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Exactly as in semigroups, Green’s relations play an important role in the theory of ordered
semigroups—especially for decompositions of such semigroups. In this paper we deal
with the �-trivial ordered semigroups which are defined via the Green’s relation �, and
with the nil and Δ-ordered semigroups. We prove that every nil ordered semigroup is
�-trivial which means that there is no ordered semigroup which is 0-simple and nil at
the same time. We show that in nil ordered semigroups which are chains with respect
to the divisibility ordering, every complete congruence is a Rees congruence, and that
this type of ordered semigroups are �-ordered semigroups, that is, ordered semigroups
for which the complete congruences form a chain. Moreover, the homomorphic images
of �-ordered semigroups are �-ordered semigroups as well. Finally, we prove that the
ideals of a nil ordered semigroup S form a chain under inclusion if and only if S is a chain
with respect to the divisibility ordering.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and prerequisites

In the theory of ordered semigroups—especially for decompositions of ordered semi-
groups, an important role is played by the Green’s relations. In this paper the concepts
of �-trivial, nil ordered semigroups, �-ordered semigroups and the concept of com-
plete congruences are introduced. The main results of the paper are the following: if
S is an ordered semigroup, A an ideal of S, and B an idempotent ideal of A, then B
is an ideal of S. For the corresponding result on semigroups, we refer to [2]. An ideal
A of an ordered semigroup S is called idempotent if A = (A2] [6]. An ordered semi-
group S is �-trivial if and only if the divisibility relation on S is an order on S. The di-
visibility relation on S is a chain if and only if S is �-trivial and the principal ideals of
S form a chain under inclusion. Moreover the principal ideals of S form a chain with
respect to the inclusion relation if and only if the ideals of S do so. For the correspond-
ing result on semigroups, we refer to [12]. The nil ordered semigroups are �-trivial.
As a consequence, an ordered semigroup cannot be 0-simple and nil at the same time.
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We introduce the concept of a complete congruence on an ordered semigroup (S,·,≤)
and the concept of the Rees congruence modulo A, where A is an ideal of S. A con-
gruence ρ on (S,·,≤) is called complete if a ≤ b implies (a,ab) ∈ ρ. We prove that if
(S,·,≤) is a nil ordered semigroup which is a chain with respect to the divisibility or-
dering, then every complete congruence on S is a Rees congruence. Furthermore, the
ideals of a nil ordered semigroup S form a chain under inclusion if and only if S is a
chain with respect to the divisibility ordering. The concept of a �-ordered semigroup
is defined as follows: an ordered semigroup S is called a �-ordered semigroup if the
complete congruences on S form a chain under inclusion. We finally prove that the nil or-
dered semigroups which are chains with respect to the divisibility ordering are�-ordered
semigroups and that the homomorphic images of�-ordered semigroups are�-ordered
semigroup as well. For the corresponding results on semigroups—without order—we re-
fer to [11].

If (S,·,≤) is an ordered semigroup and H ⊆ S, we denote by (H] the subset of S defined
as follows:

(H] := {t ∈ S | t ≤ h for some h∈H
}

[4]. (1.1)

A nonempty subset A of an ordered semigroup (S,·,≤) is called a left (resp., right)
ideal of S if the following hold.

(1) SA⊆ A (resp., AS⊆ A).
(2) If a∈A and S� b ≤ a, then b ∈A [4].

Equivalent definition.
(1) SA⊆ A (resp., AS⊆ A).
(2) (A]= A.

A is called an ideal of S if it is both a left and a right ideal of S.
We denote by L(A), R(A), I(A) the left ideal, right ideal, ideal of S, respectively, gener-

ated by A (A⊆ S), that is the least, with respect to the inclusion relation, left ideal, right
ideal, or ideal of S, respectively, containing A. As usual, L(A) (resp., R(A)) coincides with
the intersection of all left (resp., right) ideals of S containing A, I(A) with the intersection
of all ideals of S containing A. It is easy to check the following:

L(A)= (A∪ SA], R(A)= (A∪AS],

I(A)= (A∪ SA∪AS∪ SAS] ∀A⊆ S
(
cf. also [4]

)
.

(1.2)

For A = {a}, we write L(a), R(a), I(a) instead of L({a}), (R{a}), I({a}), respectively,
and we call them the principal left ideal, principal right ideal, or principal ideal of S,
respectively, generated by a (a∈ S).

We have

L(a)= {t ∈ S | t ≤ a or t ≤ ya for some y ∈ S
}

,

R(a)= {t ∈ S | t ≤ a or t ≤ ax for some x ∈ S
}

,

I(a)= {t ∈ S | t ≤ a or t ≤ ya for some y ∈ S or t ≤ ax for some x ∈ S

or t ≤ xay for some x, y ∈ S
}
.

(1.3)
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It might be noted that if S is a poe-semigroup, that is, an ordered semigroup (po-sem-
igroup [1]) having a greatest element “e” with respect to the order of S, then, for each
a∈ S, the principal ideals L(a), R(a), I(a) are the following:

L(a)= {t ∈ S | t ≤ a or t ≤ ea
}

,

R(a)= {t ∈ S | t ≤ a or t ≤ ae
}

,

I(a)= {t ∈ S | t ≤ a or t ≤ ea or t ≤ ae or t ≤ eae
}
.

(1.4)

The zero of an ordered semigroup (S,·,≤) is an element of S, usually denoted by 0,
such that 0 ≤ x and 0x = x0 = 0 for all x ∈ S [1]. A nonempty subset A of an ordered
semigroup (S,·,≤) is called a subsemigroup of S if (A,·) is a semigroup, that is, if A2 ⊆ A.

Remark 1.1. If (S,·,≤) is an ordered semigroup and A a left (resp., right) ideal of S,
then A2 ⊆ SA⊆ A (resp., A2 ⊆ AS⊆ A), so (A,·) is a subsemigroup of S. Then (A,·) is a
semigroup, and (A,·,≤) is an ordered semigroup.

Definition 1.2. Let (S,·,≤) be an ordered semigroup and A an ideal of S. B is an ideal of
A, if B is an ideal of the ordered semigroup (A,·,≤).

Definition 1.3. An equivalence relation ρ on an ordered semigroup S is called a left (resp.,
right) congruence on S if (a,b)∈ ρ implies (ca,cb)∈ ρ (resp., (ac,bc)∈ ρ) for every c ∈ S.
An equivalence relation ρ on S is called a congruence on S if it is both a left and a right
congruence on S.

Definition 1.4. Let (S,·,≤) be an ordered semigroup. A congruence ρ on S is called com-
plete if a≤ b implies (a,ab)∈ ρ.

The concept of complete semilattice congruences on an ordered semigroup has been
introduced in [7]. A semilattice congruence on S is a congruence ρ on S such that (a2,a)∈
ρ and (ab,ba)∈ ρ for each a,b ∈ S.

Definition 1.5. In an ordered semigroup S the Green’s relations �, �, �, �, � are defined
as follows: a�b if L(a) = L(b), a�b if R(a) = R(b), a�b if I(a) = I(b), � =�∩� and
�=�∨�, that is, the smallest equivalence relation of S containing both � and �.

It is easy to check that � is a right congruence and � is a left congruence on S. This
has been proved in case of poe-semigroups in [3].

A mapping f of an ordered semigroup (S,·,≤) into an ordered semigroup (T ,∗,�) is
called a homomorphism if f (ab)= f (a)∗ f (b) and a≤ b implies f (a)� f (b) for each
a,b ∈ S [8].

2. The main results

Lemma 2.1. If (S,·,≤) is an ordered semigroup, A an ideal of S, and B an ideal of A, then
(B]= B.

Proof. We have

(B] := {t ∈ S | t ≤ b for some b ∈ B
}
. (2.1)
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If t ∈ B, then, since “≤” is reflexive on S, we have t ∈ (B]. If t ∈ (B], then t ≤ b for some
b ∈ B ⊆ A. Since S� t ≤ b ∈ A and A is an ideal of S, we have t ∈ A. Since A� t ≤ b ∈ B
and B is an ideal of A, we have t ∈ B. Then (B]⊆ B, and thus (B]= B. �

Lemma 2.2 [4]. Let S be an ordered semigroup. Then the following hold.
(1) A⊆ (A] for all A⊆ S.
(2) If A⊆ B ⊆ S, then (A]⊆ (B].
(3) (A](B]⊆ (AB] for all A,B ⊆ S.
(4) ((A]]= (A] for all A⊆ S.
(5) If A, B are ideals of S, then (AB], A∪B are ideals of S.
(6) In particular, if S is an ordered semigroup, then the set (SaS] is an ideal of S for all

a∈ S.

Proposition 2.3. Let (S,·,≤) be an ordered semigroup, A an ideal of S, and B an ideal of
A such that B = (B2]. Then B is an ideal of S.

Proof. First of all, by Lemma 2.1, we have (B]= B. Moreover,

BS= (B2]S= (B2](S]⊆ (B2S
]= (B(BS)

]

⊆ (B(AS)
]⊆ (BA]⊆ (B]= B (cf. also Lemma 2.2).

(2.2)

In a similar way we get SB ⊆ B. Since BS⊆ B, SB ⊆ B and (B]= B, B is an ideal of S. �

Definition 2.4. An ordered semigroup S is called �-trivial if the Green’s equivalence rela-
tion � on S is the equality relation on S, that is, if I(a)= I(b) implies a= b.

Definition 2.5. Let S be an ordered semigroup and a,b ∈ S. Say that b divides a (or a is
divisable by b), and write b | a, if a∈ I(b).

Definition 2.6. Let S be an ordered semigroup. A relation “�” is defined on S as follows:

� := {(a,b)∈ S× S | b | a}

= {(a,b)∈ S× S | a∈ I(b)
}
.

(2.3)

The relation “�” is called the divisibility relation on S.

Proposition 2.7. Let (S,·,≤) be an ordered semigroup. If S is �-trivial, then the divisibility
relation on S is an order on S. Conversely, if the divisibility relation “�” on S is symmetric,
then S is �-trivial.

Proof. (⇒) If a ∈ S, then a ∈ I(a), so (a,a) ∈�. Let (a,b) ∈� and (b,a) ∈�. Since a ∈
I(b) and b ∈ I(a), we have I(a)⊆ I(b) and I(b)⊆ I(a), that is, I(a)= I(b). Since S is �-
trivial, we have a = b. If (a,b) ∈�, (b,c) ∈�, then a∈ I(b), b ∈ I(c), so a ∈ I(b) ⊆ I(c),
a∈ I(c), and (a,c)∈�.

(⇐) Let the divisibility relation “�” on S be symmetric and let a,b ∈ S such that I(a)=
I(b). Since a∈ I(b) and b ∈ I(a), we have (a,b)∈� and (b,a)∈�, so a= b. �

Corollary 2.8. An ordered semigroup S is �-trivial if and only if the divisibility relation
on S is an order on S.
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Proposition 2.9. Let S be an ordered semigroup. The following statements are equivalent.
(i) S is �-trivial and the principal ideals of S form a chain under inclusion.

(ii) The divisibility relation “�” on S is a chain.

Proof. (i)⇒(ii). By Proposition 2.7 , the divisibility relation “�” is an order on S. Let
now a,b ∈ S. By (i), we have I(a) ⊆ I(b) or I(b) ⊆ I(a). If I(a) ⊆ I(b), then a ∈ I(b),
and (a,b)∈�. If I(b)⊆ I(a), then b ∈ I(a), and (b,a)∈�. So “�” is a chain.

(ii)⇒(i). Since “�” is an order on S, by Proposition 2.7, S is �-trivial. Let now a,b ∈ S.
Since “�” is a chain, we have (a,b)∈� or (b,a)∈�. If (a,b)∈�, then a∈ I(b), so I(a)⊆
I(b). If (b,a) ∈�, then b ∈ I(a), so I(b) ⊆ I(a). Hence the principal ideals of S form a
chain. �
Proposition 2.10. Let S be an ordered semigroup. The principal ideals of S form a chain
with respect to the inclusion relation if and only if the ideals of S do so.

Proof. (⇒) Let A, B be ideals of S such that A � B. Then B ⊆ A. Indeed, let b ∈ B. We
consider an element a∈ A such that a /∈ B. By hypothesis, we have I(a)⊆ I(b) or I(b)⊆
I(a). If I(a)⊆ I(b), then a∈ I(b)⊆ B, so a∈ B which is impossible. Thus we have I(b)⊆
I(a), from which b ∈ I(a)⊆ A.

The implication “⇐” is obvious. �
Definition 2.11 (cf. also [5, 10]). An element a of an ordered semigroup S with zero is
called nilpotent if there exists an element n∈N such that an = 0. An ordered semigroup
S having a zero element 0 is called nil if every element of S is nilpotent, that is, if for each
a ∈ S, there exists n ∈N such that an = 0. S is called nilpotent if there exists n ∈N such
that Sn = {0}. N= {1,2, . . .} is the set of natural numbers.

If an ordered semigroup S is nilpotent, then it is clearly nil.

Notation 2.12. For convenience, we use the notation S1 := S∪{1}, where 1 is a symbol,
such that 1a := a, a1 := a for each a∈ S and 11 := 1.

Theorem 2.13. Every nil ordered semigroup is �-trivial.

Proof. Let a, b be two elements of an ordered nil semigroup (S,·,≤) such that I(a)= I(b).
Since a ∈ I(b), we have a ≤ xby for some x, y ∈ S1. Since b ∈ I(a), we have b ≤ zat for
some z, t ∈ S1. Then

a≤ x(zat)y = (xz)a(ty)≤ (xz)xzaty(ty)= (xz)2a(ty)2

≤ (xz)2xzaty(ty)2 = (xz)3a(ty)3 ≤ (xz)3xzaty(ty)3 = (xz)4a(ty)4.
(2.4)

Continuing this way, we have a ≤ (xz)na(ty)n for each n ∈N. Since S is nil, there exists
n∈N such that (xz)n = 0. Then a= 0, and b= 0, so a= b. Thus S is �-trivial. �

It might be noted that using the notation S1, we avoid to check each of the 16 (differ-
ent) cases arising from b ∈ I(a) and a∈ I(b), separately.

Definition 2.14 [9]. An ordered semigroup S having a zero element 0 is called 0-simple if
S2 �= {0} and S and {0} are the only ideals of S.

Corollary 2.15. An ordered semigroup S cannot be 0-simple and nil (at the same time).
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Proof. Suppose it is. If S= {0}, then S2 = {0} which is impossible. So there is at least one
nonzero element a in S. Suppose b is another nonzero element of S. We have I(a) �= {0}
and I(b) �= {0}. Since S is 0-simple, the ideals S and {0} are the only ideals of S. So we
have I(a) = S and I(b) = S. Since S is nil, by Theorem 2.13, it is �-trivial. Then, since
I(a)= I(b), we have a= b. Thus we have S= {0,a} for some a∈ S, a �= 0. Then we have
a2 = 0. Indeed, if a2 = a, then an = a for each n∈N. Since S is nil, there exists n∈N such
that an = 0. Then we have a = 0 which is impossible. Since S2 = {0,a2} and a2 = 0, we
have S2 = {0} which is impossible. �

Notation 2.16. If S is an ordered semigroup and A an ideal of S, we denote by ρA the
relation on S defined as follows:

ρA := {(x, y)∈ S× S | x = y or x, y ∈A
}
. (2.5)

It is easy to check that the relation ρA is a congruence on S.

Definition 2.17. For an ordered semigroup S and an ideal A of S, the congruence ρA is
called the Rees congruence on S modulo A. S is called the ideal extension of A by S�ρA.

Theorem 2.18. Let S be a nil ordered semigroup which is a chain with respect to the divisi-
bility ordering. Then every complete congruence on S is a Rees congruence.

Proof. Let ρ be a complete congruence on S. We define

A := {a∈ S | (a,0)∈ ρ
}
. (2.6)

The set A is an ideal of S. Indeed, let a∈ A, b ∈ S. Since a∈ A, we have (a,0)∈ ρ. Then
(ab,0b)∈ ρ, (ab,0)∈ ρ, so ab ∈ A. Let a∈ S, b ∈ A. Since (b,0)∈ ρ, we have (ab,0)∈ ρ,
so ab ∈ A. Let a ∈ A and S � b ≤ a. Then b ∈ A. Indeed, since ρ is complete and b ≤ a,
we have (b,ba)∈ ρ. Since a∈A, we have (a,0)∈ ρ, then (ba,0)∈ ρ. Since (b,ba)∈ ρ and
(ba,0)∈ ρ, we have (b,0)∈ ρ, thus we have b ∈A.

For the ideal A of S, we consider the Rees congruence

ρA := {(x, y)∈ S× S | x = y or x, y ∈A
}

(2.7)

defined above. We have ρ = ρA. Indeed, let (a,b)∈ ρ. Since a,b ∈ S and S is a chain with
respect to the divisibility ordering, we have (a,b) ∈� or (b,a) ∈�, namely, a ∈ I(b) or
b ∈ I(a). Suppose a∈ I(b). Then a≤ xby for some x, y ∈ S1. Then, since ρ is a complete
congruence on S, we have (a,axby)∈ ρ. Then (a(xby),axby(xby))∈ ρ, so (a,a(xby)2)∈
ρ. Then, since (a(xby),a(xby)3) ∈ ρ, we have (a,a(xby)3) ∈ ρ. Continuing this way, we
have (a,a(xby)n)∈ ρ for every n∈N. Since S is nil, there exists n∈N such that (xby)n =
0. Then we have (a,0)∈ ρ, and a∈ A. Since (b,a) ∈ ρ and (a,0)∈ ρ, we have (b,0)∈ ρ,
and b ∈ A. Since a,b ∈ A, we have (a,b) ∈ ρA. If b ∈ I(a), similarly, we get a,b ∈ A, so
(a,b)∈ ρA. Thus we have ρ⊆ ρA.

Conversely, let (a,b) ∈ ρA. Then a = b or a,b ∈ A. If a = b, then (a,b) = (a,a) ∈ ρ. If
a,b ∈ A, then (a,0)∈ ρ and (b,0)∈ ρ, from which (a,b)∈ ρ. Thus ρA ⊆ ρ.

Hence, for the ideal A of S, we have ρ = ρA, and the proof is complete. �
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Definition 2.19. An ordered semigroup S is called a �-ordered semigroup if the complete
congruences on S, with respect to the inclusion relation, form a chain.

Proposition 2.20. Let S be a nil ordered semigroup. The ideals of S form a chain under
inclusion if and only if S is a chain with respect to the divisibility ordering.

Proof. (⇒) By Proposition 2.10, the principal ideals of S form a chain under inclusion.
Since S is nil, by Theorem 2.13, S is �-trivial. Then, by Proposition 2.9, S is a chain with
respect to the divisibility ordering.

(⇐) Let A, B be ideals of S such that A � B. Then B ⊆ A. Indeed, let b ∈ B, and a∈ A,
a /∈ B. Since a,b ∈ S, by hypothesis, we have (a,b) ∈� or (b,a) ∈�, that is, a ∈ I(b) or
b ∈ I(a). Since I(b) ⊆ B and a /∈ B, we have a /∈ I(b). Thus we have b ∈ I(a) ⊆ A, and
b ∈A. �

Proposition 2.21. Let S be a nil ordered semigroup which is a chain with respect to the
divisibility ordering. Then S is a�-ordered semigroup.

Proof. Let ρ, μ be two complete congruences on S. Since S is a nil ordered semigroup and
it is a chain under the divisibility ordering, by Theorem 2.18, ρ and μ are Rees congru-
ences on S. That is, there exist ideals A, B of S such that ρ = ρA and μ= ρB, where

ρA := {(x, y)∈ S× S | x = y or x, y ∈A
}

,

ρB := {(x, y)∈ S× S | x = y or x, y ∈ B
}
.

(2.8)

By Proposition 2.20, the ideals of S form a chain under inclusion, so we have A ⊆ B or
B ⊆ A. If A⊆ B, then ρA ⊆ ρB. Indeed, if (x, y)∈ ρA, then x = y or x, y ∈ A, then x = y or
x, y ∈ B, which shows that (x, y)∈ ρB. By symmetry, if B ⊆ A, then ρB ⊆ ρA. So we have
ρ ⊆ μ or μ⊆ ρ and the proof is complete. �

Theorem 2.22. Let (S,·,≤) be a�-ordered semigroup, (T ,·,�) an ordered semigroup, and
f : S→ T a homomorphism and onto mapping. Then T is a�-ordered semigroup.

Proof. Let ρ, μ be two complete congruences on T . Let

ρ∗ := {(a,b)∈ S× S | ( f (a), f (b)
)∈ ρ

}
,

μ∗ := {(a,b)∈ S× S | ( f (a), f (b)
)∈ μ

}
.

(2.9)

The relations ρ∗ and μ∗ are complete congruences on S.
In fact, it is easy to see that the relations ρ∗ and μ∗ are equivalence relations on S.
Let now (a,b) ∈ ρ∗ and c ∈ S. Then (ac,bc) ∈ ρ∗. Indeed, since (a,b) ∈ ρ∗, we have

a,b ∈ S and ( f (a), f (b)) ∈ ρ. Since ρ is a right congruence on T , we have ( f (a) f (c),
f (b) f (c)) ∈ ρ. Then, since f is a homomorphism, we have ( f (ac), f (bc)) ∈ ρ. Since
ac,bc ∈ S and ( f (ac), f (bc))∈ ρ, we have (ac,bc)∈ ρ∗. Similarly, ρ∗ is a left congruence
on S.

ρ∗ is a complete congruence on S. Indeed, let a,b ∈ S, a≤ b. Since a,b ∈ S and f is a
homomorphism, we have f (a)� f (b). Then, since ρ is a complete congruence on T , we
have ( f (a), f (a) f (b))∈ ρ. Since f is a homomorphism, we have ( f (a), f (ab))∈ ρ. Since
a,ab ∈ S and ( f (a), f (ab))∈ ρ, we have (a,ab)∈ ρ∗.
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Since S is a�-ordered semigroup, we have ρ∗ ⊆ μ∗ or μ∗ ⊆ ρ∗. If ρ∗ ⊆ μ∗, then ρ⊆ μ.
Indeed, let (x, y)∈ ρ ⊆ T ×T . Since x, y ∈ T and f is onto, there exist a,b ∈ S such that
f (a) = x, f (b) = y. Since a,b ∈ S and ( f (a), f (b)) ∈ ρ, we have (a,b) ∈ ρ∗ ⊆ μ∗. Then
( f (a), f (b))∈ μ, so (x, y)∈ μ. If μ∗ ⊆ r∗, by symmetry, we have μ⊆ ρ. So we have ρ ⊆ μ
or μ⊆ ρ, and T is a�-ordered semigroup. �
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