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The basis number b(G) of a graph G is defined to be the least integer k such that G has a k-
fold basis for its cycle space. In this note, we determine the basis number of the corona of
graphs, in fact we prove that b(v ◦T)= 2 for any tree and any vertex v not inT , b(v ◦H)≤
b(H) + 2, where H is any graph and v is not a vertex of H , also we prove that if G= G1 ◦
G2 is the corona of two graphs G1 and G2, then b(G1) ≤ b(G) ≤max{b(G1),b(G2) + 2},
moreover we prove that if G is a Hamiltonian graph, then b(v ◦G) ≤ b(G) + 1, where v
is any vertex not in G, and finally we give a sequence of remarks which gives the basis
number of the corona of some of special graphs.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this note, we consider only finite, undirected, simple graphs. Our terminology and
notation will be standard except as indicated. For undefined terms, see [7]. Let G be a
(p,q) graph (i.e., G has p vertices and q edges), and let e1,e2, . . . ,eq be an ordering of its
edges. Then any subset E of edges in G corresponds to (0,1)-vector (v1, . . . ,vq) with vi = 1
if ei ∈ E and vi = 0 if ei /∈ E. The vectors form a q-dimensional vector space over the field
of two elements Z2 and is denoted by (Z2)q. The vectors in (Z2)q which correspond to
the cycles in G generate a subspace called the cycle space of G and is denoted by C(G),
we will say that the cycles themselves, instead of saying the vectors corresponding to the
cycles, generate C(G). It is well known (see [7, page 39]) that if G is a (p,q) graph with k
components, then dimC(G)= γ(G)= q− p+ k, where γ(G) is the cyclomatic number of
G. A basis forC(G) is called a k-fold basis if each edge of G occurs in at most k of the cycles
in the basis. The basis number of G denoted by b(G) is the smallest integer k such that
C(G) has a k-fold basis. The corona (see [7, page 167]) of two graphs G1 and G2, denoted
by G1 ◦G2, is defined to be the graph G obtained by taking one copy of G1 (which has p1

vertices) and p1 copies of G2, and then joining the vertex of G1 to every vertex in the ith
copy of G2. If G1 is a (p1,q1) graph and G2 is a (p2,q2) graph, then it follows from the
definition of the corona that G1 ◦G2 has p1(1 + p2) vertices and q1 + p1q2 + p1p2 edges
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(see [7, page 168]). It is clear that if G1 is connected, then G1 ◦G2 is connected, and in
general G1 ◦G2 is not isomorphic to G2 ◦G1.

In the rest of this note, Pn, Cn, Sn, and Wn stand for the path, the cycle, the star, and the
wheel of n vertices. A theta graph θn is defined to be a cycleCn with n vertices, respectively,
to which we add a new edge that joins two nonadjacent vertices of Cn.

MacLane [8] proved that a graph G is planar if and only if b(G) ≤ 2. Schmeichel [9]
proved that for n≥ 5, b(Kn)= 3 and for m,n≥ 5, b(Km,n)= 4 except for K6,10, K5,n, and
K6,n, where n= 5, 6, 7, and 8. Banks and Schmeichel [6] proved that for n≥ 7, b(Qn)= 7,
where Qn is the n-cube. Ali [1] proved that b(Kn,n,...,n) ≤ 9, b(Kn,n,n) = 3 for all n ≥ 3,
and b(Kl,m,n) ≤ 4. Moreover, Ali [2] proved that b(Cm ∧ Pn) ≤ 2, and b(Cm ∧ Cn) = 3.
Al-Rhayyel [4] proved that b(P2× θn)= 2 and b(θn× θm)= 3 for all n,m≥ 4. Al-Rhayyel
[5] proved that b(P2 ∧Wn) = 2 and b(Pm ∧Wn) = 3 for all m ≥ 3, n ≥ 4, and n is even
where ∧ and × are the direct and the cartesian products of graphs, respectively. Next we
restate [3, Theorem 2.3].

Theorem 1.1. Let G′ be a graph obtained from G by deleting an edge e of at most 2-fold in
a basis B for C(G). Then b(G)− 1≤ b(G′)≤ b(G).

The purpose of this note is to investigate the basis number of the corona of graphs,
in fact we prove that for any two graphs G1 and G2, if G= G1 ◦G2, then b(G1)≤ b(G)≤
max{b(G1),b(G2) + 2} and we give the exact basis number of the corona of some special
graphs.

2. Main results

This section is devoted for proving the main results of this note, and this is done by
writing a sequence of theorems and remarks.

Remark 2.1. We note that if v is not a vertex of G, then b(v ◦G)= 2, where G is any one
of the following graphs: Pn, Cn or Sn and b(v ◦G)= 3 if G is either Wn or Kn (n≥ 4).

Lemma 2.2. Let T be a tree with p vertices (p ≥ 3) if v is any point which is not a vertex of
T , and if G= v ◦T , then b(G)= 2, and hence G is planar.

Proof. Assume that G is not planar. Then, by Kuratowski’s theorem, G contains a subdi-
vision of K5 or K3,3. Then G− x cannot be acyclic graph for any x ∈ V(G), while G− v
is a tree. This is a contradiction, and hence G is planar. Therefore, b(G)≤ 2. If b(G)= 1,
then G has a 1-fold basis, which implies that dimC(G)≤ |E(G)|/3 since each cycle con-
tains at least three edges. Since |E(G)| = 2p− 1 and dimC(G) = p− 1, we have p− 1 ≤
(2p− 1)/3, which implies that p ≤ 2. This is a contradiction. Therefore, b(G)= 2. �

Lemma 2.3. Let H be any connected (p,q) graph and let v be any vertex which is not a vertex
of H . If G= v ◦H , then b(G)≤ b(H) + 2.

Proof. Let u1,u2, . . . ,up be the vertices of H . Since dimC(G) = q and dimC(H) = q −
p + 1, dimC(G)− dimC(H) = p− 1. Let T be a spanning tree of H . Then b(v ◦T) = 2,
dimC(v ◦T) = p− 1, and each cycle in v ◦T must contain an edge of the form vui for
some i∈ {1,2, . . . , p}. Thus the cycles in v ◦T are independent from the cycles in H . Let
B1 be a b(H)-fold basis for C(H), and let B2 be a 2-fold basis for v ◦ T . Then clearly
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B = B1 ∪ B2 is an independent set of cycles with |B| = dimC(G), hence B is a basis for
C(G). Note that if e is an edge of G, then either e is an edge of H or e = vui for some
i ∈ {1,2, . . . , p}. If e = vui, then fB(e) ≤ fB2 (e) ≤ 2, and if e is an edge of H , then clearly
fB(e)≤ b(H) + 2. Thus, b(G)≤ b(H) + 2. �

Theorem 2.4. LetG1 andG2 be two connected graphs. IfG=G1 ◦G2 , then b(G1)≤ b(G)≤
max{b(G1),b(G2) + 2}.
Proof. Clearly b(G1) ≤ b(G). Let v1, . . . ,vn be the vertices of G1 and let Hk = vk ◦G2 and
let Bk be the basis of Hk, for each k = 1, . . . ,n. Clearly E(Hi)∩E(Hj)= φ, for all i 
= ji, j ∈
{1, . . . ,n}. Therefore,

⋃n
k=1Bk is linearly independent. Let B = (

⋃n
k=1Bk)∪B(G1), where

B(G1) is a b(G1)-fold basis for G1. Since E(G1)∩ E((
⋃n

k=1Hk)) = φ, as a result B is lin-
early independent. Since |E(B)| = dimC(G), B is a basis of C(G). By Lemma 2.3, b(Hk)≤
b(G2) + 2 for each k ∈ {1, . . . ,n}. Therefore, b(G1)≤ b(G)≤max{b(G1),b(G2) + 2}. �

Lemma 2.5. Let H be a Hamiltonian graph, and let v be any point which is not a vertex of
H . If G= v ◦H , then b(G)≤ b(H) + 1.

Proof. Let C = u1u2, . . . ,unu1 be a spanning cycle of H , then G is obtained from H by
joining every vertex vi of H to the vertex v. Let B = {vuiui+1 : i = 1,2, . . . ,n− 1}∪ B(H),
where B(H) is a b(H)-fold basis of C(H). Then, clearly that B is a basis of C(G) and given
any edge of H , then it occurs in at most one of these cycles, hence b(G)≤ b(H) + 1. �

Corollary 2.6. If G1 and G2 are two graphs such that b(G1) ≥ b(G2) + 2, then b(G1 ◦
G2) = b(G1). Moreover, if G2 is Hamiltonian, and b(G1) ≥ b(G2) + 1, then b(G1 ◦G2) =
b(G1).
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