] a method is found for constructing connected Hausdorff crowded submaximal
spaces. If (X ,τ) is such a space, then τ = τα = AO(X ,τ) = τA and AO(X ,τ) � SO(X ,τ).
This last inequality is forced by the fact that the space is Hausdorff and connected and
hence not ED.

6. Functions and irresolvability

Definition 6.1. A bijection f : X → Y is a faint (semi)homeomorphism if both f and f −1

preserve faintly (semi)open sets. A property P transmitted by faint (semi)homeomor-
phism is a faint (semi)topological property.

It is clear that every semihomeomorphism is a faint homeomorphism so that faint
topological properties are semitopological. The following example shows that not every
faint homeomorphism is a semihomeomorphism.

Example 6.2. Let (R,σ) be the Sorgenfrey line. That is, the set {[a,b) | a < b} is a base for
σ . Also, let (R,τ) be the usual space of reals. Then, the identity function f : (R,τ)→ (R,σ)
is a faint homeomorphism but not a semihomeomorphism. For [0,1] = Clτ((0,1)) ∈
SO(R,τ), but [0,1]= f ([0,1]) � [0,1)= Clσ(Intσ([0,1])) shows that f ([0,1]) /∈ SO(R,σ),
so that f is not a semihomeomorphism. On the other hand f is a faint homeomorphism
since each nonempty open interval (a,b) contains a nonempty right open interval [c,d)
and vice versa. That is, each topology τ and σ is a π-base for the other. A π-base could be
called a faint base.

Proposition 6.3. If f : X → Y is a bijection, f is a faint homeomorphism if and only if
both f and f −1 preserve dense sets.

Corollary 6.4. A composition of two faint homeomorphisms is a faint homeomorphism.

Proposition 6.5. Every faint homeomorphism directly and inversely preserves nowhere
dense sets.

Proof. If f : X → Y is a faint homeomorphism and E ⊆ X is nowhere dense, let V be any
nonempty open subset of Y . Then, Int( f −1(V))=U �=∅ and so there exists a nonempty
open subset U ′ ⊆U such that U ′ ∩E =∅. It follows that ∅ �= V ′ = Int( f (U ′))⊆ V and
V ′ ∩ f (E)=∅ showing that f (E) is nowhere dense. So, f and, by symmetry of argument,
f −1 preserve nowhere dense sets. �

It is a corollary that X and Xα share the same nowhere dense sets since the identity
function f : X → Xα is a faint homeomorphism.

Let us say that a bijection f : (X ,τ) → (Y ,σ) is an α-faint homeomorphism if f α :
(X ,τα)→ (Y ,σα) is a faint homeomorphism where for each x ∈ X , f (x) = f α(x). Then
we have the following.

Proposition 6.6. The bijection f : (X ,τ)→ (Y ,σ) is a faint homeomorphism if and only if
it is an α-faint homeomorphism.

Proof. If i : X → Xα and j : Y → Yα are identity maps, then f α = j ◦ f ◦ i−1 is a compo-
sition of faint homeomorphisms if f is a faint homeomorphism and f = j−1 ◦ f α ◦ i is a
composition of faint homeomorphisms if f α is a faint homeomorphism. �
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Proposition 6.7. If f : X → Y is a faint homeomorphism, then direct and inverse images
under f of nonempty almost open sets contain nonempty almost open sets.

Proof. Suppose that A ⊆ X is almost open and nonempty. Then, A = U ∩D for some
nonempty open set U ⊆ X and for some dense subset D ⊆ X . Then, f (A)= f (U)∩ f (D).
Since f is a faint homeomorphism, f (D) is dense in Y and V = Int( f (U)) �=∅. Thus,
the almost open set V ∩ f (D) is a nonempty subset of f (A). The argument for inverse
images is the same. �

Example 6.8. Let (R,τ) be the usual space of reals and let f : (R,τ)→ (R,τ) be defined by
f (x) = x if |x| �= 1 and f (x) = −x if |x| = 1. Then f = f −1 is a faint homeomorphism
which is not a semihomeomorphism since images of open sets may be neither semiopen
nor almost open. In particular, f ((−∞,0))=(−∞,−1)∪(−1,0)∪{1} is neither semiopen
nor almost open since 1 /∈ Cl(Int( f ((−∞,0))))= (−∞,0]⊇ Int(Cl( f ((−∞,0)))).

It is known [9] that semitopological properties are precisely those properties shared
by both X and Xα. Apparently, both submaximality and hereditary irresolvability are not
semitopological but strong irresolvability is semitopological. In fact, more can be said for
strong irresolvability.

Theorem 6.9. Strong irresolvability is a faint topological property.

Proof. Let f : X → Y be a faint homeomorphism, let X �=∅ be strongly irresolvable, and
let E be dense in Y . Then f −1(E) is dense in X implying that Int( f −1(E)) is dense im-
plying that E = f ( f −1(E)) is faintly open and Int(E) �= ∅. If Int(E) is not dense, then
∅ �= V = Y −Cl(Int(E)) is open. So, Int( f −1(V)) �= ∅⇒ Int( f −1(V))∩ Int( f −1(E)) =
Int( f −1(V ∩ E)) �= ∅ ⇒ Int( f (Int( f −1(V ∩ E)))) �= ∅ ⇒ Int(V ∩ E) = V ∩ Int(E) �= ∅

which is a contradiction. So, Int(E) is dense and Y is strongly irresolvable. �

Remark 6.10. It may be noted that submaximality is preserved by open surjections, and
hence expansions of submaximal topologies are submaximal.

It was shown in [5] that a space (X ,τ) is submaximal if and only if τ = AO(X ,τ). We
extend this result slightly.

Proposition 6.11. A space (X ,τ) is submaximal if and only if τ = τA.

Proposition 6.12. A space (X ,τ) is strongly irresolvable if and only if τα = τA.

Proof. X is SI if and only if Xα is submaximal. �
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