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1. Introduction

This is a partial review of the connection theory on differentiable fibre bundles. From
different view points, this theory can be found in many works, like [2–6, 9, 13–15, 18, 19,
24, 26, 27, 30, 31, 35–40, 42]. The presentation of the material in Sections 2–5, containing
the grounds of the connection theory, follows some of the main ideas of [30, Chapters
1 and 2], but their realization here is quite different and follows the modern trends in
differential geometry. Since in the physical literature one can find misunderstanding or
not quite rigorous applications of known mathematical definitions and results, the text is
written in a way suitable for direct application in some regions of theoretical physics.

The work is organized as follows. In Section 2 some introductory material is collected,
like the notion of Lie derivatives and distributions on manifolds needed for our exposi-
tion. Here some of our notations are fixed too.

Section 3 is devoted to the general connection theory on bundles whose base and bun-
dles spaces are differentiable manifolds. In Section 3.1 some coordinates and frames/bases
on the bundle space which are compatible with the fibre structure of a bundle are re-
viewed. Section 3.2 deals with the general connection theory. A connection on a bundle
is defined as a distribution on its bundle space which is complimentary to the vertical
distribution on it. The notion of parallel transport generated by connection and of spe-
cialized frame is introduced. The fibre coefficients and fibre components of the curvature
of a connection are defined via part of the components of the anholonomicity object of a
specialized frame. Frames adapted to local bundle coordinates are introduced and the lo-
cal (2-index) coefficients in them of a connection are defined; their transformation law is
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derived and it is proved that a geometrical object with such transformation law uniquely
defines a connection. The parallel transport equation in their terms is derived and it is
demonstrated how from it the equation of geodesics on a manifold can be obtained.

In Section 4, the general connection theory from Section 3 is specified on vector bun-
dles. The most important structures in/on them are the ones that are consistent/compati-
ble with the vector space structure of their fibres. The vertical lifts of sections of a vector
bundle and the horizontal lifts of vector fields on its base are investigated in more details
in Section 4.1. The general results are specified on the (co)tangent bundle over a mani-
fold in Section 4.2; Section 4.3 is devoted to linear connections on vector bundles, that
is, connections such that the parallel transport assigned to them is a linear mapping. It is
proved that the 2-index coefficients of a linear connection are linear in the fibre coordi-
nates, which leads to the introduction of the (3-index) coefficients of the connection, the
latter coefficients being defined on the base space. The transformations of different ob-
jects under a change of vector bundle coordinates are explored. The covariant derivatives
are introduced and investigated in Section 4.4. They are defined via the Lie derivatives
and a mapping realizing an isomorphism between the vertical vector fields on the bundle
space and the sections of the bundle. The equivalence of that definition with the wide-
spread one, defining them as mappings on the module of sections of the bundle with
suitable properties, is proved. Some properties of the covariant derivatives are explored.
In Section 4.5, the affine connections on vector bundles are considered briefly.

Section 5 deals briefly with morphisms between bundles with connections defined on
them.

In Section 6, some of the results of the previous sections are generalized when frames
more general than the ones generated by local coordinates on the bundle space are em-
ployed. The most general of such frames, compatible with the fibre structure, and the
frames adapted to them are investigated. The main differential-geometric objects, intro-
duced in the previous sections, are considered in such general frames. Particular attention
is paid to the case of a vector bundle. In vector bundles, a bijective correspondence be-
tween the mentioned general frames and pairs of bases, in the vector fields over the base
and in the sections of the bundle, is proved. The (3-index) coefficients of a connection in
such pairs of frames and their transformation laws are considered. The covariant deriva-
tives are also mentioned on this context.

Section 7 closes the paper with some concluding remarks.

2. Preliminaries

This section contains an introductory material, notation, and so forth, that will be needed
for our exposition. The reader is referred for details to standard books on differential
geometry, like [19, 20, 29, 40].

A differentiable finite-dimensional manifold over a field K will be denoted typically
by M. Here K stands for the field R of real or the field C of complex numbers, K=R,C.
The manifolds we consider are supposed to be smooth of class C2. (Some of our defi-
nitions or/and results are valid also for C1 or even C0 manifolds, but we do not want
to overload the material with continuous counting of the required degree of differen-
tiability of the manifolds involved. Some parts of the text admit generalizations on more
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general spaces, like the topological ones, but this is out of the subject of the present work.)
The sets of vector fields, realized as first-order differential operators, and of differential
k-forms, k ∈N, overM will be denoted by �(M) and Λk(M), respectively. The space tan-
gent (resp., cotangent) to M at p ∈M is Tp(M) (resp., T∗p (M)) and (T(M),πT ,M) (resp.,
(T∗(M),πT∗ ,M)) will stand for the tangent (resp., cotangent) bundle over M. The value
of X ∈�(M) at p ∈M is Xp ∈ Tp(M) and the action of X on a C1 function ϕ :M→K is
a function X(ϕ) :M→K with X(ϕ)|p := Xp(ϕ)∈K.

If M and M are manifolds and f : M →M is a C1 mapping, then f∗ := d f := T( f ) :
T(M)→ T(M) denotes the induced tangent mapping (or differential) of f such that,
for p ∈M, f∗|p := d f |p := Tp( f ) : Tp(M)→ Tf (p)(M) and, for a C1 function g on M,
( f∗(X))(g) := X(g ◦ f ) : p �→ f∗|p(g)= Xp(g ◦ f ), with ◦ being the composition of map-
pings sign. Respectively, the induced cotangent mapping is f ∗ := T∗( f ) : T∗(M)→ T∗

(M). If h :N →M, N being a manifold, we have the chain rule d( f ◦h)= d f ◦dh, which
is an abbreviation for d( f ◦h)q = (d f ) f (q) ◦ (dh)q for q ∈N .

By J ⊆ R will be denoted an arbitrary real interval that can be opened or closed at
one or both its ends. The notation γ : J →M represents an arbitrary path in M. For a C1

path γ : J →M, the vector tangent to γ at s∈ J will be denoted by γ̇(s) := d/dt|t=s(γ(t))=
γ∗(d/dr|s) ∈ Tγ(s)(M), where r in d/dr|s is the standard coordinate function on R, that
is, r :R→R with r(s) := s for all s∈R and hence r = idR is the identity mapping of R. If
s0 ∈ J is an end point of J and J is closed at s0, the derivative in the definition of γ̇(s0) is
regarded as a one-sided derivative at s0.

The Lie derivative relative to X ∈ �(M) will be denoted by �X . It is defined on ar-
bitrary geometrical objects on M [41], but below we will be interested in its action on
tensor fields [19, Chapter I, Section 2] (see also [21]). If f , Y , and θ are, C1, respectively,
function, vector field, and 1-form on M, then

�X( f )= X( f ), (2.1a)

�X(Y)= [X ,Y] , (2.1b)
(
�X(θ)

)
(Y)= X(θ(Y)

)− θ([X ,Y]
)= (dθ)(X ,Y) +Y

(
θ(X)

)
, (2.1c)

where [A,B] = A ◦ B− B ◦A is the commutator of operators A and B (with common
domain) and d denotes the exterior derivative operator.

Since �X is a derivation of the tensor algebra over the vector fields on M, for a ten-
sor field S : Λ1(M)×···×Λ1(M)×�(M)×···×�(M)→ F(M), with F(M) being the
algebra of functions on M, we have

(
�XS

)
(θ, . . . ;Y , . . .)= X(S(θ, . . . ;Y , . . .)

)− S(�Xθ, . . . ;Y , . . .
)

−···− S(θ, . . . ;�XY , . . .
)−··· ,

(2.2)

which defines �XS explicitly, due to (2.1).
Let the Greek indices λ,μ,ν, . . . run over the range 1, . . . ,dimM and let {Eμ} be a C1

frame in T(M), that is, let Eμ ∈�(M) be of classC1 and, for each p ∈M, let the set {Eμ|p}
be a basis of the vector space Tp(M). (There are manifolds, like the even-dimensional
spheres S2k, k ∈N, which do not admit global, continuous (and moreover Ck for k ≥ 1),
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and nowhere vanishing vector fields [34]. If this is the case, the considerations must be
localized over an open subset ofM on which such fields exist. We will not overload our ex-
position with such details.) Let {Eμ} be the coframe dual to {Eμ}, that is, Eμ ∈Λ1(M), let
{Eμ|p} be a basis in T∗p (M), and Eμ(Eν)= δμν with δν

μ being the Kronecker deltas (δν
μ = 1

for μ = ν and δν
μ = 0 for μ 	= ν). Assuming the Einstein’s summation convention (sum-

mation on indices repeated on different levels over the whole range of their values), we
define the components (ΓX)

μ
ν of �X in (relative to) {Eμ} via the expansion

�XEμ =:
(
ΓX
)

ν
μEν, (2.3)

which is equivalent to

�XE
μ =−(ΓX)

μ
νEν, (2.3′)

by virtue of Eμ(Eν) = δμν and the commutativity of the Lie derivatives and contraction
operators. (The sign before (ΓX)

μ
ν in (2.3) or (2.3′) is conventional and we have chosen it

in a way similar to the accepted convention for the components of a covariant derivative
(or, equivalently, the coefficients of a linear connection—see Section 4).) Sometimes, it is
convenient for (2.3) and (2.3′) to be written in a matrix form

�XE = E ·ΓX , �XE
∗ = −ΓX ·E∗, (2.4)

where ΓX := [(ΓX)
μ

ν]dimM
μ,ν=1 , E := (E1, . . . ,EdimM), and E∗ := (E1, . . . ,EdimM)�, with � be-

ing the matrix transposition sign, and the matrix multiplication is explicitly denoted by
centered dot · as otherwise E · ΓX may be confused with EΓX = E(ΓX) = (E1(ΓX), . . .) =
([E1((ΓX)ν

μ)], . . .). From (2.3) and (2.1b), we get

(
ΓX
)

ν
μ =−Eμ

(
Xν
)−Cν

μλX
λ, (2.5)

in {Eμ}, where X = XμEμ and the functions Cν
μλ, known as the components of the anholo-

nomicity object of {Eμ}, are defined by

[
Eμ,Eν

] =: CλμνEλ, (2.6)

or, equivalently, by its dual (see (2.1c))

dEλ =−1
2
CλμνE

μ∧Eν, (2.6′)

with ∧ being the exterior (wedge) product sign. (If M is a Lie group and {Eμ} is a basis
of its Lie algebra (:= {left invariant vector fields in �(M)}), then Cλμν are constants, called
structure constants of M, and (2.6) and (2.6′) are known as the structure equations of
M.) For a tensor field S of type (r,s), r,s ∈N∪{0}, with components S

μ1,...,μr
ν1,...,νs relative to
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the tensor frame induced by {Eμ} and {Eμ}, we get, from (2.2), the components of �XS
as

(
�XS

)μ1,...,μr
ν1,...,νs

= X(Sμ1,...,μr
ν1,...,νs

)
+

r∑

a=1

(
ΓX
)μa

λS
μ1,...,μa−1,λ,μa+1,...,μr
ν1,...,νs

−
s∑

b=1

(
ΓX
)
λ
νbS

μ1,...,μr
ν1,...,νb−1,λ,νb+1,...,νs .

(2.7)

A frame {Eμ} or its dual coframe {Eμ} is called holonomic (anholonomic) if Cλμν = 0

(Cλμν 	= 0) for all (some) values of the indices μ, ν, and λ. For a holonomic frame always
exist local coordinates {xμ} on M such that locally Eμ = ∂/∂xμ and Eμ = dxμ. Conversely,
if {xμ} are local coordinates on M, then the local frame {∂/∂xμ} and local coframe {dxμ}
are defined and holonomic on the domain of {xμ}.

A straightforward calculation by means of (2.6) reveals that a change

{
Eμ
}−→ {

Eν = BμνEμ
}

(2.8)

of the frame {Eμ}, where B = [Bν
μ] is a nondegenerate matrix-valued function, entails the

transformation

Cλμν �−→ C
λ
μν =

(
B−1)λ

ρ

(
BσμEσ

(
B

ρ
ν
)−BσνEσ

(
E

ρ
μ
)

+BσμB
τ
νC

ρ
στ
)
. (2.9)

Besides, from (2.5) and (2.9), we see that the quantities (ΓX)ν
μ undergo the change

(
ΓX
)

ν
μ �−→

(
ΓX
)

ν
μ =

(
B−1)μ

ρ

((
ΓX
)ρ
σBσν +X

(
Bσν
))

(2.10)

when (2.8) takes place. Setting ΓX := [(ΓX)ν
μ] and ΓX := [(ΓX)ν

μ], we can rewrite (2.10)
in a more compact matrix form as

ΓX �−→ ΓX = B−1 · (ΓX ·B+X(B)
)
. (2.11)

If n∈N and n≤ dimM, an n-dimensional distribution Δ onM is defined as a mapping
Δ : p �→ Δp assigning to each p ∈M an n-dimensional subspace Δp of the tangent space
Tp(M) of M at p, Δp ⊆ Tp(M). A solution (resp., first integral) of a distribution Δ on M is
an immersion ϕ : N →M (resp., submersion ψ : M →N), N being a manifold, such that
Imϕ∗ ⊆ Δ (resp., Kerψ∗ ⊃ Δ), that is, for each q ∈N (resp., p ∈M), ϕ∗(Tq(N))⊆ Δϕ(q)

(resp., ψ∗(Δp) = 0ψ(q) ∈ Tψ(q)(N)). A distribution is integrable if there is a submersion
ψ : M → N such that Kerψ∗ = Δ; if the commutators of the vector fields in Δ are vector
fields also in Δ, then Δ is locally integrable and if Δ is integrable, then the commutators
of the vector fields in Δ belong to Δ. We say that a vector field X ∈�(M) is in Δ and write
X ∈ Δ if Xp ∈ Δp for all p ∈M. A basis on U ⊆M for Δ is a set {X1, . . . ,Xn} of n linearly
independent (relative to functions U →K) vector fields in Δ|U , that is, {X1|p, . . . ,Xn|p} is
a basis for Δp for all p ∈U .

A distribution is convenient to be described in terms of (global) frames or/and cof-
rames over M. In fact, if p ∈M and ρ = 1, . . . ,n, in each Δp ⊆ Tp(M), we can choose a
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basis {Xρ|p} and hence a frame {Xρ}, Xρ : p �→ Xρ|p, in {Δp : p ∈M} ⊆ T(M); we say that
{Xρ} is a basis for/in Δ. Conversely, any collection of n linearly independent (relative to
functions M →K) vector fields Xρ on M defines a distribution p �→ {∑n

ρ=1 f
ρXρ|p : f ρ ∈

K}. Consequently, a frame in T(M) can be formed by adding to a basis for Δ a set of
(dimM − n) new linearly independent vector fields (forming a frame in T(M) \ {Δp :
p ∈M}) and vice versa, by selecting n linearly independent vector fields on M, we can
define a distribution Δ on M. Equivalently, one can use dimM− n linearly independent
1-forms ωa, a = n+ 1, . . . ,dimM, which are annihilators for it, ωa|Δp = 0 for all p ∈M.
For instance, if {Xμ : μ= 1, . . . ,dimM} is a frame in T(M) and {Xρ : ρ= 1, . . . ,n} is a basis
for Δ, then one can define ωa to be elements in the coframe {ωμ} dual to {Xμ}. We call
{ωa} a cobasis for Δ.

Ending this section, we will make a remark concerning the (non)local character of the
considerations in this paper. In general, when some coordinate system(s) is (are) used, the
quantities connected with it (them) are local in a sense that they are defined on, possibly,
a subset of the (intersection of the) domain(s) of this (these) coordinate system(s). Other
case when the considerations are possibly local is when one deals with continuous or
differentiable vector fields which generally exist on proper subsets of a manifold. But,
for instance, the concepts of a connection on a manifold and the associated to it parallel
transport are global ones: the connection is an object defined on the whole manifold and
the parallel transport (resp., along a path) is a mapping defined on the set of all C1 paths
(resp., on the whole fibre over the initial point of the path). However, the representations
of these objects in a coordinate system or a frame are generally local.

3. Connections on bundles

Before presenting the general connection theory in Section 3.2, we at first fix some nota-
tion and concepts concerning fibre bundles in Section 3.1.

3.1. Frames and coframes on the bundle space. Let (E,π,M) be a bundle with bun-
dle space E, projection π : E→M, and base space M. Suppose that the spaces M and E
are manifolds of finite dimensions n ∈N and n+ r, for some r ∈N, respectively; so the
dimension of the fibre π−1(x), with x ∈M, that is, the fibre dimension of (E,π,M), is
r. Besides, let these manifolds be C2 differentiable if the opposite is not stated explicitly.
(Most of our considerations are valid also if C1 differentiability is assumed and even some
of them hold on C0 manifolds. By assuming C2 differentiability, we skip the problem of
counting the required differentiability class of the whole material that follows. Some-
times, the C2 differentiability is required explicitly, which is a hint that a statement or
definition is not valid otherwise. If we want to emphasize that some text is valid under a
C1 differentiability assumption, we indicate that fact explicitly.)

Let the Greek indices λ,μ,ν, . . . run from 1 to n= dimM, let the Latin indices a,b,c, . . .
take the values from n+ 1 to n+ r = dimE, and let the uppercase Latin indices I , J ,K , . . .
take values in the whole set {1, . . . ,n+ r}. One may call these types of indices, respectively,
base, fibre, and bundle indices.

Suppose {uI} = {uμ,ua} = {u1, . . . ,un+r} are local bundle coordinates on an open set
U ⊆ E, that is, on the set π(U)⊆M there are local coordinates {xμ} such that uμ = xμ ◦π;
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(On a bundle or fibred manifold, these coordinates are known also as adapted coordinates
[32, Definition 1.1.5].) the coordinates {uμ} (resp., {ua}) are called basic (resp., fibre)
coordinates [29]. (If (U ,v) is a bundle chart, with v : U → Kn ×Kr and ea : Kr → K are
such that ea(c1, . . . ,cr)= ca ∈K, then one can put ua = ea ◦pr2◦v, where pr2 :Kn×Kr →
Kr is the projection on the second multiplier Kr .)

Further only coordinate changes

{
uμ,ua

} �−→ {
ũμ, ũa

}
(3.1a)

on E which respect the fibre structure, namely, the division into basic and fibre coordi-
nates, will be considered. This means that

ũμ(p)= f μ
(
u1(p), . . . ,un(p)

)
,

ũa(p)= f a
(
u1(p), . . . ,un(p),un+1(p), . . . ,un+r(p)

) (3.1b)

for p ∈U ∩ Ũ , with Ũ ⊆ E being the domain of the coordinates {ũI}, and some functions
f I . The bundle coordinates {uμ,ua} induce the (local) frame {∂μ := ∂/∂uμ,∂a := ∂/∂ua}
and coframe {duμ,dua} over U in, respectively, the tangent T(E) and cotangent T∗(E)
bundle spaces of the tangent and cotangent bundles over the bundle space E. Since a

change (3.1) of the coordinates on E implies ∂I �→ ∂̃I := ∂/∂ũI = ∂uJ /∂ũI∂J and duI �→
dũI = (∂ũI /∂uJ)duJ , the transformation (3.1) leads to

(
∂μ,∂a

) �−→ (
∂̃μ, ∂̃a

)= (∂ν,∂b
) ·A, (3.2a)

(
duμ,dua

)� �−→ (
dũμ,dũa

)� = A−1 · (duν,dub
)�
. (3.2b)

Here expressions like (∂μ,∂a) are shortcuts for ordered (n + r)-tuples like (∂1, . . . ,∂n+r)
= ([∂μ]nμ=1, [∂a]n+r

a=n+1), � is the matrix transpositions sign, the centered dot · stands for
the matrix multiplication, and the transformation matrix A is

A :=
[
∂uI

∂ũJ

]n+r

I ,J=1

=

⎛

⎜
⎜
⎜
⎝

[
∂uν

∂ũμ

]
0n×r

[
∂ub

∂ũμ

] [
∂ub

∂ũa

]

⎞

⎟
⎟
⎟
⎠
=:

⎡

⎢
⎢
⎢
⎣

∂uν

∂ũμ
0

∂ub

∂ũμ
∂ub

∂ũa

⎤

⎥
⎥
⎥
⎦

, (3.3)

where 0n×r is the n× r zero matrix. Besides, in expressions of the form ∂IaI , like the one
in the right-hand side of (3.2a), the summation excludes differentiation, that is, ∂IaI :=
aI∂I =

∑
I a

I∂I ; if a differentiation really takes place, we write ∂I(aI) :=∑
I ∂I(aI). This

rule allows a lot of formulae to be written in a compact matrix form, like (3.2a). The
explicit form of the matrix inverse to (3.3) is A−1 = [∂ũI /∂uJ] = ··· , and it is obtained
from (3.3) via the change u↔ ũ.

The formulae (3.2) can be generalized for arbitrary frame {eI} = {eμ,ea} in T(E) and
its dual coframe {eI} = {eμ,ea} in T∗(E) which respect the fibre structure in a sense that
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their admissible changes are given by

(
eI
)= (eμ,ea

) �−→ (ẽI)= (ẽμ, ẽa)= (eν,eb) ·A, (3.4a)
(
eμ

ea

)

�−→
(
ẽμ

ẽa

)

= A−1 ·
(
eν

eb

)

. (3.4b)

Here A= [AIJ ] is a nondegenerate matrix-valued function with a block structure similar
to (3.3), namely,

A=
⎛

⎜
⎝

[
Aν
μ

]n
μ,ν=1 0n×r

[
Abμ
]

μ=1,...,n
b=n+1,...,n+r

[
Aba
]n+r
a,b=n+1

⎞

⎟
⎠=:

⎡

⎣
Aν
μ 0

Abμ Aba

⎤

⎦ (3.5a)

with inverse matrix

A−1 =
⎛

⎜
⎝

[
Aν
μ

]−1
0

−[Aab
]−1 · [Aaμ

] · [Aν
μ

]−1 [
Aab
]−1

⎞

⎟
⎠ . (3.5b)

Here Aaμ : U → K and [Aν
μ] and [Aab] are nondegenerate matrix-valued functions on U

such that [Aν
μ] is constant on the fibres of E, that is, for p ∈ U , Aν

μ(p) depends only on
π(p)∈M, which is equivalent to any one of the equations

Aν
μ = Bν

μ ◦π,
∂Aν

μ

∂ua
= 0, (3.6)

with [Bν
μ] being a nondegenerate matrix-valued function on π(U)⊆M. Obviously, (3.2)

corresponds to (3.4) with eI = ∂/∂uI , ẽI = ∂/∂ũI , and AJI = ∂uJ /∂ũI .
All frames on E connected via (3.4)-(3.5), which are (locally) obtainable from holo-

nomic ones, induced by bundle coordinates via admissible changes, will be referred as
bundle frames. Only such frames will be employed in the present work.

If we deal with a vector bundle (E,π,M) endowed with vector bundle coordinates {uI}
[29], then the new fibre coordinates {ũa} in (3.1) must be linear and homogeneous in the
old ones {ua}, that is,

ũa = (Bab ◦π
) ·ub, ua =

((
B−1)a

b ◦π
)
· ũb, (3.7)

with B = [Bab] being a nondegenerate matrix-valued function on π(U)⊆M. In that case,
the matrix (3.3) and its inverse take the form

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂uμ

∂ũν
0

(
∂
(
B−1

)a
b

∂x̃ν
◦π

)
· ũb (

B−1
)b
a ◦π

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, A−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ũν

∂uμ
0

(
∂Bba
∂xμ

◦π
)

·ua Bba ◦π

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

(3.8)
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More generally, in the vector bundle case, transformations (3.4) are admissible with ma-
trices like

A=
⎛

⎝

[
A
μ
ν
]

0
[
Abcμũ

c
] [

Aab
]

⎞

⎠ , A−1 =
⎛

⎝

[
A
μ
ν
]−1

0

−[Aab
]−1 · [Abcμũc

] · [Aμν]−1 [
Aab
]−1

⎞

⎠ (3.9)

with Aabμ :U →K being functions on U which are constant on the fibres of E,

Aabμ = Babμ ◦π,
∂Aabμ
∂uc

= 0 (3.10)

for some functionsBabμ : π(U)→K. Obviously, (3.9) corresponds to (3.5) withAbμ =Abcμũc
and the setting AJI = ∂uJ /∂ũI reduces (3.9) to (3.8) due to (3.7).

3.2. Connection theory. From a number of equivalent definitions of a connection on
differentiable manifold [24, Sections 2.1 and 2.2], we will use the following one.

Defintion 3.1. A connection on a bundle (E,π,M) is an n= dimM-dimensional distribu-
tion Δh on E such that, for each p ∈ E is fulfilled,

Δvp⊕Δhp = Tp(E), (3.11)

where the vertical distribution Δv is defined by

Δv : p �−→ Δvp := Tı(p)
(
π−1(π(p)

))∼= Tp
(
π−1(π(p)

))
, (3.12)

with ı : π−1(π(p))→ E being the inclusion mapping, Δh : p �→ Δhp ⊆ Tp(E), and ⊕ is the

direct sum sign. The distribution Δh is called horizontal, and symbolically we write Δv ⊕
Δh = T(E).

A vector at a point p ∈ E (resp., a vector field on E) is said to be horizontal or vertical if
it (resp., its value at p) belongs to Δhp or Δvp, respectively, for the given (resp., any) point
p. A vector Yp ∈ Tp(E) (resp., vector field Y ∈�(E)) is called a horizontal lift of a vector
Xπ(p) ∈ Tπ(p)(M) (resp., vector field X ∈ �(M) on M = π(E)) if π∗(Yp) = Xπ(p) for the
given (resp., any) point p ∈ E. Since π∗|Δhp : Δhp → Tπ(p)(M) is a vector space isomorphism
for all p ∈ E [29, Section 1.24], any vector in Tπ(p)(M) (resp., vector field in �(M)) has a
unique horizontal lift in Tp(E) (resp., �(E)).

As a result of (3.11), any vector Yp ∈ Tp(E) (resp., vector field Y ∈ �(E)) admits a
unique representation Yp = Yv

p ⊕ Yh
p (resp., Y = Yv ⊕ Yh) with Yv

p ∈ Δvp and Yh
p ∈ Δhp

(resp., Yv ∈ Δv and Yh ∈ Δh). If the distribution p �→ Δhp is differentiable of class Cm, m∈
N∪{0,∞,ω}, it is said that the connection Δh is (differentiable) of class Cm. A connection
Δh is of class Cm if and only if, for every Cm vector field Y on E, the vertical Yv and
horizontal Yh vector fields are of class Cm.

A C1 path β : J → E is called horizontal (vertical) if its tangent vector β̇ is horizontal
(vertical) vector along β, that is, β̇(s)∈ Δhβ(s) (β̇(s)∈ Δvβ(s)) for all s∈ J . A lift γ : J → E of
a path γ : J →M, that is, π ◦ γ = γ, is called horizontal if γ is a horizontal path, that is,
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when the vector field γ̇ tangent to γ is horizontal or, equivalently, if γ̇ is a horizontal lift
of γ̇. Since π−1(γ(J)) is an (r + 1)- dimensional submanifold of E for any C1 path γ, the
distribution p �→ Δhp∩Tp(π−1(γ(J))) is one-dimensional and, consequently, is integrable
for an arbitrary C1 path γ. The integral paths of that distribution are horizontal lifts of γ
and, for each p ∈ π−1(γ(J)), there is (locally) a unique horizontal lift γp of γ passing through

p. (In this sense, a connection Δh is an Ehresmann connection [9, page 314] and vice versa
[32, pages 85–89]).

Defintion 3.2. Let γ : [σ ,τ]→M, with σ ,τ ∈ R and σ ≤ τ, and let γp be the unique hor-

izontal lift of γ in E passing through p ∈ π−1(γ([σ ,τ])). The parallel transport (transla-
tion, displacement) generated by (assigned to, defined by) a connection Δh is a mapping
P : γ �→ Pγ, assigning to the path γ a mapping

Pγ : π−1(γ(σ)
)→ π−1(γ(τ)

)
γ : [σ ,τ]→M (3.13)

such that, for each p ∈ π−1(γ(σ)),

Pγ(p) := γp(τ). (3.14)

In vector bundles the linear connections for which is required the parallel transport
assigned to them to be linear in a sense that the mapping (3.13) is linear for every path γ
are important (see Section 4.3).

Let us now look on the connections Δh on a bundle (E,π,M) from a view point of
(local) frames and their dual coframes on E. Let {eμ} be a basis for Δh, that is, eμ ∈ Δh

and {eμ|p} is a basis for Δhp for all p ∈ E, and let {ea} be the coframe for Δh, that is, a
collection of 1-forms ea, a = n+ 1, . . . ,n+ r, which are linearly independent (relative to
functions E→K) and such that ea(X)= 0 if X ∈ Δh.

Defintion 3.3. A frame {eI} in T(E) over E is called specialized for a connection Δh if the
first n= dimM of its vector fields form a basis {eμ} for the horizontal distribution Δh and
its last r = dimπ−1(x), x ∈M, vector fields form a basis {ea} for the vertical distribution
Δv. Respectively, a coframe {eI} on E is called specialized if {ea} is a cobasis for Δh and
{eμ} is a cobasis for Δv.

The horizontal lifts of vector fields and 1-forms can easily be described in specialized
(co)frames. Indeed, let {eI} and {eI} be, respectively, a specialized frame and its dual
coframe. Define a frame {Eμ} and its dual coframe {Eμ} onM which are π-related to {eI}
and {eI}, that is, Eμ := π∗(eμ) and eμ := π∗(Eμ)= Eμ ◦π∗. (Recall, π∗|Δhp : Δhp → Tπ(p)(M)

is a vector space isomorphism.) If Y = YμEμ ∈�(M) and φ = φμeμ ∈ Λ1(M), then their
horizontal lifts (from M to E), respectively, are

Y = (Yμ ◦π)eμ, φ = (φμ ◦π
)
eμ. (3.15)
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The specialized (co)frames transform into each other according to the general rules
(3.4) in which the transformation matrix and its inverse have the following block struc-
ture:

A=
([
Aν
μ

]
0n×r

0r×n
[
Aba
]

)

, A−1 =
⎛

⎝

[
Aν
μ

]−1
0n×r

0r×n
[
Aba
]−1

⎞

⎠ , (3.16)

where Aν
μ,Aba : E→K and the functions Aν

μ are constant on the fibres of the bundle (E,π,
M), that is, we have

Aν
μ = Bν

μ ◦π or
∂Aν

μ

∂ua
= 0 (3.17)

for some nondegenerate matrix-valued function [Bν
μ] on M. Besides, in a case of vector

bundle, the functions Aab are also constant on the fibres of the bundle (E,π,M), that is,

Aba = Bba ◦π or
∂Aba
∂ua

= 0 (3.18)

for some nondegenerate matrix-valued function B = [Bba] on M. Changes like (3.4), with
A given by (3.16), respect the fibre as well as the connection structure of the bundle.

Let E be a C2 manifold and Δh a C1 connection on (E,π,M). The components CKIJ of
the anholonomicity object of a specialized frame {eI} are (local) functions on E defined
by (see (2.6))

[
eI ,eJ

] =: CKIJ eK (3.19)

and are naturally divided into the following six groups (cf. [30, page 21]):

{
Cλμν

}
,

{
Caμν

}
,

{
Cλμb = 0

}
,

{
Cλab = 0

}
,

{
Ccμb

}
,

{
Ccab

}
. (3.20)

The functions Cλμν are constant on the fibres of (E,π,M), precisely Cλμν = f λμν ◦ π, where

f λμν are the components of the anholonomicity object for the π-related frame {π∗(eμ)} on
M, as the commutators of π-related vector fields are π-related [40, Section 1.55]. Besides,
since the vertical distribution Δv is integrable (the space Δvp is the space tangent to the
fibre through p ∈ E at p), we have

[
ea,eb

] = Ccabec (3.21)

(so that Cλab = 0), due to which Ccab are called components of the vertical anholonomicity
object. To prove thatCλμb = 0, one should expand {eI} along {∂I = ∂/∂uI}, with {uI} being

some bundle coordinates, namely, eμ = eν
μ∂ν + ebμ∂b and ea = eba∂b, with some functions eν

μ,

ebμ, and eba, and to notice that eν
μ are constant on the fibres, that is, ∂a(eν

μ)= 0.
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The nontrivial mixed “vertical-horizontal” components between (3.20), namely, Caμν

and Caμb, are important characteristics of the connection Δh. The functions

◦Γabμ := +Cabμ =−Caμb, (3.22a)

Raμν := +Caμν =−Caνμ, (3.22b)

which enter into the commutators

�eμeb = [eμ,eb] = ◦Γabμea, (3.23a)

�eμeν =
[
eμ,eν

] = Raμνea +Cλμνeλ, (3.23b)

are called, respectively, the fibre coefficients of Δh (or components of the connection object of
Δh) and fibre components of the curvature of Δh (or components of the curvature (object) of
Δh) in {eI}. Under a change (3.4), with matrix (3.16), of the specialized frame, functions
(3.22) transform into, respectively,

◦
Γ̃abμ = Aν

μ

([
A
f
e
]−1)a

d

( ◦ΓdcνA
c
b + eν

(
Adb
))

, (3.24a)

R̃aμν =
([
A
f
e
]−1)a

bA
λ
μA

ρ
νRbλρ, (3.24b)

which formulae are direct consequences of (3.23). If we put A := [Aba], ◦Γν := [ ◦Γdcν], and
◦
Γ̃ν := [

◦
Γ̃dcν], then (3.24a) is tantamount to

◦
Γ̃μ = Aν

μA
−1 · ( ◦Γν ·A+ eν(A)

)

= Aν
μ(A

−1 · ◦Γν− eν
(
A
−1)) ·A.

(3.25)

Up to a meaning of the matrices [Aν
μ] andA and the size of the matrices ◦Γν andA, the last

equation is identical with the one expressing the transformed matrices of the coefficients
of a linear connection (covariant derivative operator) in a vector bundle [17, equation
(3.5)] on which we will return later in this work (see Section 4, in particular (4.37)).
Equation (3.24b) indicates that Raμν are components of a tensor, namely,

Ω := 1
2
Raμνea⊗ eμ∧ eν, (3.26)

called curvature tensor of the connection Δh. By (3.23a), the horizontal distribution Δh is
(locally) integrable if and only if its curvature tensor vanishes, Ω= 0.

Defintion 3.4. A connection with vanishing curvature tensor is called flat, integrable, or
curvature free.

Proposition 3.5. The flat connections are the only ones that may admit holonomic special-
ized frames.

Proof. See Definition 3.4 and (3.23b). �
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The above considerations of specialized (co)frames for a connection Δh on a bundle
(E,π,M) were global as we supposed that these (co)frames are defined on the whole bun-
dle space E, which is always possible if no smoothness conditions on Δh are imposed.
Below we will show how local specialized (co)frames can be defined via local bundle co-
ordinates on E.

Let {uI} be local bundle coordinates on an open set U ⊆ E. They define on T(U) ⊆
T(E) the local basis {∂I := ∂/∂uI}, so that any vector can be expended along its vectors. In
particular, we can do so with any basic vector field eUI of a specialized frame {eI} restricted
to U , eUI := eI|U . Since {∂a|p}, with p ∈U , is a basis for Δvp, we can write

(
eUμ ,eUa

)= (Aν
μ∂μ +Aaμ∂a,A

b
a∂b

)= (∂ν,∂b
) ·
([
Aν
μ

]
0

[
Abμ
] [

Aba
]

)

, (3.27)

where [Aν
μ] and [Aba] are nondegenerate matrix-valued functions on U . (The nondegen-

eracy of [Aν
μ] follows from the fact that the vector fields π∗|Δh(eUμ )=Aν

μπ∗(∂/∂uμ) form a
basis for �(π(U))⊆�(M)).

Defintion 3.6. A frame {XI} over U in T(U) is called adapted (to the coordinates {uI} in
U) for a connection Δh if it is the specialized frame obtained from (3.27) via admissible

transformation (3.4) with the matrix A=
(

[Aν
μ]−1 0

0 [Aba]−1

)
.

Exercise 3.7. An arbitrary specialized frame {eUI } in T(E) over U enters in the definition
of a frame {XI} adapted to bundle coordinates {uI} onU . Prove that {XI} is independent
of the particular choice of the frame {eUI }. (Hint: apply Definition 3.6 and (3.4a) with A
given by (3.16).) The below-derived equality (3.34) is an indirect proof of that fact too.

According to (3.4) and Definition 3.6, the adapted frame {XI} and its corresponding
adapted coframe {ωI} are given by

Xμ = ∂μ +Γaμ∂a, Xa = ∂a, (3.28a)

ωμ = duμ, ωa = dua−Γaμduμ. (3.28b)

Here the functions Γaμ :U →K are defined via

[
Γaμ
]= +

[
Aaν
] · [Aν

μ

]−1
(3.29)

and are called (2-index) coefficients of Δh. In a matrix form, (3.28) can be written as

(
Xμ,Xa

)= (∂ν,∂b
) ·
[
δν
μ 0

+Γbμ δba

]

,

(
ωμ

ωa

)

=
[
δ
μ
ν 0
−Γaν δab

]

·
(

duν

dub

)

. (3.30)

The operators Xμ = ∂μ + Γaμ∂a are known as covariant derivatives on T(U) and the plus
sign in (3.28a) before Γaμ (hence in the right-hand side of (3.29)) is conventional.

If {uI} and {ũI} are local coordinates on open sets U ⊆ E and Ũ ⊆ E, respectively, and
U ∩ Ũ 	=∅, then, on the overlapping set U ∩ Ũ , a problem arises: how are the adapted
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frames corresponding to these coordinates connected? Let us mark with a tilde all quan-
tities that refer to the coordinates {ũI}. Since the adapted frames are, by definitions, spe-
cialized ones, we can write (see (3.4))

(
X̃μ, X̃a

)= (Xν,Xb
) ·A,

(
ω̃μ

ω̃a

)

= A−1 ·
(
ων

ωb

)

, (3.31a)

where the transformation matrix A and its inverse have the form (3.16). Recalling (3.2)
and (3.3), from these equalities, we get

A= diag

([
∂uν

∂ũμ

]

,

[
∂ub

∂ũa

])

=

⎛

⎜
⎜
⎜
⎝

[
∂uν

∂ũμ

]
0

0
[
∂ub

∂ũa

]

⎞

⎟
⎟
⎟
⎠
. (3.31b)

Combining (3.29) and (3.31), one can easily prove the following.

Proposition 3.8. A change {uI} �→ {ũI} of the local bundle coordinates implies the follow-
ing transformation of the 2-index coefficients of the connection:

Γaμ �−→ Γ̃aμ =
(
∂ũa

∂ub
Γbν +

∂ũa

∂uν

)
∂uν

∂ũμ
. (3.32)

It is obvious that a connection Δh is of class Cm, m∈N∪{0}, if and only if its coeffi-
cients Γaμ are Cm functions on U , provided ∂I are Cm vector fields on U (which is the case
when E is a Cm+1 manifold). By virtue of (3.32), the Cm+1 changes of the local bundle
coordinates preserve the Cm differentiability of Γaμ. Thus the Cm+1 differentiability of the
base M and bundle E spaces is a necessary condition for existence of Cm connections on
(E,π,M); as we assumed m = 1 in this work, the connections considered here can be at
most of differentiability class C1.

The next proposition states that a connection on a bundle is locally equivalent to a
geometric object whose components transform like (3.32).

Proposition 3.9. To any connection Δh in a bundle (E,π,M) can be assigned, according
to the procedure described above, a geometrical object on E whose components Γaμ in bundle
coordinates {uI} on E transform according to (3.32) under a change {uI} �→ {ũI} of the
bundle coordinates on the intersection of the domains of {uI} and {ũI}. Conversely, given a
geometrical object on E with local transformation law (3.32), there is a unique connection
Δh in (E,π,M) which generates the components of that object as described above.

Proof. The first part of the statement was proved above, when we constructed the adapted
frame (3.28a) and derived (3.32). To prove the second part, choose a point p ∈ E and
some local coordinates {uI} on an open set U in E containing p in which the geometrical
object mentioned has local components Γaμ. Define a local frame {XI} = {Xμ,Xa} onU by

(3.28a). The required connection is then Δh : q �→ Δhq := {rμXμ|q : rμ ∈K} for any q ∈U ,

which means that Δhq is the linear cover of {Xμ|q}. The transformation law (3.32) insures

the independence of Δh from the local coordinates employed in its definition. �
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From the construction of an adapted frame {XI}, as well as from the proof of Proposi-
tion 3.9, follows that the set of vectors {Xμ} is a basis for the horizontal distribution Δh,
and the set {Xa} is a basis for the vertical distribution Δv. The matrix of the restricted
tangent projection π∗|Δh in bundle coordinate system {uμ = xμ ◦π,ua} on E, where the xμ

are local the coordinates on M, is the identity matrix as (π∗|Δhp)ν
μ = ∂(xμ ◦π)/∂uμ|p = δν

μ

for any point p in the domain of {uI}. Hereof we get

π∗|Δh
(
Xμ
)= ∂

∂xμ

(

⇐⇒ π∗|Δhp
(
Xμ|p

)= ∂

∂xμ

∣
∣
∣
∣
π(p)

)

. (3.33)

In particular, from here follows that π∗|Δhp : Δhp → Tπ(p)(M) is a vector space isomorphism.
The inverse to (3.33), namely,

Xμ =
(
π∗|Δh

)−1
(

∂

∂xμ

)

= (π∗|Δh
)−1 ◦π∗

(
∂

∂uμ

)
, (3.34)

can be used in an equivalent definition of a frame {XI} adapted to local coordinates {uI},
namely, this is the frame ((π∗|Δh)−1 ◦π∗(∂/∂uμ),∂/∂ua). If one accepts such a definition of
an adapted frame for Δh, the (2-index) coefficients of Δh have to be defined via expansion
(3.28a); the only changes this may entail are in the proofs of some results, like (3.31) and
(3.32).

It is useful to be recorded also the simple fact that, by construction, we have

π∗(Xa)= 0. (3.35)

Let E be a C2 manifold and let Δh be a C1 connection. The adapted frames are generally
anholonomic as the commutators between the basic vector fields of the adapted frame
(3.28a) are (cf. (3.31) and (3.32))

[
Xμ,Xν

] = RaμνXa,
[
Xμ,Xb

] = ◦ΓabμXa,
[
Xa,Xb

] = 0, (3.36)

with

Raμν = ∂μ
(
Γaν
)− ∂ν

(
Γaμ
)

+Γbμ∂b
(
Γaν
)−Γbν∂b

(
Γaμ
)= Xμ

(
Γaν
)−Xν

(
Γaμ
)

(3.37a)

◦Γabμ =−∂b(Γaμ)=−Xb(Γaμ) (3.37b)

being the fibre components of the curvature and fibre coefficients of the connection. An
obvious result from (3.36) is stated as follows.

Proposition 3.10. An adapted frame is holonomic if and only if

Raμν = 0
(⇐⇒Ω= 0

)
, ◦Γabμ = 0. (3.38)

Therefore, only the flat (integrable) C1 connections, for which Ω= 0, may admit holo-
nomic adapted frames (cf. Proposition 3.5). Besides, as a consequence of (3.37b) and
(3.38), such connections admit holonomic adapted frames on U ⊆ E if and only if there
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are local coordinates on U in which the coefficients Γaμ are constant on the fibres passing
through U , that is, if and only if Γaμ = Ga

μ ◦π for some functions Ga
μ : π(U)→K, which is

equivalent to ∂b(Γaμ)= 0.

Example 3.11 (horizontal lifting of a path). Recall, the horizontal lift of a C1 path γ : J →
M passing through a point p ∈ π−1(γ(t0)) for some t0 ∈ J is the unique path γp : J → E

such that π ◦ γp = γ, γp(t0)= p, and γ̇p(t)∈ Δhγp(t) for all t ∈ J . As in a specialized frame

{eI}, the relation Xp ∈ Δhp is equivalent to ea(X) = 0 for any X ∈ �(M); in an adapted
coframe, given by (3.28b), the horizontal lift γp of γ is the unique solution of the initial
value problem

ωa
(
γ̇p
)= 0, (3.39a)

γp
(
t0
)= p, (3.39b)

which is tantamount to any one of the initial-value problems (t ∈ J)

γ̇
a
p(t)−Γaμ(γp(t))γ̇

μ
p(t)= 0, (3.39a′)

γIp(t0)= pI := uI(p), (3.39b′)

d
(
ua ◦ γp(t)

)

dt
−Γaμ

(
γp(t)

)d
(
xμ ◦ γ(t)

)

dt
= 0, (3.39a′′)

uI
(
γp
(
t0
))= uI(p), (3.39b′′)

where xμ are the local coordinates in the base space that induce the basic coordinates uμ

on the bundle space, uμ = xμ ◦ π. (Note that the quantities d(xμ ◦ γ(t))/dt, entering into
(3.39a′′), are the components of the vector γ̇ tangent to γ at parameter value t.) One may
call (3.39a), or any one of its versions (3.39a′) or (3.39a′′), the parallel transport equation
in an adapted frame as it uniquely determines the parallel transport along the restriction
of γ to any closed subinterval in J (see Definition 3.2).

Example 3.12 (the equation of geodesic paths). A connection Δh on the tangent bundle
(T(M),πT ,M) of a manifold M is called a connection on M. In this case, (3.39) defines
also the geodesics (relative to Δh) in M. A C2 path γ : J →M in a C2 manifold M is called
a geodesic path if its tangent vector field γ̇ undergoes parallel transport along the same
path γ, that is, Pγ|[σ ,τ](γ̇(σ)) = γ̇(τ) for all σ ,τ ∈ J , which means that the lifted path γ̇ :
J → T(M) is a horizontal lift of γ (relative to Δh). So, if xμ are local coordinates on π(U)∈
M and the bundle coordinates on U ⊆ E are such that [40, Section 1.25] uμ = xμ ◦ π
and un+μ = dxμ (μ,ν, . . . = 1, . . . ,n = dimM), then (3.39a′′) transforms into the geodesic
equation (on M)

d2(xμ ◦ γ(t)
)

dt2
−Γ

n+μ
ν

(
γ̇(t)

)d
(
xν ◦ γ(t)

)

dt
= 0, t ∈ J , (3.42)

which (locally) defines all geodesics inM. (With obvious renumbering of the indices, one
usually writes Γ

μ
ν for Γ

n+μ
ν .) Of course, a particular geodesic is specified by fixing some
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initial values for γ(t0) and γ̇(t0) for some to ∈ J . Notice that (3.42) is an equation for a
path γ in M, while (3.39a′′) is an equation for the lifted path γ in T(M) provided the
path γ in M is known; for a geodesic path γ : J →M, evidently, we have γ̇ = γ. That is,
the vector γ̇(t) tangent to γ at t is identical with the value γ(t) of the horizontal lifting
γ : J → T(M) of γ (in the tangent bundle space) at t for all t ∈ J .

4. Connections on vector bundles

In this section, by (E,π,M) we will denote an arbitrary vector bundle [29]. A peculiarity
of such bundles is that their fibres are isomorphic vector spaces, which leads to a natural
description of the vertical distribution Δv on their fibre spaces, as well as to existence of a
kind of differentiation of their sections (known as covariant differentiation).

In the vector bundles, as we will do in this section, the so-called vector bundle coordi-
nates which are linear on their fibres and are constructed as follows are used (cf. [32, page
30]). Here the linearity means that the fibre coordinate functions ua with domain U ⊆ E
are linear on the intersectionU ∩π−1(p) for all p ∈U , that is, ua|U∩π−1(p) :U ∩π−1(p)→
K are linear functions on the vector space U ∩π−1(p).

Let {ea} be a frame in E over a subset UM ⊆M, that is, {ea(x)} is a basis in π−1(x)
for all x ∈UM . Then, for each p ∈ π−1(UM), we have a unique expansion p = paea(π(p))
for some numbers pa ∈K. The vector fibre coordinates {ua} on π−1(UM) induced (gener-
ated) by the frame {ea} are defined via ua(p) := pa and hence can be identified with the
elements of the coframe {ea} dual to {ea}, that is, ua = ea. Conversely, if {uI} are coordi-
nates on π−1(UM) for some UM ⊆M which are linear on the fibres over UM , then there is
a unique frame {ea} in π−1(UM) which generates {ua} as just described; indeed, consid-
ering un+1, . . . ,un+r as 1-forms on π−1(UM), one should define the frame {ea} required as
a one whose dual is {ua}, that is, via the conditions ua(eb)= δab .

A collection (uI) of basic coordinates (uμ) and vector fibre coordinates {ua} on π−1(UM)
is called vector bundle coordinates on π−1(UM). Only such coordinates on E will be em-
ployed in this section.

4.1. Vertical lifts. The idea of describing the vertical distribution Δv on a vector bundle
is that if L is a vector space, then to any Y ∈ L there corresponds a “vertical” vector field
Yv ∈�(L)= Sec(T(L),πT ,L) whose value at X ∈ L is the vector tangent to the path t �→
X + tY ∈ L, with t ∈ R, at t = 0, that is, Yv|X := d/dt|t=0(X + tY). Here and below, with
Sec(E,π,M) (resp., Secm(E,π,M) with m ∈ N∪{0}) we denote the module of sections
(resp., Cm sections) of a bundle (E,π,M) (resp., of a Cm+1 bundle (E,π,M)).

Let (E,π,M) be a vector bundle and Δv the vertical distribution on it, namely, for
each p ∈ E, Δv : p �→ Δvp := Tp(π−1(π(p))). To every Y ∈ Sec(E,π,M), we assign a vertical
vector field Yv ∈ Δv on E such that, for p ∈ E,

Yv
p := Yv|p := d

dt

∣
∣
∣
∣
t=0

(
p+ tY |π(p)

)
. (4.1)

(The mapping (p,Yπ(p)) �→ Yv
p defines an isomorphism from the pullback bundle π∗E

into the vertical bundle �(E)—see [29, Sections 1.27 and 1.28] and also [32, page 41,
Exercises 2.2.1 and 2.2.2].)
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Lemma 4.1. Let {ua} be vector fibre coordinates generated by a frame {ea} on M. If Y ∈
Sec(E,π,M) and Y = Yaea, then

Yv = (Ya ◦π) ∂

∂ua
. (4.2)

Proof. Using Definition 4.4, we get for p ∈ E,

Yv|p = d
dt

∣
∣
∣
∣
t=0

(
p+ tY |π(p)

)= d
(
ua
(
p+ tY |π(p)

))

dt

∣
∣
∣
∣
t=0

∂

∂ua

∣
∣
∣
∣
p

= d
(
pa + tYa

(
π(p)

))

dt

∣
∣
∣
∣
t=0

∂

∂ua

∣
∣
∣
∣
p
= Ya

(
π(p)

) ∂

∂ua

∣
∣
∣
∣
p
=
(
(
Ya ◦π) · ∂

∂ua

)∣
∣
∣
∣
p
.

(4.3)

�

If Y ∈ Sec(E,π,M), the vector field Yv := v(Y) ∈ Δv, defined via (4.1), is called the
vertical lift of the section Y . It is (locally) given by (4.2) in vector bundle coordinates. An
evident corollary of Lemma 4.1 is stated as follows.

Corollary 4.2. The commutator (Lie bracket) of the vertical lifts of any two sections is zero,
that is, if Y1,Y2 ∈ Sec(E,π,M), then

[
Yv

1 ,Yv
2

]≡ 0. (4.4)

Proposition 4.3. The mapping

v : Sec(E,π,M)−→ {
vector fields in Δv

}
,

v : Y �−→ Yv : p �−→ Yv|p := d
dt

∣
∣
∣
∣
t=0

(
p+ tYπ(p)

) (4.5)

is a bijection and it and its inverse are linear mappings.

Proof. The linearity and injectivity of v follow directly from (4.1). Now we will prove that,
for each Z ∈ Δv, there is a Y ∈ Sec(E,π,M) such that Yv = Z, that is, v is also surjective.
Let Z = Za∂/∂ua, with {uI} being (local) vector bundle coordinates on E and the func-
tions Za being constant on the fibres of E, that is, ZI = zI ◦π for some functions zI on M.
Define Y = zaea with {ea} being the frame in E over M generating {uI}. By Lemma 4.1,
we have Yv = (za ◦ π)(∂/∂ua) = Za(∂/∂ua) = Z. The linearity of v−1 follows from here
too. �

Consider a section ω of the bundle dual to (E,π,M) [29]. Its vertical lift ωv is a 1-form
on Δv such that, for Z ∈ Δv and p ∈ E, ωv(Z)|p = ω(Y)|π(p) for the unique section Y ∈
Sec(E,π,M) withYv = Z (see Proposition 4.3), that is, we haveωv(·)|p = (ω ◦ v−1(·))|π(p)

which means that

ωv(Z)= (ω ◦ v−1(Z)
)◦π or ωv

(
Yv
)∣∣

p = ω(Y)|π(p)
(= ωπ(p)

(
Yπ(p)

))
. (4.6)
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If {ea = ua} is the coframe dual to {ea} and ω = ωaea, then in the coframe {dua} dual
to {∂/∂ua}, we can write (cf. (4.2))

ωv =
(
ωa ◦π

)
dua. (4.7)

It should be mentioned, “vertical” lifts of vector fields or 1-forms over the base spaceM
are generally not defined unless E = T(M) or E = T∗(M), respectively. (Since π∗(Δvp)=
0π(p) ∈ Tπ(p)(M), p ∈ E, we can say that only the zero vector field over M has vertical lifts
relative to π and any vector field in Δv is its vertical lift. This conclusion is independent
of the existence of a connection on (E,π,M) and depends only on the fibre structure of E
induced by π.)

Let Δh be a connection on (E,π,M) and let ϕ : E → K be a C1 mapping. Since any
X ∈�(E) can uniquely be written as a direct sum X = v(X)⊕ h(X), with v(X)∈ Δv and
h(X)∈ Δh, we have ϕ∗(X)= ϕ∗(v(X)) +ϕ∗(h(X))∈�(K). If {ZI} is a specialized frame
in T(E) and {ZI} is its dual coframe of 1-forms on �(E), we immediately get

ϕ∗ =
(
ϕ∗
(
Za
))
Za +

(
ϕ∗
(
Zμ
))
Zμ = (Za(ϕ)

)
Za +

(
Zμ(ϕ)

)
Zμ, (4.8)

as X = XIZI entails v(X) = XaZa and h(X) = XμZμ; in particular, (4.8) holds in any
adapted (co)frame (3.28) and/or a section ϕ of the bundle (E,π,M). If {uI} are vector
bundle coordinates, in the (co)frame (3.28) adapted to them, we have Zμ = Xμ, Za = ∂a,
Zμ = ωμ = duμ, Za = ωa, and we can write the expansion ϕ= ϕaua with ϕa : E→K. Thus
(4.8) takes the form

ϕ∗ = ϕaωa +
(
Xμ(ϕaua)

)
ωμ = ϕv +

(
Xμ(ϕaua)

)
ωμ, (4.9)

where (4.7) was applied.
A section Y of (E,π,M) and section ω of the bundle dual to (E,π,M) can be lifted verti-

cally via the mappings

v : Y �−→ Yv ∈ Δv, (4.10a)

ω �−→ ωv, (4.10b)

respectively, given by (4.5) and (4.6) (see also (4.2) and (4.7)). These mappings do not
require a connection and arise only from the fibre structure of the bundle space induced
from the projection π : E→M.

If a connection Δh on (E,π,M) is given, it generates horizontal lifts of the vector fields
on the base space M and of the 1-forms on the same base space M into respectively, vec-
tor fields in Δh and linear mappings on the vector fields in Δh. Precisely, if F ∈ �(M)
and φ ∈Λ1(M), their horizontal lifts are defined by the mappings (alternatively, one may
define φ′h = φ ◦ π∗ = π∗(φ); in this way the domain of φh, which is defined by (4.11b),
is expanded on the whole space �(E); obviously, φ′h(Z) = φh(Z) for Z ∈ Δh ⊆�(E) and
φ′h(Z)= 0 for Z ∈�(E) \ {X ∈ Δh})

F �−→ Fh ∈ Δh with Fh : p �−→ Fhp := (π∗|Δhp
)−1(

Fπ(p)
)
, p ∈ E, (4.11a)

φ �−→ φh with φh := φ ◦π∗|Δh : p �−→ φh|p = φ|π(p) ◦
(
π∗|Δhp

)
. (4.11b)
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The horizontal lift φh of φ can also be defined alternatively via

φh
(
Fh
)∣∣

p = φ(F)
∣
∣
π(p), (4.12)

which equation is tantamount to (4.11b).
Let {uμ = xμ ◦π,ua} be vector bundle coordinate system and let {XI} (resp., {ωI}) be

its adapted frame (resp., coframe) constructed from it according to (3.28). If Y = Yaea,
ω = ωaea, F = Fμ(∂/∂xμ)∈�(M), and φ= φμdxμ ∈Λ1(M), (4.2) and (4.7) imply

Yv = (Ya ◦π)Xa, ωv =
(
ωa ◦π

)
ωa, (4.13)

while from (4.11) and (3.33), one gets

Fh = (Fμ ◦π)Xμ, φh =
(
φμ ◦π

)
ωμ, (4.14)

which agree with (3.15).

4.2. The tangent and cotangent bundle cases. As an example, in the present subsection
a connection Δh on the tangent bundle (T(M),πT ,M) over a manifold M is considered.

A vector field Y ∈ �(M) = Sec(T(M),πT ,M) has unique vertical lift Yv ∈ Δv (which
is independent of Δh) and unique horizontal lift given by (see (4.5))

Yv := v(Y)∈ Δv, Yh := ((πT
)
∗|Δh

)−1
(Y)∈ Δh, (4.15)

the last equality meaning thatYh
p := ((πT)∗|Δhp)−1(Yp), which is correct as (πT)∗|Δhp : Δhp →

Tπ(p)(M) is an isomorphism. Respectively, if ω is 1-form on M, it has vertical lift ωv
(which is independent of Δh) and horizontal lift ωh, which is 1-form on Δh, defined by
(see (4.6))

ωv(Z)= (ω ◦ v−1(Z)
)◦πT , ωh := ω ◦ (πT

)
∗ = π∗T (ω). (4.16)

The horizontal lift of ω has the properties

ωh
(
Yv
)= 0 for Y ∈�(M), (4.17a)

ωh
(
Yh
)= (ω(Y)

)◦πT for Y ∈�(M), (4.17b)

the first of which is equivalent to

ωh(Z)= 0 for Z ∈ Δv, (4.15a′)

due to Proposition 4.3.
Thus there arises a lift �(M)→�(T(M)) such that the lift of Y∈�(M) is Y∈�(T(M))

with

Y := Yv ⊕Yh. (4.18)
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Obviously, this decomposition respects Definition 4.4 and
(
πT
)
∗
(
Y
)= (πT

)
∗
(
Yh
)= Y. (4.19)

The dual lift ω �→ ω ∈Λ1(T(M)) of a 1-form ω∈Λ1(M) is given by

ω = ωv ⊕ωh. (4.20)

As a result of (4.6) and (4.17), we have

ω(Y)= ωv
(
Yv
)

+ωh(Yh)= 2
(
ω(Y)

)◦πT. (4.21)

At last, let us look on the vertical and/or horizontal lifts from the view point of local
bases/frames.

In the case of the tangent bundle (T(M),πT ,M) (resp., cotangent bundle (T∗(M),π∗T ,
M)) over a manifold M, any coordinate system {xμ} on an open set UM ⊆M induces
natural vector bundle coordinates in the bundle space [40, Section 1.25] (see also [32,
pages 8, 43]). For the purpose, we put eμ = ∂/∂xμ, so that eμ = dxμ, and we get (λ,μ, . . .=
1, . . . ,dimM and a,b = dimM + 1, . . . ,2dimM)

{
uI
}= {xμ ◦πT ,dxν

}
, that is, uμ = xμ ◦πT ua = dxa−dimM (4.22a)

on π−1
T (UM), in the tangent bundle case, and

{
uI
}=

{

xμ ◦πT∗ , (·)
(
∂

∂xν

)}

that is, uμ = xμ ◦πT∗ udimM+ν : ξ �−→ ξ
(
∂

∂xν

)
(4.22b)

on π−1
T∗ (UM) � ξ, in the cotangent bundle case. In connection with the higher order

(co)tangent bundles, it is convenient the vector fibre coordinates to be denoted also as
u
μ
1 := ẋμ := dxμ in T(M) and by u1

μ(·)= (·)(∂/∂xμ) in T∗(M).
Consider the vector bundle coordinates {uμ = xμ ◦ πT ,uν

1 = dxν} on π−1
T (UM). They

induce the frame {∂μ = ∂/∂uμ,∂1
ν = ∂/∂uν

1} and the coframe {duμ,duν
1} on π−1

T (UM) and
π−1
T∗ (UM), respectively. According to (3.30), they induce the following adapted frame and

its dual coframe:

(
Xμ,X1

μ

)= (∂ν,∂1
ν

) ·
⎡

⎣
δν
μ 0

+Γν
μ δν

μ

⎤

⎦= (∂μ +Γν
μ∂

1
ν,∂1

μ

)
, (4.23a)

⎛

⎝
ωμ

ω
μ
1

⎞

⎠=
⎡

⎣
δ
μ
ν 0

−Γμν δ
μ
ν

⎤

⎦ ·
⎛

⎝
duν

du
μ
1

⎞

⎠=
(

duμ

du
μ
1 −Γ

μ
νduν

)

, (4.23b)

where, as accepted in the (co)tangent bundle case, a fibre index, like a, is replaced with
a base index, like μ, according to a �→ μ = a− dimM, which leads to identification like
Γν
μ := ΓdimM+ν

μ .
Consider a vector field Y = Yμ(∂/∂xμ) ∈ �(M) and 1-form η = ημdxμ ∈ Λ1(M). Ac-

cording to (4.2) and (4.7), their vertical lifts are

Yv = (Yμ ◦πT
)
X1
μ ∈ Δv, ηv = (ημ ◦πT∗

)
ω
μ
1, (4.24a)
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and similarly, due to (4.14), the horizontal lifts of Y and η are

Yh = (Yμ ◦πT
)
Xμ ∈ Δh, ηh = (ημ ◦πT∗

)
ωμ. (4.24b)

4.3. Linear connections on vector bundles. The most valued structures in/on vector
bundles are the ones which are compatible/consistent with the linear structure of the fi-
bres of these bundles. Since a distribution Δ : p �→ Δp ⊆ Tp(E), p ∈ E, on the bundle space
E of a (vector) bundle (E,π,M) cannot be considered as a linear mapping without addi-
tional hypotheses, the concept of a linear connection arises from the one of the parallel
transport assigned to a connection (see Definition 3.2). (For an alternative approach, see
[24, page 42].)

Defintion 4.4. A connection on a vector bundle is called linear if its assigned parallel
transport is a linear mapping along every path in the base space, that is, if the mapping
(3.13) is linear for all paths γ : [σ ,τ]→M in the base.

The restriction on a connection to be linear is quite severe and is described locally by
the following theorem.

Theorem 4.5 (cf. [30, Section 5.2]). Let (E,π,M) be a vector bundle, let {uI} be vector
bundle coordinate system on an open set U ⊆ E, and let Δh be a connection on it described
in the frame {XI}, adapted to {uI}, by its 2-index coefficients Γaμ (see (3.27)–(3.29)). The

connection Δh is linear if and only if, for each p ∈U ,

Γaμ(p)=−Γabμ(π(p))ub(p)=−((Γabμ ◦π
) ·ub)(p), (4.25)

where Γabμ : π(U)→K are some functions on the set π(U) ⊆M and the minus sign before
Γabμ in (4.25) is conventional.

Proof. Take a C1 path γ : [σ ,τ] → π(U) and consider the parallel transport equation
(3.39a′′), namely,

dγap(t)

dt
= Γaμ

(
γp(t)

)
γ̇μ(t), (4.26)

where γp : [σ ,τ]→ U is the horizontal lift of γ through p ∈ π−1(γ(σ)), γa := ua ◦ γ, and
γ̇μ(t) = d(xμ ◦ γ(t))/dt = d(uμ ◦ γ(t))/dt as uμ = xμ ◦ π for some coordinate system {xμ}
on π(U).

Sufficiency. If (4.25) holds, (4.26) can be transformed into

dγap(t)

dt
=−Γabμ

(
γ(t)

)
γbp(t)γ̇μ(t), (4.27)

which is a system of r linear first-order ordinary differential equations for the r func-
tions γn+1

p , . . . ,γn+r
p . According to the general theorems of existence and uniqueness of the

solutions of such systems [12], it has a unique solution

γap(t)= Ya
b (t)pb (4.28)
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satisfying the initial condition γap(σ) = ua(p) =: pa, where Y = [Ya
b ] is the fundamental

solution of (4.27), that is,

dY(t)
dt

=−[Γabμ
(
γ(t)

)
γ̇μ(t)

]n+r
a,b=n+1 ·Y(t), Y(σ)= 11r×r =

[
δab
]
. (4.29)

The linearity of the mapping Pγ, defined by (3.14), with respect to p follows from (4.28)
for t = τ.

Necessity. Suppose (3.13) is linear in p for all paths γ : [σ ,τ] → π(U). Then γp(t) :=
Pγ|[σ ,t](p) is the horizontal lift of γ | [σ , t] through p and (cf. (4.28)) γap(t)= Aab(γ(t))pb

for some C1 functions Aab : π(U)→K. The substitution of this equation in (4.26) results
into

∂Aab(x)

∂xμ

∣
∣
∣
∣
x=γ(t)=π

(
γp(t)

) · γ̇μ(t)pb = Γaμ
(
γp(t)

)
γ̇μ(t). (4.30)

Since γ : [σ ,τ]→M, we get (4.25) from here, for t = σ , with Γabμ(x) = −∂Aab(x)/∂xμ for
x ∈ π(U). �

The functions Γabμ : π(U)→K will be referred as the (local) 3-index coefficients of the

linear connection Δh in the adapted frame {XI}. If there is no risk to confuse them with
the 2-index coefficients Γaμ :U →K, they will be called simply coefficients of Δh. Note, the
2-index coefficients of a linear connections are defined on (a subset of) the bundle space
E, while the 3-index ones are define on (a subset of) the base space M. Equation (4.27) is
simply the parallel transport equation for the linear connection considered.

Example 4.6. Since ua is replaced by u
μ
1 = dxμ in the tangent bundle case (see Section 4.2),

the linear connections in (T(M),πT ,M) have 2-index coefficients of the form

Γν
μ =−

(
Γν
λμ ◦πT

) ·uλ1 =−
(
Γν
λμ ◦πT

) ·dxλ, (4.31)

and, consequently, they can be regarded as 1-forms on M.

Consider a linear connection Δh on a vector bundle (E,π,M). Let Γaμ and Γabμ be its 2-
and 3-index coefficients, respectively, in a frame {XI} adapted to vector bundle coordi-
nates {uI}.
Corollary 4.7. The 3-index coefficients Γabμ of a linear connection Δh uniquely define the

fibre coefficients of Δh in {XI} by

◦Γabμ = Γabμ ◦π = π∗
(
Γabμ

)
, (4.32)

that is, the fibre coefficients of a linear connection are equal to the 3-index ones lifted by the
projection π.

Proof. Since (3.28a) and (4.25) imply
[
Xμ,Xb

] = (Γabμ ◦π
)
Xa, (4.33)

(4.32) follows from (3.22a) and (3.23a) or (3.37b) and (4.25). �
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As the vector bundle coordinates uI are, by definition, linear on the fibres of the bun-
dle, the general change of such coordinates is

{
uμ,ua

} �−→ {
ũμ = x̃μ ◦π, ũa = (Bab ◦π) ·ub}, (4.34)

with B = [Bab] being a nondegenerate matrix-valued function on π(U). The change (4.34)
entails the following transformation of the corresponding adapted frames:

{
Xμ,Xa

} �−→ {
X̃μ =

(
Bν
μ ◦π

) ·Xν, X̃a =
(
Bba ◦π

) ·Xb
}

, (4.35)

where [Bν
μ]= [∂xν/∂x̃μ] is a nondegenerate matrix-valued function on the intersection of

the domains of {xμ} and {x̃μ}. (In (4.35) we have used that ∂uν/∂ũμ|p=∂(xν ◦π)/∂(x̃μ ◦π)
|p = ∂xν/∂x̃μ|π(p).)

Proposition 4.8. The change (4.34) implies the following transformations of the 3-index
coefficients of the linear connection:

Γabμ �−→ Γ̃abμ = Bν
μ

(
BadΓ

d
cν−

∂Bac
∂xν

)
(
B−1)c

b. (4.36)

Proof. Apply (4.35), (3.32), and (4.25). Alternatively, the same transformation law fol-
lows also from (3.24a) and (4.32). �

If we introduce the matrix-valued functions Γμ := [Γabμ] and Γ̃μ := [Γ̃abμ] on M, we can
rewrite (4.36) as

Γμ �−→ Γ̃μ = Bν
μ

(
B ·Γν− ∂B

∂xν

)
·B−1 = Bν

μB ·
(
Γν ·B−1 +

∂B−1

∂xν

)
. (4.37)

This relation corresponds to (3.25) with [Aab] = B−1 ◦ π (see also (4.32)) as the frame
{ea : M → E}, relative to which the vector fibre coordinate system {ua} is defined (E �
p �→ ua(p) with p = ua(p)ea(π(p))), transforms via the matrix inverse to B ◦π.

Let E be a C2 manifold and Δh a C1 connection on (E,π,M). Substituting (4.25) into
(3.37a), we get the fibre components of the curvature of a linear connection as

Raμν =−
(
Rabμν ◦π

) ·ub, (4.38)

where

Rabμν := ∂

∂xμ
(
Γabν

)− ∂

∂xν

(
Γabμ

)−ΓcbμΓ
a
cν +ΓcbνΓ

a
cμ, (4.39)

or in a matrix form

Rμν := [Rabμν

]= ∂Γν

∂xμ
− ∂Γμ
∂xν
−Γν ·Γμ +Γμ ·Γν, (4.35′)

are the components of the curvature operator (see (4.58)). As a result of (3.22b) and (4.38),
the transformation (4.34) entails the change

Rabμν �−→ R̃abμν = BλμB
ρ
ν
(
B−1)a

cB
d
bR

c
dλρ, (4.40)
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or in a matrix form

Rμν �−→ R̃μν = BλμBρ
νB−1 ·Rλρ ·B, (4.36′)

which corresponds to (3.24b) with A= B−1 ◦π (see also (4.38)).

4.4. Covariant derivatives in vector bundles. A possibility for introduction of differen-
tiation in vector bundles, endowed with connection, comes from the vector space struc-
ture of their fibres. This operation can be defined in many independent ways, leading to
identical results. In one of them is involved the parallel transport induced by the connec-
tion: the idea is the values of sections to be parallel transported (along paths in the base)
into a single fibre (over the paths), where one can work with the “transported” sections
as with functions with values in a vector space. Other method uses the existence of nat-
ural vertical lifts of sections of the bundle and horizontal lifts of the vector fields on the
base space; since the both lifts are vector fields on the bundle space, their commutator
(or Lie derivative relative to each other) is well defined and can be used as a prototype of
some sort of differentiation. We will realize below the second method mentioned, which
seems to be first introduced in a rudimentary form in [30, page 31]. (In [30, page 31] it
is proved that, for F = ∂/∂xμ and in our notation, the ath component of the right-hand
sides of (4.50) and of (4.51) coincide in a frame {Ea} in E.) (An equivalent alternative
approach is realized in [29, Sections 2.49–2.52].) The first way, as well as the axiomatic
approach, for introduction of covariant derivatives will be obtained as theorems in what
follows.

Let (E,π,M) be a vector bundle on which a linear connection Δh is defined. Suppose
{Ea} is a frame in E to which vector fibre coordinates ua are associated and {uI} is the cor-
responding vector bundle coordinate system. The frame adapted to {uI} will be denoted
by {XI}, and {ωI} will be its dual coframe, both defined by (3.28) through the (2-index)
coefficients Γaμ of Δh.

Let Ẑ = ẐaXa ∈ Δv and Z = ZμXμ ∈ Δh be, respectively, vertical and horizontal vector

fields on E. Define a mapping ∇̂ : Δv ⊕Δh = T(E)→�(E) such that (the idea of the con-
struction (4.41) is to drag the vertical vector field Ẑ along the horizontal one Z, which
will give a vector field in �(E), and then to project the result onto the vertical distribution
Δv by means of the invariant projection operator Π = Xa ⊗ωa : �(E)→�(E); evidently
Π2 =Π ◦Π=Π and Π is the unit (identity) tensor in the tensor product of vector fields
and 1-forms on E)

∇̂ : (Ẑ,Z) �−→ ∇̂Z(Ẑ) :=Π
(
�ZẐ

)∈�(E), (4.41)

where the (1,1) tensor field

Π :=
∑

a

Xa⊗ωa (4.42)

is considered as a operator on the set of vector fields on E. Since (see (2.1b) and (2.7))

�ZẐ = Z(Ẑa)Xa +Z
μ
Ẑa
[
Xμ,Xa

]
(4.43)
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and ωa(Xμ)= δaμ = 0, from (3.36), (3.37b), and (4.41), we obtain

∇̂ZẐ = Zμ
{
Xμ
(
Ẑa
)− Ẑb∂b(Γaμ)

}
Xa, (4.44)

from where one can prove, via direct calculation, the independence of ∇̂ZẐ of the particu-
lar (co)frame used. For any particular point p ∈ E, the value of the vector field (4.44) at p
is a vertical vector, (∇̂ZẐ)|p ∈ Δvp, but generally ∇̂ZẐ is not a vertical vector field. The rea-
son is that a vertical vector field on E is a mapping V : p �→Vp ∈ Δvp := Tp(π−1(π(p))) :=
Tı(p)(π−1(π(p)))= (π∗|p)−1(0π(p)), with ı : π−1(p)→ E being the inclusion mapping and
0π(p) ∈ Tπ(p)(M) being the zero vector, due to which Vp, and hence its components, must
depend only on π(p)∈M. Therefore, we have

∇̂ZẐ ∈ Δv ⇐⇒ ∂b
(
Γaμ
)=−Γabμ ◦π ⇐⇒ Γaμ =−

(
Γabμ ◦π

) ·ub +Ga
μ ◦π, (4.45)

for some functions Γabμ,Ga
μ : M →K. Thus ∇̂ZẐ is a vertical vector field if and only if the

2-index coefficients Γaμ in {XI} of the connection Δh are of the form

Γaμ =−
(
Γabμ ◦π

) ·ub +Ga
μ ◦π. (4.46)

This equality selects the set of affine connections among all connections (see Section 4.5);
(usually the affine connections are defined on affine bundles [19, 24]) in particular, the
linear connections for which Ga

μ = 0 and Γabμ are their 3-index coefficients (see (4.25) are
of this type ). For connections with 2-index coefficients (4.46), (4.44) reduces to

∇̂ZẐ = Zμ
{
Xμ
(
Ẑa
)

+ Ẑb
(
Γabμ ◦π

)}
Xa ∈ Δv. (4.47)

Now the idea of introduction of a covariant derivative of a section Y ∈ Sec(E,π,M)
along a vector field F ∈�(M) is to “lower” the operator ∇̂ from T(E) to T(M).

Defintion 4.9. A covariant derivative or covariant derivative operator, associated to a linear
(or affine) connection Δh on a vector bundle (E,π,M), is a mapping

∇ : �(M)× Sec1(E,π,M)−→ Sec0(E,π,M),

∇ : (F,Y) �−→∇FY
(4.48)

such that, for F ∈ �(M) and Y ∈ Sec1(E,π,M), ∇FY is the unique section of (E,π,M)
whose vertical lift is ∇̂FhYv, with ∇̂ defined by (4.41) (or (4.47)), namely,

(∇FY
)v

:= ∇̂FhY
v (4.49)

or

∇FY = v−1 ◦ ∇̂(π∗|Δh )−1(F)
(
v(Y)

)= (v−1 ◦ ∇̂(π∗|Δh )−1(F) ◦ v
)
(Y), (4.50)

where Fh ∈ Δh and Yv ∈ Δv are, respectively, the horizontal and vertical lifts of F and Y .



Bozhidar Z. Iliev 27

Remark 4.10. Definition 4.9 and the rest of this subsection are valid also for affine connec-
tions for which (4.46) holds, not only for the linear ones. For some details, see Section 4.5.

Proposition 4.11. Let {Ea} be a frame in E and {xμ} local coordinate system on M. If
Y = YaEa ∈ Sec1(E,π,M) and F = Fμ(∂/∂xμ)∈�(M), then the following explicit local ex-
pression holds:

∇FY = Fμ
(
∂Ya

∂xμ
+ΓabμY

b
)
Ea. (4.51)

Proof. Apply (4.49), (4.13), (4.14), (4.47), and (4.2). �

Proposition 4.12. Let Δh be a linear connection on (E,π,M) and let P be generated its
parallel transport. Let x ∈M, γ : [σ ,τ]→M, γ(t0)= x for some t0 ∈ [σ ,τ], and γ̇(t0)= Fx,
that is, γ being the integral path of F ∈X(M) through x. Then

(∇FY
)∣∣

x = lim
s→t0

P
γ
s→t0

(
Yγ(s)

)−Yγ(t0)

s− t0 = lim
ε→0

P
γ
t0+ε→t0

(
Yγ(t0+ε)

)−Yγ(t0)

ε
, (4.52)

where Y ∈ Sec1(E,π,M) and

P
γ
s−→t :=

⎧
⎨

⎩

Pγ|[s,t] for s≤ t,
(
Pγ|[t,s]

)−1
for s≥ t.

(4.53)

Proof. Use Definition 3.2 and apply the parallel transport equation (4.27) with initial
value γYγ(s)

(s)= Yγ(s) at the point t = s∈ [σ ,τ]. �

By Proposition 4.12, (4.52) can be used as an equivalent definition of a covariant de-
rivative associated with a linear connection.

Proposition 4.13. Let F,G ∈ �(M), Y ,Z ∈ Sec1(E,π,M), and let f : M → K be a C1

function. Then

∇F+GY =∇FY +∇GY , (4.54a)

∇ f FY = f∇FY , (4.54b)

∇F(Y +Z)=∇FY +∇FZ, (4.54c)

∇F( f Y)= F( f ) ·Y + f ·∇FY. (4.54d)

Proof. Apply (4.51). �

Proposition 4.14. If a mapping (4.48) satisfies (4.54), there exists a unique linear connec-
tion Δh, the assigned to which covariant derivative is exactly∇.
Proof. Define local functions Γabμ on M, called components of∇, by the decomposition

∇∂/∂xμEb =: ΓabμEa. (4.55)

A simple verification proves that they transform according to (4.36) and hence the quan-
tities (4.25) transform by (3.32). Proposition 3.9 ensures the existence of a unique linear
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connection whose 2-index (3-index) coefficients are Γaμ (Γabμ). Thus the covariant deriva-
tive of Y ∈ Sec(E,π,M) relative to F ∈�(M) is given by the right-hand side of (4.51). On
another hand, (4.54) entail (4.51), with Γabμ defined by (4.55), so that∇ is exactly the co-
variant derivative operator assigned to the connection with 3-index coefficients Γabμ. �

Consequently, (4.54) and (4.55) provide a third equivalent definition of a covariant
derivative (covariant derivative operator). Moreover, since Proposition 4.14 establishes
a bijective correspondence between linear connections and operators (4.48) satisfying
(4.54), quite often such operators are called linear connections. (See also [29, Sections
2.15 and 2.52].) As it is clear from the proof of Proposition 4.14, the bijection between
linear connections and covariant derivative operators is locally given by the coincidence
of their (3-index) coefficients and components, respectively.

Exercise 4.15. A C1 section ω = ωaEa of the bundle dual to (E,π,M) can be differentiated
covariantly similarly as the sections of (E,π,M). Show that the corresponding operator,
say∇∗, can equivalently be defined by (the “Leibnitz rule”)

(∇∗F ω
)
(Y)= F(ω(Y)

)−ω(∇FY
)

(4.56)

and locally the equation

∇∗F ω = Fμ
(
∂ωa
∂xμ

−Γbaμωb

)
Ea, (4.57)

is valid.

Equipped with the covariant derivative ∇ assigned to a C1 linear connection Δh, we
define the curvature operator of Δh (or∇) by

R : �(M)×�(M)−→ End
(

Sec(E,π,M)
)
,

R : (F,G) �−→ R(F,G) :=∇F ◦∇G−∇G ◦∇F −∇[F,G] ,
(4.58)

with End(···) denoting the set of endomorphisms of (···).

Exercise 4.16. Prove that locally

(
R(F,G)

)
(Y)= (RabμνY

bFμGν
)
Ea, (4.59)

where the functions Rabμν : M →K, called the components of the curvature operator R in
the pair of frames ({∂/∂xμ},{Ea}), are defined by

R
(
∂

∂xμ
,
∂

∂xν

)
(
Eb
)=: RabμνEa (4.60)

and are explicitly expressed through the coefficients of ∇(= 3-index coefficients of Δh)
via (4.39).

A linear connection or covariant derivative operator is called flat or curvature free if

R= 0
(⇐⇒ Rabμν = 0

)
. (4.61)
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Obviously, the flatness of Δh or ∇ is a necessary and sufficient condition for the (local)
integrability of the horizontal distribution Δh : p �→ Δhp ⊆ Tp(E), p ∈ E (see (3.23b) and
(4.38)).

Theorem 4.17. Let Y be a C1 section of a vector bundle (E,π,M) endowed with a linear
connection Δh. The following three conditions are equivalent:

(i) Y is covariantly constant, namely, if F ∈�(M), then

∇FY = 0; (4.62)

(ii) Y is a solution of Δh, that is,

ImY∗ ⊂ Δh
(⇐⇒ Y∗|x

(
Tx(M)

)⊆ ΔhYx for x ∈M)
; (4.63)

(iii) Y is parallelly transported along any path γ : [σ ,τ]→M,

Pγ
(
Yγ(σ)

)= Yγ(τ). (4.64)

Proof. Since Y = ua(Y)ea, π ◦Y = idM , and ωa = dua−Γaμduμ, we have for x ∈M,

ωa ◦Y
(
∂

∂xμ

)
= ωa

(
∂(uν ◦Y)
∂xμ

∣
∣
∣
∣
x

∂

∂uν

∣
∣
∣
∣
Yx

+
∂
(
ua ◦Y)
∂xμ

∣
∣
x

∂

∂ua

∣
∣
∣
∣
Yx

)

=−∂
(
xν ◦π ◦Y)
∂xμ

∣
∣
∣
∣
x
Γaν
(
Yx
)

+
∂Ya

∂xμ

∣
∣
∣
∣
x
=
(
∂Ya

∂xμ
−Γaμ ◦Y

)
(x).

(4.65)

The equivalence of (i) and (ii) follows from here, (4.25), (4.51), and that Δh annihilates
the 1-forms ωa, ωa(Z)= 0⇐⇒ Z ∈ Δh.

If we rewrite the parallel transport equation (4.27) as (see (4.51))

(∇γ̇(t)γ
)∣∣

γ(t) = 0, (4.66)

the equivalence of (i) and (iii) follows from Definition 3.2 of a parallel transport and the
arbitrariness of γ in (4.66). �

Exercise 4.18. Formulate and prove a theorem dual to Theorem 4.17; for example, a sec-
tion ϕ= ϕaua of the bundle dual to (E,π,M) is a first integral of Δh, that is, Kerϕ∗ ⊇ Δh

(⇐⇒ ϕ∗|p(Δhp)= 0ϕ(p) ∈ Tϕ(p)(K) for p ∈ E), if and only if

∇∗ϕ= 0. (4.67)

Proposition 4.19 (cf. [30, page 32]). Let a linear connectionΔh on a vector bundle be given
and let Γabμ be its (3-index) coefficients. The following conditions are (locally) equivalent:

(a) Δh is integrable;
(b) Δh is flat;
(c) there exists a solution of the system of partial differential equations

∂Ua

∂xμ
+ΓabμU

b = 0 (4.68)
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relative to Ua and the solution of (4.68) satisfying Ua|x=x0 = Ua
0 is Ua = BabUb

0 , where B =
[Bab] is the fundamental solution of (4.68), namely,

∂Bab
∂xμ

+ΓacμB
c
b = 0, Bab|x=x0 = δab ; (4.69)

(d) there is an integrating matrix B−1 for the 1-forms ωa, that is, (B−1 ◦ π)abω
b = d f a,

where the functions f a : E→K are first integrals of Δh, that is, Kerd f a ⊃ Δh;
(e) the coefficients of Δh have the form

Γμ := [Γabμ
]= B · ∂B

−1

∂xμ
=− ∂B

∂xμ
·B−1 (4.70)

for some matrix-valued function B on M.

Proof. (a)⇔(b). See (4.61) and the comment after it.
(c)⇔(e). The matrix form of the equation in (4.69), that is,

∂B

∂xμ
+Γμ ·B = 0, (4.63′)

is tantamount to (4.70).
(b)⇔(c). The flatness of Δh, that is, Rμν = 0 (see (4.35′)), is the integrability condition

for (4.63′) as an equation relative to B—see [17, Lemma 2.1].
(c)⇔(d). Since (3.36) and the first equality in (2.1c) entail

�Xμ

(
ϕaω

a
)=−ϕaRaμνω

ν +
{
Xμ
(
ϕa
)− ◦Γbaμϕb

}
ωa, (4.71)

we have (see also (4.32)) for a flat linear connection

�Xμ

((
B−1)a

bω
b
)=

{(
∂B−1

∂xμ
−B−1 ·Γμ

)
◦π

}a

b
ωb

=
{[
−B−1 ·

(
∂B

∂xμ
+Γμ ·B

)
B−1

]
◦π

}a

b
ωb.

(4.72)

Thus (4.69), which entails (c), is equivalent to �Xμ((B−1 ◦ π)ab ω
b) = 0, which is equiv-

alent to d((B−1 ◦ π)ab ω
b) = 0, due to ωa(Xμ) = δaμ = 0 and the second equality in (2.1a)

(applied, e.g., for Y = Xν). Now the Poincaré’s lemma (see [27, Section 6.3] or [8, pages
21, 106]) tells us that locally (on a contractible region in E) there are functions f a on E
such that the last equality is tantamount to d f a = (B−1 ◦π)ab ω

b.
It remains to be proved that f a : E→K are first integrals of Δh, that is, Kerd f a ⊃ Δh

which means ( f a)∗|p(Δhp)= 0, p ∈ E, or ( f a)∗|p(Xμ)= 0 as Δh is spanned by {Xμ}. Using
the global chart (K, idK) on K, which induces the one-vector frame {∂/∂r} for r ∈K on
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K, we have (see (3.28))

(
f a
)
∗|p(Xμ)= ( f a)∗|p

(
∂

∂uμ
+Γbμ

∂

∂ub

)∣∣
∣
∣
p
=
(
∂ f a

∂uμ

∣
∣
∣
∣
p

+Γbμ(p)
∂ f a

∂ub

∣
∣
∣
∣
p

)
d
dr

∣
∣
∣
∣
f a(p)

≡ 0 as d f a = (B−1 ◦π)ab ωa =
(
B−1 ◦π)ab

(
dua−Γbμ ◦duμ

)

≡ ∂ f a

∂ub
dub +

∂ f a

∂uμ
duμ = d f a.

(4.73)

�

4.5. Affine connections. In Section 4.4, we met a class of connections on a vector bundle
whose local 2-index coefficients have the form (see (4.46))

Γaμ =−
(
Γabμ ◦π

) ·ub +Ga
μ ◦π (4.74)

in the frame {XI} adapted to a vector bundle coordinate system {uI}. From ∂bΓaμ =−Γabμ
and (3.32), one derives that the functions Γabμ in (4.74) transform according to (4.36),
namely,

Γabμ �−→ Γ̃abμ = Bν
μ

(
BadΓ

d
cν−

∂Bac
∂xν

)
(
B−1)c

b, (4.75)

when the vector bundle coordinates or adapted frames undergo the change (4.34) or
(4.35), respectively. Thus, combining (3.32), (4.75), and (4.74), we see that (4.34) or
(4.35) implies the transition

Ga
μ �−→ G̃a

μ = BabGb
νB

ν
μ. (4.76)

Consequently, the functions Γabμ in (4.74) are 3-index coefficients of a linear connection,
while Ga

μ in it are the components of a linear mapping G : �(M)→ End(Sec((E,π,M)∗))
such that G : F �→ G(F) : ω �→ (G(F))(ω), for F ∈ �(M) and a section ω of the bundle
(E,π,M)∗ dual to (E,π,M), and (G(∂/∂xμ))(Ea) = Ga

μ. The invariant description of the
connections with local 2-index coefficients of the type (4.74) is as follows.

Defintion 4.20. A connection on a vector bundle is termed affine connection if assigned its
parallel transport P is an affine mapping along all paths γ : [σ ,τ]→M in the base space,
that is,

Pγ(ρX)= ρPγ(X) + (1− ρ)Pγ(0), (4.77a)

Pγ(X +Y)= Pγ(X) +Pγ(Y)−Pγ(0), (4.77b)

where ρ ∈K, X ,Y ∈ π−1(γ(σ)), and 0 is the zero vector in the fibre π−1(γ(σ)), which is a
K-vector space.

Theorem 4.21. Let (E,π,M) be a vector bundle, let {uI} be vector bundle coordinate system
over an open set U ⊆ E, and let Δh be a connection on it with 2-index coefficients Γaμ in the

frame {XI} adapted to {uI}. The connection Δh is an affine connection if and only if (4.74)
holds for some functions Γabμ,Ga

μ : π(U)→K.
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Proof (cf. the proof of Theorem 4.5). Take a C1 path γ : [σ ,τ] → π(U) and consider the
parallel transport equation (3.39a′′), namely,

dγap(t)

dt
= Γaμ

(
γp(t)

)
γ̇μ(t), (4.78)

where γp : [σ ,τ]→ U is the horizontal lift of γ through p ∈ π−1(γ(σ)), γa := ua ◦ γ, and
γ̇μ(t)= d(xμ ◦ γ(t))/dt = d(uμ ◦ γ(t))/dt as uμ=xμ ◦π for some coordinates {xμ} on π(U).

Sufficiency. If (4.74) holds, (4.78) can be transformed into

dγap(t)

dt
=−Γabμ

(
γ(t)

)
γbp(t)γ̇μ(t) +Ga

μ

(
γ(t)

)
γ̇μ(t), (4.79)

which is a system of r linear inhomogeneous first-order ordinary differential equations
for the r functions γn+1

p , . . . ,γn+r
p . According to the general theorems of existence and

uniqueness of the solutions of such systems [12], it has a unique solution

γap(t)= Ya
b (t)pb + ya(t), (4.80)

satisfying the initial condition γap(σ) = ua(p) =: pa, where Y = [Ya
b ] is the fundamental

solution of (4.27) (see (4.29)) and ya(t) is the solution of (4.79) with ya(t) for γap(t)
satisfying the initial condition ya(σ)= 0. The affinity of (3.13) in p, that is, (4.77), follows
from (4.80) for t = τ.

Necessity. Suppose (3.13) is affine in p for all paths γ : [σ ,τ] → π(U). Then γp(t) :=
Pγ|[σ ,t](p) is the horizontal lift of γ | [σ , t] through p and (cf. (4.80)) γap(t)= Aab(γ(t))pb +

Aa(γ(t)) for some C1 functions Aab,Aa : π(U)→K. The substitution of this equation in
(4.78) results into

∂Aab(x)
∂xμ

∣
∣
∣
∣
x=γ(t)=π(γp(t))

· γ̇μ(t)pb +
∂Aa(x)
∂xμ

∣
∣
∣
∣
x=γ(t)=π(γp(t))

· γ̇μ(t).= Γaμ(γp(t))γ̇μ(t).

(4.81)

Since γ : [σ ,τ]→M, we get (4.74) from here, for t = σ , with Γabμ(x) = −∂Aab(x)/∂xμ and
Ga
μ(x)= ∂Aa(x)/∂xμ for x ∈ π(U). �

Proposition 4.22. There is a bijective mapping α between the set of affine connections
and the set of pairs (∇,G) of a linear connection ∇ and a linear mapping G : �(M)→
End(Sec((E,π,M)∗)).

Proof. If AΔh is an affine connection with 2-index coefficients given by (4.74) (see Theo-
rem 4.21), then (see the discussion after (4.74)) to it corresponds the pair α( AΔh) :=
( LΔh,G) of a linear connection, with 3-index coefficients Γabμ and linear mapping G :

�(M)→ End(Sec((E,π,M)∗)), with components Ga
μ. Conversely, to a pair ( LΔh,G), lo-

cally described via the 3-index coefficients Γabμ of LΔh and components Ga
μ of G, there

corresponds an affine connection AΔh = α−1( LΔh,G) with 2-index coefficients given by
(4.74). �
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In Section 4.4, it was demonstrated that covariant derivatives can be introduced for
affine connections, not only for linear ones.

Proposition 4.23. The covariant derivative for an affine connection AΔh coincides with the
one for the linear connection LΔh given via α( AΔh)= ( LΔh,G) with α defined in the proof of
Proposition 4.22.

Proof. Apply (4.44)–(4.51). �

If a linear connection LΔh and an affine one AΔh are connected by α( AΔh)= ( LΔh,G)
for some G, then some of their characteristics coincide; for example, such are their fibre
coefficients (see (3.37b), (4.74), and (4.25)) and all quantities expressed via their corre-
sponding (identical) covariant derivatives. However, quantities, containing (depending
on) partial derivatives relative to the basic coordinates uμ, are generally different for those
connections. For instance, if ARaμν and LRaμν are the fibre components of the curvatures of
AΔh and LΔh, respectively, then, by (3.37a) and (4.74), we have

ARaμν =−
(
LRabμν ◦π

) ·ub−Ta
μν ◦π,

LRaμν =−
(
LRabμν ◦π

) ·ub,
(4.82)

where (see (4.39))

LRabμν := ∂

∂xμ
(
Γabν

)− ∂

∂xν

(
Γabμ

)−ΓcbμΓ
a
cν +ΓcbνΓ

a
cμ,

Ta
μν :=− ∂

∂xμ
(
Ga

ν

)
+

∂

∂xν

(
Ga
μ

)
+ΓacνG

c
μ−ΓacμG

c
ν,

(4.83)

and the functions Ta
μν have a sense of components of the torsion of LΔh relative to G [24,

pages 42, 46].
Thus, in general, the affine connections and linear connections are essentially different.

However, they imply identical theories of covariant derivatives.
If, for some reason, the linear mapping G is fixed, then the set of linear connections

{ LΔh} can be identified with the subset {α−1( LΔh,G)} of the set of affine connections
{ AΔh}. We will exemplify this situation on the tangent bundle (T(M),πT ,M) over a man-
ifold M. Using the base indices μ,ν, . . . , for the fibre ones a,b, . . . , according to the rule
a �→ μ= a−dimM (see Section 4.2), we rewrite (4.74) as

Γ
μ
ν =−(Γμλν ◦πT

) ·uλ1 +G
μ
ν ◦πT. (4.84)

Now the affine connections on (T(M),πT ,M) are the generalized affine connections on M
[19, Chapter III, Section 3]. The choice of G via

G
μ
ν :M→ δ

μ
ν , (4.85)

which corresponds to the identical transformation of the spaces tangent to M, singles
out the set of affine connections on M—see [19, Chapter III, Section 3] or [29, pages 103–
105]—(known also as Cartan connections onM [24, pages 46]) whose 2-index coefficients
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have the form (see (4.84), (4.22a), and (4.85))

Γ
μ
ν =−(Γμλν ◦πT

) ·dxλ + δ
μ
ν . (4.86)

Combining this with Proposition 4.22, we derive the following.

Proposition 4.24 (cf. [19, Chapter III, Section 3, Theorem 3.3]). There is a bijective
correspondence between the sets of linear connections and of affine ones on a manifold.

Often the terms “linear connection” and “affine connection” on a manifold are used
as synonyms, due to the last result.

5. Morphisms of bundles with connections

(Some ideas in this section are borrowed from [30, Chapter I, Section 6].) A morphism
between two bundles (E,π,M) and (E′,π′,M′) is a pair of mappings (F, f ) such that
F : E→ E′, f : M →M′, and π′ ◦ F = f ◦ π. If (U ,u) and (U ′,u′) are charts in E and E′,
respectively, and F(U)⊆U ′, we have the following local representation of (F, f ):

F = u′ ◦F ◦u−1 : u(U)−→ u′(U ′), (5.1a)

f = x′ ◦ f ◦ x−1 : x(V)−→ x′(V ′), (5.1b)

where (V ,x) and (V ′,x′) are local charts, respectively, on M and M′. Further, we as-
sume that U ′ = F(U) and that the charts in the base and bundle spaces respect the fi-
bre structure, V = π(U) and V ′ = π′(U ′) so that V ′ = f (V), and that the basic coor-
dinates are uμ = xμ ◦ π and u′μ′ = x′μ′ ◦ π′. Here and henceforth the quantities referring
to (E′,π′,M′) will inherit the same notation as the similar ones with respect to (E,π,M)
with exception of the prime symbol added to the latter ones; in particular, the primed
indices λ′,μ′,ν′, . . . and a′,b′,c′, . . . run, respectively, over the ranges 1, . . . ,n′ = dimM′

and n′ + 1, . . . ,n′ + r′ = dimE′ with r′ being the fibre dimension of (E′,π′,M′), that is,
r′ = dim((π′)−1(p′)) for p′ ∈M′.

Using the local coordinates {xμ} on M and {uμ = xμ ◦π,ua} on E, we rewrite (5.1) as
(cf. (3.1))

F
I′ = u′I′ ◦F ◦u−1 : u(U)−→K, (5.1a′)

f
μ′ = x′μ′ ◦ f ◦ x−1 : x

(
π(U)

)−→K, (5.1b′)

that is, one can simply write u′I′ = FI′(u1, . . . ,un+r) and x′μ′ = f
μ′

(x1, . . . ,xn). However, in
what follows, the mappings

Fμ
′

:= u′μ′ ◦F = x′μ′ ◦π ◦F = x′μ′ ◦ f ◦π :U −→K, Fa
′

:= u′a′ ◦F :U −→K,
(5.3a)

f μ
′

:= x′μ′ ◦ f : π(U)−→K, (5.3b)
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will be employed. The reason is that the derivatives

FI
′

,J := ∂

∂uJ
FI

′
: p �−→ ∂

∂uJ

∣
∣
∣
∣
p
FI

′ = ∂(FI
′ ◦u−1)

∂(uJ ◦u−1)

∣
∣
∣
∣
u(p)
= ∂F

I′

∂
(
uJ ◦u−1

)
∣
∣
∣
∣
u(p)

, p ∈U , (5.4)

(note that {uJ ◦ u−1} are Cartesian coordinates on u(U)⊆Kn+r) are the elements of the
matrix of the tangent mapping F∗ : T(E)→ T(E′) in the charts (U ,u) and (U ′,u′). In-
deed, since this matrix, known as the Jacobi matrix of F, is defined by [40, Section 1.23(a)]

F∗
(
∂J |p

)= FI′J |p
(
∂′I′ |F(p)

)
, p ∈U , (5.5)

we have

[
FI

′
J

]
in ({∂K},{∂K′ }) =

[
∂FI

′

∂uJ

]

I′=1,...,n′+r′
J=1,...,n+r

=
⎛

⎝

[
Fν′

,μ

]
0n′×r

[
Fa

′
,μ

] [
Fa

′
,b

]

⎞

⎠=
⎡

⎣
Fν′

,μ 0n′×r
Fa

′
,μ Fa

′
,b

⎤

⎦ . (5.6)

Let connections Δh and Δ′h on (E,π,M) and (E,′π′,M′), respectively, be given. To the
local coordinates {uI} and {u′I} correspond the adapted frames (see (3.27)–(3.30))

(
Xμ,Xa

)= (∂ν,∂b
) ·
⎡

⎣
δν
μ 0

+Γbμ δba

⎤

⎦= (∂μ +Γbμ∂b,∂a
)
,

(
X ′μ′ ,X

′
a′
)= (∂′ν′ ,∂′b′

) ·
⎡

⎣
δν′
μ′ 0

+Γb
′
μ′ δb

′
a′

⎤

⎦= (∂′μ′ +Γ
′b′
μ′ ∂b′ ,∂a′

)
,

(5.7)

where ∂I := ∂/∂uI , and adapted coframes

(
ωμ

ωa

)

=
[
δ
μ
ν 0
−Γaν δab

]

···
(

duν

dub

)

= ··· ,

(
ω′μ′

ω′a′

)

=
⎡

⎣ δ
μ′
ν′ 0

−Γ′a′ν′ δa
′
b′

⎤

⎦ ·
(

du′ν′

du′b′

)

= ··· .
(5.8)

The symbols Γaμ and Γ
′a′
μ′ in (5.7) and (5.8) denote the 2-index coefficients of, respectively,

Δh and Δ′h in the respective adapted frames.
If {eI} and {e′I′} are arbitrary frames over U in T(E) and over U ′ = F(U) in T(E′),

respectively, the (Jacobi) matrix of F∗ in them is defined via (cf. (5.5))

F∗
(
eI |p

)= (FI′I |p
)(
e′I′ |F(p)

)
. (5.9)

In particular, in the adapted frames (5.7), we have F∗(XI |p)= (FI
′
I |p)(X ′I′ |F(p)) and there-

fore the Jacobi matrix of F∗ in the adapted frames (5.7) is (the changes e := {eI} �→ {BJI eJ}
and e′ := {e′I′ } �→ {B

′J ′
I′ e

′
J ′}, with nondegenerate matrix-valued functions B := [BJI ] and
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B′ := [B
′J ′
I′ ], imply the transformation F(e,e′) := [FI

′
J ] �→ (B′)−1 ·F(e,e′) ·B of the Jacobi ma-

trix of F∗; from here, (5.10) follows immediately)

[
FI

′
J

]= [FI′J
]

in
({

XK
}

,
{
X ′K′
}) =

⎡

⎣F
μ′
ν F

μ′
a

Fb
′

ν Fb
′

a

⎤

⎦

=
⎡

⎣ δ
μ′

λ′ 0

−Γ′b′λ′ ◦F δb
′
c′

⎤

⎦ ·
⎡

⎣
Fλ

′
,ρ 0

Fc
′

,ρ Fc
′

,d

⎤

⎦ ·
⎡

⎣
δ

ρ
ν 0

+Γdν δda

⎤

⎦

=
⎡

⎣ F
μ′
,ν 0

Xν
(
Fb

′)− (Γ′b′λ′ ◦F
)
Fλ

′
,ν Fb

′
,a

⎤

⎦

(5.10)

with FI
′

,J := ∂FI′ /∂uJ defining the matrix of F∗ in ({∂K},{∂′K ′ }) via (5.6). Thus, the general
formula (5.9) now reads

F∗
(
Xμ,Xa

)= (X ′ν′ ,X ′b′
) ·
⎡

⎣
Fν′
μ 0

Fb
′

μ Fb
′

a

⎤

⎦= (Fν′
,μX

′
ν′ +Fb

′
μ X

′
b′ ,F

b′
,a X

′
b′
)

(5.11)

with

Fb
′

μ = Xμ
(
Fb

′)− (Γ′b′λ′ ◦F
) ·Fλ′,μ . (5.12)

From (5.9), it is clear that the elements FI
′
J |p of the Jacobi matrix of F∗ at p ∈ U are

elements of a (1,1) (mixed) tensor from T∗p (E)⊗TF(p)(E′); in particular, if the adapted
frames are changed (see (3.31)), the block structure of (5.10) is preserved and the el-
ements of its blocks are transformed as elements of their corresponding tensors (e.g.,
Fb

′
ν (p) are elements of a tensor from the tensor space spanned by {ων|p ⊗X ′b′ |F(p)}.) An

important corollary from (5.11) is

F∗(Δh)⊆ Δ
′h⇐⇒ Fb

′
μ = 0 (5.13)

in any pair ({XI},{XI′ }) of adapted frames. If it happens that F∗(Δh)= Δ
′h, we say that F

preserves the connections Δh and Δ
′h, that is, F is a connection preserving mapping; in par-

ticular, if (E′,π′,M′) = (E,π,M) and F∗(Δh) = Δ
′h, the mapping F is called a symmetry

of Δh.
If the bundles considered are vectorial ones, the fibre coordinates, morphisms, and

connections which are compatible with the vector structure must be linear on the fibres,
namely,

Fa
′ = (�a′

b ◦π
)
ub, Γaμ =−

(
Γabμ ◦π

)
ub, Γa

′
μ′ = −

(
Γa

′
b′μ′ ◦π′

)
ub

′
, (5.14)

where the functions �a′
b : π(U)→K are of class C1 and Γabμ (resp., Γa

′
b′μ′) are the 3-index

coefficients of the linear connection Δh (resp., Δ
′h). Consequently, in a case of vector
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bundles, the Jacobi matrix (5.10) takes the form

⎡

⎣F
μ′
ν F

μ′
a

Fb
′

ν Fb
′

a

⎤

⎦=
⎡

⎣ F
μ′
,ν 0

(
Fb

′
cν ◦π

)
uc �b′

a ◦π

⎤

⎦ (5.15)

with

Fb
′

aμ := ∂μ
(
�b′
a

)−Γcaμ�
b′
c +

(
Γ
′b′
c′λ′ ◦ f ) ·�c′

a · f λ
′

μ , (5.16)

where we have used that π′◦F = f ◦π and u
′c′ ◦F = Fc′ , and we have set f λ

′
μ := ∂(x

′λ′ ◦ f )/

∂xμ, so that Fλ
′

,μ = f λ
′

μ ◦π. Therefore, (5.12) now reads

Fb
′

μ =
(
Fb

′
aμ ◦π

) ·ua. (5.17)

If M and M′ are manifolds and f : M →M′ is of class C1, the above general consid-
erations are valid for the morphism ( f∗, f ) of the tangent bundles (T(M),πT ,M) and
(T(M′),π′T ,M′). A peculiarity of a tangent bundle is that the fibre dimension of the bun-
dle equals to the dimension of its base. Due to that fact, the base indices λ,μ,ν, . . .= 1, . . . ,n
is convenient to be used for the fibre ones a,b,c, . . .= n+ 1, . . . ,n+ r according to the rule

a �−→ μ= a−dimM, (5.18a)

which must be combined with a change of the notation for the fibre coordinates, like

ua �−→ u
μ
1, (5.18b)

as otherwise the change (5.18a) will entail ua �→ uμ, the result of which coincides with the
notation for the basic coordinates. (The subscript 1 in (5.18b) indicates that u

μ
1 are fibre

coordinates in the first-order tangent bundle (T(M),πT ,M) overM.) Since f∗(∂/∂xμ|z)=
∂(x

′μ′ ◦ f )/∂xμ|z∂/∂x′μ′ | f (z) for z ∈ π(U) [40, Section 1.23(a)], the Jacobi matrix of f
relative to the charts (π(U),x) and (π′(U ′),x′)= ( f (π(U)),x′) has the elements

f
μ′

ν := ∂(x
′μ′ ◦ f )
∂xν

: π(U)→K. (5.19)

Combining this with the definition of the vector fibre coordinates u
μ
1, u

μ
1

(
pν(∂/∂xν)|π(p))=

pμ, we see that (5.3), with f∗ for F, reads

u
′μ′ = f

μ′
∗
(
u1, . . . ,un

)= x′μ′ ◦ f ◦π,

u
′μ′
1 = f

′μ′
∗
(
u1, . . . ,un,u1

1, . . . ,un1
)= ( f μ′ν ◦π) ·uν

1,
(5.20a)

x
′μ′ = f μ

′(
x1, . . . ,xn

)= xμ′ ◦ f . (5.20b)
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Therefore, the derivatives in (5.6) and (5.10)–(5.12) should be replaced according to
(uμ = xμ ◦π)

Fν′
,μ �−→

∂ f
μ′
∗

∂xμ
= f ν′

μ ◦π, Fa
′

,ν �−→
∂ f

μ′
∗

∂xν
=
(
∂ f

μ′

λ

∂xν
◦π

)
uλ1, Fa

′
,b �−→

∂ f
μ′
∗

∂uν
1
= f

μ′
ν ◦π.

(5.21)

If Δh and Δ
′h are linear connections on M and M′, respectively, their 2- and 3-index

coefficients are connected through (cf. (5.14))

Γλν =−
(
Γλμν ◦π

) ·uλ1, Γ
′λ′
ν′ = −

(
Γ
′λ′
μ′ν′ ◦π′

) ·uλ′1 . (5.22)

Thus the Jacobi matrix of ( f∗)∗ =: f∗∗ in the pair of frames ({Xμ = (∂/∂xμ) + Γλμ(∂/∂uλ1),

X1
ν = ∂/∂uν

1},{X ′μ′ ,X ′1
ν′ }) is (cf. (5.15) and (5.16))

⎡

⎣
f
μ′

ν ◦π 0

−( f ρ′

λν ◦π
) ·uλ1 f

ρ′
τ ◦π,

⎤

⎦ , (5.23)

where

f λ
′

μν := f λ
′
∗μν := ∂ν

(
f λ
′

μ

)− f λ
′

σ Γσμν +
(
Γ
′λ′
σ ′τ′ ◦ f

)
f σ

′
μ f τ

′
ν . (5.24)

The quantities (5.24) are components of a T(M′)-valued 2-form on M, that is, of an ele-

ment inT(M′)⊗Λ2(M). (Moreover, if we consider f
μ′

ν , defined via (5.19), as components
of an element in Tf (p)(M′)⊗Λ1

p(M), then (5.24) are the components of the mixed covari-

ant derivative (along ∂/∂xν) of f
μ′
μ (∂′μ′ | f (·))⊗ duμ relative to the connection Δh×Δ

′h on
M×M.)

6. General (co)frames

Until now two special kinds of local (co)frames in the (co)tangent bundle to the bun-
dle space of a bundle were employed, namely, the natural holonomic ones, induced by
some local coordinates, and the adapted (co)frames determined by local coordinates and
a connection on the bundle. The present section is devoted to (re)formulation of some
important results and formulae in arbitrary (co)frames, which in particular can be natu-
ral or adapted (if a connection is presented) ones.

Let (E,π,M) be a C2 bundle and {eI} a (local) frame in T(E). The components CKIJ of
the anholonomicity object of {eI} are defined by (3.19) and a change

{
eI
} �−→ {

eI = BJI eJ
}

(6.1)

with a nondegenerate matrix-valued function B = [BJI ]
n+r
I ,J=1 entails (see (2.9))

CKIJ �−→ C
K
IJ = (B−1)KL

(
BMI eM(BLJ )−BMJ eM(BLI

)
+BMI B

N
J C

L
MN

)
. (6.2)
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Let a connection Δh on (E,π,M) be given. If {eI} is a specialized frame for Δh (see
Section 3.2), then the set {CKIJ} is naturally divided into the six groups (3.20). The value
of that division is in its invariance with respect to the class of specialized frames, which
means that, if {eI} is also a specialized frame, then the transformed components of the
elements of each group are functions only in the elements of the nontransformed com-
ponents of the same group—see (3.24), (3.21), and (2.9). By means of (6.1), one can
prove that, if such a division holds in a frame {eI}, then it holds in {eI} if and only if the
matrix-valued function B is of the form (3.16). In particular, we cannot talk about fibre
coefficients of Δh and of fibre components of the curvature of Δh in frames more gen-
eral than the specialized ones as in that case the transformation (6.1), with {eI} (resp.,
{eI}) being a specialized (resp., nonspecialized) frame, will mix, for instance, the fibre
coefficients and the curvature’s fibre components of Δh in {eI}—see (6.2).

It is a simple, but important, fact that the specialized frames are (up to renumbering)
the most general ones which respect the splitting of T(E) into vertical and horizontal
components. Suppose {eI} is a specialized frame. Then the general element of the set of
all specialized frames is (see (3.4a) and (3.16))

(
eμ,ea

)= (eν,eb) ·
[
Aν
μ 0

0 Aba

]

= (Aν
μeν,Abaeb

)
, (6.3a)

where [Aν
μ]nμ,ν=1 and [Aba]n+r

a,b=n+1 are nondegenerate matrix-valued functions on E, which

are constant on the fibres of (E,π,M), that is, we can set Aν
μ = Bν

μ ◦ π and Aba = Bba ◦ π
for some nondegenerate matrix-valued functions [Bν

μ] and [Bba] on M. Respectively, the
general specialized coframe dual to {eI} is (see (3.4b) and (3.16))

(
eμ

ea

)

=
⎡

⎣

[
Aλρ
]−1

0

0
[
Acd
]−1

⎤

⎦ ·
(
eν

eb

)

=
⎡

⎣

([
Aλρ
]−1)μ

νe
ν

([
Acd
]−1)a

be
b

⎤

⎦ , (6.3b)

where {eI} is the specialized coframe dual to {eI}, eI(eJ)= δIJ .
Since π∗|Δh : {X ∈ Δh} → �(M) is an isomorphism, any basis {εμ} for Δh defines a

basis {Eμ} of �(M) such that

Eμ = π∗|Δh
(
εμ
)
, (6.4)

and vice versa, a basis {Eμ} for �(M) induces a basis {εμ} for Δh via

εμ =
(
π∗|Δh

)−1(
Eμ
)
. (6.5)

Similarly, there is a bijection {εμ} �→ {Eμ} between the “horizontal” coframes {εμ} and
the coframes {Eμ} dual to the frames in T(M) (Eμ ∈Λ1(M), Eμ(Eν)= δμν ). Thus a “hori-
zontal” change

εμ �−→ εμ =
(
Bν
μ ◦π

)
εν, (6.6)

which is independent of a “vertical” one given by

εa �−→ εa =
(
Bba ◦π

)
εb (6.7)
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with {εa} being a basis for Δv, is equivalent to the transformation

Eμ �−→ Eμ = Bν
μEν (6.8)

of the basis {Eμ} for �(M), related via (6.4) to the basis {εμ} for Δh. Here [Bν
μ] and [Bba]

are nondegenerate matrix-valued functions on M.
As π∗(εa) = 0 ∈ �(M), the “vertical” transformations (6.7) do not admit interpre-

tation analogous to the “horizontal” ones (6.6). However, in a case of a vector bundle
(E,π,M), they are tantamount to changes of frames in the bundle space E, that is, of the
bases for Sec(E,π,M). Indeed, if v is the mapping defined by (4.5), the sections

Ea = v−1(εa
)

(6.9)

form a basis for Sec(E,π,M) as the vertical vector fields εa form a basis for Δv. Conversely,
any basis {Ea} for the sections of (E,π,M) induces a basis {εa} for Δv such that

εa = v
(
Ea
)
. (6.10)

As v and v−1 are linear, the change (6.7) is equivalent to the transformation

Ea �−→ Ea = BbaEb (6.11)

of the frame {Ea} in E related to {εa} via (6.9). In this way, we have proved the following
result.

Proposition 6.1. There is a bijective correspondence between the set of specialized frames
{εI} = {εμ,εa} on a vector bundle (E,π,M) and the set of pairs ({Eμ},{Ea}) of frames {Eμ}
on T(M) over M and {Ea} on E over M. (It should be mentioned the evident fact that a
frame {Eμ} in T(M) over M is also a basis for the module X(M) of vector fields over M
and hence is a basis for the set Sec(T(M),πT ,M) of section of the bundle tangent to M, due
to X(M) = Sec(T(M),πT ,M). Similarly, a frame {Ea} on E over M is a basis for the set
Sec(E,π,M) of sections of the vector bundle (E,π,M).)

Since conceptually the frames in the tangent bundle space T(M) and in the bundle
space E are easier to be understood and in some cases have a direct physical interpreta-
tion, one often works with the pair ({Eμ = π∗|Δh(εμ)},{Ea = v−1(εa)}) of frames instead
with a specialized frame {εI} = {εμ,εa}; for instance {Eμ} and {Ea} can be completely ar-
bitrary frames in T(M) and E, respectively, while the specialized frames represent only a
particular class of frames in T(E).

One can mutatis mutandis localize the above considerations when M is replaced with
an open subset UM in M and E is replaced with U = π−1(UM). Such a localization is
important when the bases/frames considered are connected with some local coordinates
or when they should be smooth. (Recall, not every manifold admits a global nowhere
vanishing Cm, m≥ 0, vector field (see [34] or [33, Section 4.24]); e.g., such are the even-
dimensional spheres S2k, k ∈N, in Euclidean space.)

Let us turn now our attention to frames adapted to local coordinate system {uI} on an
open set U ⊆ E for a given connection Δh on a general C1 bundle (E,π,M) (see (3.27)–
(3.30)). Since in their definition the local coordinates uI enter only via the vector fields
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∂I := ∂/∂uI ∈�(E), we can generalize this definition by replacing {∂I} with an arbitrary
frame {eI} defined in T(E) over an open set U ⊆ E and such that {ea|p} is a basis for the
space Tp(π−1(π(p))) tangent to the fibre through p ∈U . So, using {eI} for {∂I}, we have

(
eUμ ,eUa

)= (Dν
μeν +Da

μea,D
b
aeb

)= (eν,eb
) ·
⎛

⎝

[
Dν
μ

]
0

[
Db
μ

] [
Db
a

]

⎞

⎠ , (6.12)

where {eUI } is a specialized frame in T(U), [Dν
μ] and [Db

a] are nondegenerate matrix-
valued functions on U , and Da

μ :U →K.

Defintion 6.2. The specialized frame {XI} over U in T(U), obtained from (6.12) via an

admissible transformation (3.4a) with matrix A=
(

[D
μ
ν ]−1 0
0 [Da

b]−1

)
, is called adapted to the

frame {eI} for Δh. (Recall, here and below the adapted frames are defined only with respect
to frames {eI} = {eμ,ea} such that {ea} is a basis for the vertical distribution Δv over U ,
i.e., {ea|p} is a basis for Δvp for all p ∈U . Since Δv is integrable, the relation ea ∈ Δv for all
a= n+ 1, . . . ,n+ r implies [ea,eb] ∈ Δv for all a,b = n+ 1, . . . ,n+ r.)

Exercise 6.3. Using (3.4) and (3.16), verify that the adapted frame {XI} and coframe {ωI}
dual to it are independent of the particular specialized frame {eUI } entering into their
definitions via (6.12). The equalities (6.13a) and (6.20) derived below are indirect proof
of that fact too.

According to (3.4), the adapted frame {XI} = {Xμ,Xa} and coframe {ωI} = {ωμ,ωa}
the dual to it are given by the equations

(
Xμ,Xa

)= (eν,eb
) ·
⎡

⎣
δν
μ 0

+Γbμ δba

⎤

⎦= (eμ +Γbμeb,ea
)
, (6.13a)

(
ωμ

ωa

)

=
[
δ
μ
ν 0
−Γaν δab

]

·
(
eν

eb

)

=
(

eμ

ea−Γaνe
ν

)

, (6.13b)

where {eI} is the coframe dual to {eI}, eI(eJ) = δIJ , and the functions Γaμ : U →K, called

(2-index) coefficients of Δh in {XI}, are defined by

[
Γaμ
]

:= +
[
Da

ν

] · [Dν
μ

]−1
. (6.14)

Proposition 6.4. A change {eI} �→ {ẽI} with

(
ẽμ, ẽa

)= (eν,eb
) ·
⎛

⎝

[
Aν
μ

]
0

[
Abμ
] [

Aba
]

⎞

⎠= (Aν
μeν +Abμeb,Abaeb

)
, (6.15)
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where [Aν
μ] and [Aba] are nondegenerate matrix-valued functions on U , which are constant

on the fibres of (E,π,M), and Abμ :U →K, entails the transformations

(
Xμ,Xa

) �−→ (
X̃μ, X̃a

)= (ẽμ + Γ̃bμẽb, ẽa
)= (Aν

μXν,AbaXb
)= (Xν,Xb) ·

[
Aν
μ 0

0 Aba

]

,

(6.16)

Γaμ �−→ Γ̃aμ =
([
Acd
]−1)a

b

(
ΓbνA

ν
μ−Abμ

)
(6.17)

of the frame {XI} adapted to {eI} and of the coefficients Γaμ of Δh in {XI}, that is, {X̃I} is the

frame adapted to {ẽI} and Γ̃aμ are the coefficients of Δh in {X̃I}.
Proof. Apply (6.12)–(6.14). �

Note 6.5. If {eI} and {ẽI} are adapted, then Abμ = 0. If {YI} is a specialized frame, it is

adapted to any frame {eμ = Aν
μYν,ea = AbaYb} and hence any specialized frame can be

considered as an adapted one; in particular, any specialized frame is a frame adapted to
itself. Obviously (see (6.14)), the coefficients of a connection identically vanish in a given
specialized frame considered as an adapted one. This leads to the concept of a normal
frame, which will be studied on this context in a forthcoming paper. Besides, from the
above observation follows that the set of adapted frames coincides with the one of spe-
cialized frames.

Exercise 6.6. Verify that the formulae dual to (6.15) and (6.16) are (see (3.4b) and (3.5b))

(
ẽμ

ẽa

)

=
⎛

⎝

[
A

ρ
τ
]−1

0

−[Acd
]−1[

Acτ
][
A

ρ
τ
]−1 [

Acd
]−1

⎞

⎠ ·
(
eν

eb

)

=
⎛

⎝

([
A

ρ
τ
]−1)μ

ν e
ν

([
Acd
]−1)a

b e
b− ([Acd

]−1[
Acτ
][
A

ρ
τ
]−1)a

ν e
ν

⎞

⎠

(
ωμ

ωa

)

�−→
(
ω̃μ

ω̃a

)

=
⎛

⎝

([
A

ρ
τ
]−1)μ

νe
ν

([
Acd
]−1)a

be
b

⎞

⎠ .

(6.18)

Example 6.7. If {eI} and {ẽI} are the frames generated by local coordinates {uI} and {ũI},
namely, eI = ∂/∂uI and ẽI = ∂/∂ũI , the changes (6.16) and (6.17) reduce to (3.31) and
(3.32), respectively. The choice eI = ∂/∂uI also reduces Definition 6.2 to Definition 3.6.

A result similar to Proposition 3.9 is valid too provided in its formulation equation
(3.22) is replaced with (6.17).

If eμ has an expansion eμ = eν
μ(∂/∂uν) + ebμ(∂/∂ub) in the domainU of {uI} = {uμ = xμ ◦

π,ua}, where ebμ :U →K and eν
μ = xν

μ ◦π for some xν
μ : π(U)→K such that det[xν

μ] 	= 0,∞,
and we define a frame {xμ} in T(π(U))⊆ T(M) by {xμ := xν

μ(∂/∂xν)}, then

π∗
(
Xμ
)= xμ, (6.19)
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by virtue of (3.33) and (3.35). Thus, we have (cf. (3.34))

Xμ =
(
π∗|Δh

)−1(
xμ
)= (π∗|Δh

)−1 ◦π∗
(
eμ
)
, (6.20)

which can be used in an equivalent definition of a frame {XI} adapted to {eI} (with {ea}
being a basis for Δv): Xμ should be defined by (6.20) and Xa = ea. If one accepts such a
definition of an adapted frame, the 2-index coefficients of a connection should be defined
via (6.13a), not by (6.14), and the proofs of some results, like (6.16) and (6.17), should
be modified.

Proposition 6.8. If {XI} is a frame adapted to a frame {eI}, with {ea} being a basis for Δv,
for a C1 connection Δh, then (cf. (3.36))

[
Xμ,Xν

] = RaμνXa + SλμνXλ, (6.21a)
[
Xμ,Xb

] = ◦ΓabμXa +CλμbXλ, (6.21b)
[
Xa,Xb

] = CdabXd, (6.21c)

where (cf. (3.37))

Raμν := Xμ
(
Γaν
)−Xν

(
Γaμ
)−Caμν−ΓbμC

a
νb +ΓbνC

a
μb

+Γaλ
(−Cλμν +ΓbμC

λ
νb−ΓbνC

λ
μb

)
+ΓbμΓ

d
νC

a
bd,

Sλμν := Cλμν +ΓbμC
λ
νb−ΓbνC

λ
μb,

(6.22a)

◦Γabμ :=−Xb
(
Γaμ
)−Caμb +ΓdμC

a
db−ΓaλC

λ
μb, (6.22b)

[
eI ,eJ

] =: CKIJ eK = CaIJ ea +CλIJ eλ. (6.22c)

Proof. Insert (6.13a) into the corresponding commutators, use the definition (6.22c) of
the components of the anholonomicity object of {eI}, and apply (6.13a). Notice, as {ea}
is a basis for the integrable distribution Δv, we have [ea,eb] ∈ Δv and consequently Cλab ≡
0. �

The functions Raμν are the fibre components of the curvature of Δh and ◦Γabμ are the fibre

coefficients of Δh in the adapted frame {XI}; if eI = ∂/∂uI for some bundle coordinates
{uI} on E, they reduce to (3.37a) and (3.37b), respectively. From (6.21), we immediately
derive the following.

Corollary 6.9. A connection Δh is integrable if and only if in some (and hence any)
adapted frame:

Raμν = 0. (6.23)

Corollary 6.10. An adapted frame {XI} is (locally) holonomic if and only if

Raμν = ◦Γabμ = Sλμν = Cdab = Cλμb = 0. (6.24)
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If the initial frame {eI} is changed into (6.15), then the transformation laws of the
quantities (6.22) follow from (6.21) and (6.16); in particular, the curvature components
transform according to the tensor equation (3.24b).

Let us now pay attention to the case when (E,π,M) is a vector bundle endowed with a
connection Δh.

According to the abovesaid in this section, any adapted frame {XI} = {Xμ,Xa} in T(E)
is equivalent to a pair of frames in T(M) and E according to

{
Xμ,Xa

}←→ ({
Eμ = π∗|Δh

(
Xμ
)}

,
{
Ea = v−1(Xa

)})
. (6.25)

Therefore, the vertical and horizontal lifts are given by (cf. Lemma 4.1,
(4.11a), and (4.14))

Sec
(
E,π,M

)� Y = YaEa
v−→ v(Y) := Yv = (Ya ◦π)Xa ∈ Δv, (6.26a)

�(M)� F = FμEμ h−→ h(F) := Fh = (Fμ ◦π)Xμ ∈ Δh. (6.26b)

Thus, we have the linear isomorphism

(h,v) : �(M)× Sec(E,π,M)−→�(E),

(h,v) : (F,Y) �−→ (
Fh,Yv

)
,

(6.27)

which explains why the covariant derivatives (see Definition 4.9) represent an equivalent
description of the linear connections in vector bundles. Since any vector field ξ = (ξI ◦
π)XI ∈ �(E) has a unique decomposition ξ = ξh ⊕ ξv, with ξh = (ξμ ◦ π)Xμ and ξv =
(ξa ◦π)Xa, we have

(h,v)−1(ξ)= (π∗|Δh
(
ξh
)
,v−1(ξv

))= (ξμEμ,ξaEa
)
. (6.28)

Suppose {XI} and {X̃I} are two adapted frames. Then they are connected via (cf. (6.3a)
and (6.16))

X̃μ =
(
Bν
μ ◦π

)
Xν, X̃a =

(
Bba ◦π

)
Xb, (6.29)

where [Bν
μ] and [Bba] are some nondegenerate matrix-valued functions on M. The pairs

of frames corresponding to them, in accordance with (6.25), are related via

Ẽμ = Bν
μEν, Ẽa = BbaEb, (6.30)

and vice versa.

Proposition 6.11. Let Δh be a linear connection on a vector bundle (E,π,M) and let {Xμ}
be the frame adapted for Δh to a frame {eI} such that {ea} is a basis for Δv and

(
eμ,ea

)∣∣
U =

(
∂ν,∂b

) ·
⎡

⎣
Bν
μ ◦π 0

(
Bbcμ ◦π

) ·Ec Bba ◦π

⎤

⎦

= ((Bν
μ ◦π

)
∂ν +

((
Bbcμ ◦π) ·Ec)∂b,

(
Bba ◦π

)
∂b
)
,

(6.31)
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where ∂I := ∂/∂uI for some local bundle coordinates {uI} = {uμ = xμ ◦ π,ub = Eb} on U ⊆
E, [Bν

μ] and [Bba] are nondegenerate matrix-valued functions on U , Bbcμ : U →K, and {Ea}
is the coframe dual to {Ea = v−1(Xa)}. Then the 2-index coefficients Γaμ of Δh in {XI} have
the representation (cf. (4.25))

Γaμ =−
(
Γabμ ◦π

) ·Eb (6.32)

on U for some functions Γabμ :U →K, called 3-index coefficients of Δh in {XI}.
Remark 6.12. The representation (6.32) is not valid for frames more general than the
ones given by (6.31). Precisely, (6.32) is valid if and only if (6.31) holds for some local
coordinates {uI} on U—see (6.17).

Proof. Writing (6.17) for the transformation {∂I} �→ {eI}, with {eI} given by (6.31), we
get (6.32) with

Γabμ =
([
Bed
]−1)a

c

( ∂ΓcbνB
ν
μ +Bcbμ

)
, (6.33)

where ∂Γabν are the 3-index coefficients of Δh in the frame adapted to the coordinates {uI}
(see (4.25)). �

Let {XI} and {X̃I} be frames adapted to {eI} and {ẽI}, respectively, with (cf. (6.31))

(
ẽμ, ẽa

)= (eν,eb
) ·
[

Bν
μ ◦π 0

(
Bbcμ ◦π

) ·Ec Bba ◦π
]

, (6.34)

in which Δh admits 3-index coefficients. Then, due to (6.17) and (6.32), the 3-index co-
efficients Γabμ and Γ̃abμ of Δh in, respectively, {XI} and {X̃I} are connected by (cf. (4.36))

Γ̃abμ =
([
Bef
]−1)a

c

(
ΓcdνB

ν
μ +Bcdμ

)
Bdb . (6.35)

Exercise 6.13. Prove that the transformation {eI} �→ {ẽI}, with {ẽI} given by (6.34), is the
most general one that preserves the existence of 3-index coefficients of Δh provided they
exist in {eI}.

Introducing the matrices Γμ := [Γabμ]n+r
a,b=n+1, Γ̃μ := [Γ̃abμ]n+r

a,b=n+1, B := [Bab], and Bμ :=
[Babμ], we rewrite (6.35) as (cf. (4.37))

Γ̃μ = B−1 · (ΓνB
ν
μ +Bμ

) ·B. (6.35′)

A little below (see the text after (6.37)), we will prove that the compatibility of the devel-
oped formalism with the theory of covariant derivatives requires further restrictions on
the general transformed frames (6.15) to the ones given by (6.34) with

Bμ = Ẽμ(B) ·B−1 = Bν
μEν(B) ·B−1, (6.36)
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where Ẽμ := π∗|Δh(X̃μ) = π∗|Δh((Bν
μ ◦ π)Xν) = Bν

μEν. In this case, (6.35′) reduces to (cf.
(4.37))

Γ̃μ = Bν
μB
−1 · (Γν ·B+Eν(B)

)= Bν
μ

(
B−1 ·Γν−Eν

(
B−1)

) ·B. (6.37)

At last, a few words on the covariant derivative operators∇ are in order. Without lost
of generality, we define such an operator (4.48) via (4.54). Suppose {Eμ} is a basis for
�(M) and {Ea} is a one for Sec1(E,π,M). Define the components Γabμ :M→K of∇ in the
pair of frames ({Eμ},{Ea}) by (cf. (4.55))

∇Eμ

(
Eb
)= ΓabμEa. (6.38)

Then (4.54) imply (cf. (4.51))

∇FY = Fμ
(
Eμ
(
Ya
)

+ΓabμY
b
)
Ea (6.39)

for F = FμEμ ∈ �(M) and Y = YaEa ∈ Sec1(E,π,M). A change ({Eμ},{Ea}) �→ ({Ẽμ},
{Ẽa}), given via (6.30), entails

Γabμ �−→ Γ̃abμ = Bν
μ

([
Bef
]−1)a

c

(
ΓcdνB

d
b +Eν

(
Bcb
))

, (6.40)

as a result of (6.38). In a more compact matrix form, the last result reads

Γ̃μ = Bν
μB
−1 · (Γν ·B+Eν(B)

)
(6.41)

with Γμ := [Γa
bμ], Γ̃μ := [Γ̃abμ], and B := [Bab].

Thus, if we identify the 3-index coefficients of Δh, defined by (6.32), with the compo-
nents of∇, defined by (6.38), (such an identification is justified by the definition of∇ via
the parallel transport assigned to Δh (see Proposition 4.12) or via a projection, generated
by Δh, of a suitable Lie derivative on X(E) (see Definition 4.9)) then the quantities (6.35′)
and (6.41) must coincide, which immediately leads to the equality (6.36). Therefore,

(
eμ,ea

) �−→ (
ẽμ, ẽa

)= (eν,eb
) ·
[

Bν
μ ◦π 0

((
Bν
μEν

(
Bbd
)(
B−1

)d
c

)◦π)Ec Bba ◦π

]∣∣
∣
∣
∣
B=[Bba]

(6.42)

is the most general transformation between frames in T(E) such that the frames adapted
to them are compatible with the linear connection and the covariant derivative corre-
sponding to it. In particular, such are all frames {∂/∂uI} in T(E) induced by vector bun-
dle coordinates {uI} on E—see (4.34) and (3.1)–(3.3); the rest members of the class of
frames mentioned are obtained from them via (6.42) with eI = ∂/∂uI and nondegenerate
matrix-valued functions [Bν

μ] and B.

If {XI} (resp., {X̃I}) is the frame adapted to a frame {eI} (resp., {ẽI}), then the change
{eI} �→ {ẽI}, given by (6.42), entails {XI} �→ {X̃I} with {X̃I} given by (6.29) (see (6.15)
and (6.16)). Since the last transformation is tantamount to the change

({
Eμ
}

,
{
Ea
}) �−→ ({

Ẽμ
}

,
{
Ẽa
})

(6.43)
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of the basis of �(M)× Sec(E,π,M) corresponding to {XI} via the isomorphism (6.27)
(see (6.25), (6.29), and (6.30)), we can say that the transition (6.43) induces the change
(6.40) of the 3-index coefficients of the connection Δh. Exactly the same is the situation
one meets in the literature [19, 29, 40] when covariant derivatives are considered (and
identified with connections).

Regardless that the change (6.42) of the frames in T(E) looks quite special, it is the
most general one that, through (6.16) and (6.25), is equivalent to an arbitrary change
(6.43) of a basis in �(M)× Sec(E,π,M), that is, of a pair of frames in T(M) and E.

We would like to remark that, in the general case, (4.59) also holds with F = FμEμ,
G=GμEμ, and

(
R
(
Eμ,Eν

))(
Eb
)= RabμνEa, (6.44)

so that

Rabμν = Eμ
(
Γabν

)−Eν
(
Γabμ

)−ΓcbμΓ
a
cν +ΓcbνΓ

a
cμ−ΓabλC

λ
μν, (6.45)

where the functions Cλμν define the anholonomicity object of {Eμ} via [Eμ,Eν] =: CλμνEλ.
The above results, concerning linear connections on vector bundles, can be generalized

for affine connections on vector bundles. For instance, the analogue of Proposition 6.11
reads.

Proposition 6.14. Let Δh be an affine connection on a vector bundle (E,π,M) and let {Xμ}
be the frame adapted for Δh to a frame {eI} such that {ea} is a basis for Δv and

(
eμ,ea

)∣∣
U =

(
∂ν,∂b

) ·
⎡

⎣
Bν
μ ◦π 0

(
Bbcμ ◦π

) ·Ec Bba ◦π

⎤

⎦

= ((Bν
μ ◦π

)
∂ν +

((
Bbcμ ◦π) ·Ec)∂b,

(
Bba ◦π

)
∂b
)
,

(6.46)

where ∂I := ∂/∂uI for some local bundle coordinate system {uI} = {uμ = xμ ◦π,ub = Eb} on
U ⊆ E, [Bν

μ] and [Bba] are nondegenerate matrix-valued functions on U , Bbcμ : U →K, and

{Ea} is the coframe dual to {Ea = v−1(Xa)}. Then the 2-index coefficients Γaμ of Δh in {XI}
have the representation (cf. (4.74))

Γaμ =−
(
Γabμ ◦π

) ·Eb +Ga
μ ◦π, (6.47)

on U for some functions Γabμ,Ga
μ :U →K.

Remark 6.15. The representation (6.47) is not valid for frames more general than the
ones given by (6.46). Precisely, (6.47) is valid if and only if (6.46) holds for some local
coordinate system {uI} on U—see (6.17).

Proof. Writing (6.17) for the transformation {∂I} �→ {eI}, with {eI} given by (6.46), we
get (6.47) with

Γabμ =
([
Bed
]−1)a

c

( ∂ΓcbνB
ν
μ +Bcbμ

)
, Ga

μ =
([
Bed
]−1)a

b
∂Gb

νB
ν
μ, (6.48)
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where ∂Γabν and ∂Gb
ν are defined via the 2-index coefficients ∂Γaμ of Δh in the frame adapted

to the coordinates {uI} via ∂Γaμ =−( ∂Γabμ ◦π) ·Eb + ∂Ga
μ ◦π (see Theorem 4.21). �

Let {XI} and {X̃I} be frames adapted to {eI} and {ẽI}, respectively, with (cf. (6.46))

(
ẽμ, ẽa

)= (eν,eb
) ·
⎡

⎣
Bν
μ ◦π 0

(
Bbcμ ◦π

) ·Ec Bba ◦π

⎤

⎦ , (6.49)

in which (6.47) holds for Δh. Then, due to (6.17) and (6.47), the pairs (Γabμ,Ga
μ) and (Γ̃abμ,

G̃a
μ) for Δh in, respectively, {XI} and {X̃I} are connected by (cf. (4.75) and (4.76))

Γ̃abμ =
([
Bef
]−1)a

c

(
ΓcdνB

ν
μ +Bcdμ

)
Bdb , (6.50a)

G̃a
μ =

([
Bef
]−1)a

bG
b
νB

ν
μ. (6.50b)

Exercise 6.16. Prove that the transformation {eI} �→ {ẽI}, with {ẽI} given by (6.49), is the
most general one that preserves the existence of relation (6.47) for Δh provided it holds
in {eI}.

Further, one can repeat mutatis mutandis the text after Exercise 6.13 to the paragraph
containing (6.43) including.

7. Conclusion

In this paper, we have presented a short (and partial) review of (one of the approaches
to) the connection theory on bundles whose base and bundle spaces are (C2) differen-
tiable manifolds. Special attention was paid to connections, in particular linear ones, on
vector bundles, which find wide applications in physics [7, 24]. However, many other
approaches, generalizations, alternative descriptions, particular methods, and so forth
were not mentioned at all. In particular, these include connections on more general
(e.g., topological) bundles, connections on principal bundles (which are important in
the gauge field theories), holonomy groups, flat connections, Riemannian connections,
and so forth etc. The surveys [1, 23] contain essential information on these and many
other items. Consistent and self-contained exposition of such problems can be found in
[3, 9–11, 19, 20, 22, 25, 28, 29].

If additional geometric structures are added to the theory considered in Section 3,
there will become important connections compatible with these structures. In this way
many theories of particular connections arise; we have demonstrated that on the example
of linear connections on vector bundles (Section 4). Here are two more such cases.

If a free right action R : g �→ Rg : E→ E, g ∈ G, of a Lie group G on the bundle space E
of a bundle (E,π,M) is given and π : E→M = E/G is the canonical projection, we have a
principal bundle (E,π,M,G). The connections that respect the right action R are the most
important ones on principal bundles. Such a connection Δh is defined by Definition 3.1
to which the condition

(
Rg
)
∗
(
Δhp
)= ΔhRg (p), g ∈G, p ∈ E, (7.1)
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is added and is called a principal connection. Alternatively, one can require the parallel
transport P generated by Δh to commute with R, namely,

Rg ◦Pγ = Pγ ◦Rg , g ∈G, γ : [σ ,τ]→M. (7.2)

The theory of connections satisfying (7.1) is very well developed; see, for example, [9–
11, 19].

Suppose a real bundle (E,π,M) is endowed with a bundle metric g, that is, g : x �→ gx,
x ∈M, with gx : π−1(x)× π−1(x)→R being bilinear and nondegenerate mapping for all
x ∈M. The equality

gγ(σ) = gγ(τ) ◦
(
Pγ ×Pγ), γ : [σ ,τ, ]−→M, (7.3)

which expresses the preservation of the g-scalar products by the parallel transport P as-
signed to a connection Δh, specifies the class of g-compatible (metric-compatible) con-
nections on (E,π,M). Such are the Riemannian connections on a Riemannian manifold
M, which are g-compatible connections on the tangent bundle (T(M),πT ,M); see, for
instance, [19, 29].

The consideration of arbitrary (co)frames in Section 6 may seem slightly artificial as
the general theory can be developed without them. However, this is not the generic case
when one starts to apply the connection theory for investigation of particular problems.
It may happen that some problem has solutions in general (co)frames but it does not
possess solutions when (co)frames generated directly by local coordinates are involved.
For example [16], local coordinates (holonomic frames) normal at a given point for a
covariant derivative operator (linear connection)∇ on a manifold exist if∇ is torsionless
at that point, but anholonomic frames normal at a given point for∇ always exist.
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