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We apply the theory of the mutual compactificability to some spaces, mostly derived from
the real line. For example, any noncompact locally connected metrizable generalized con-
tinuum, the Tichonov cube without its zero point Iℵ0\{0}, as well as the Cantor discon-
tinuum without its zero pointDℵ0\{0} are of the same class of mutual compactificability
as R.
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1. The notation and terminology

By a space, we always mean topological space. Throughout the paper, we mostly use the
standard topological notions as in [1] or [3] with the exception that all spaces are as-
sumed without any separation axioms. Especially, compactness is understood without
the Hausdorff separation axiom. Some definitions (with broad references and explana-
tions) of less standard notions (related especially to non-Hausdorff topology) may be
found in the recent book [4]. The reader may find some topological notions (usually also
non-Hausdorff) related to computer science and logic in [13] as well as in [4]. We take
the terminology related to θ-regularity from [5, 7], but a relevant source is also [4]. An
ordinal number is taken to be the set of smaller ordinals, and a cardinal number is the
smallest ordinal equipotent with some fixed set. Let S be a set. We denote the cardinality
of S by |S|. Let (X ,τ) be a space. For our convenience and simplicity, sometimes we will
speak just about the space X , while meaning, more precisely, the pair (X ,τ). Similarly, if
we first start speaking about the space X without specifying its topology explicitly, later
we will usually denote the topology of X by τ or τX (in the case that we will work simul-
taneously with more topological spaces or more topologies on the same set). The weight
of a space (X ,τ) is defined as the least infinite cardinal number w(X) such that (X ,τ)
has an open base τ0 ⊆ τ with |τ0| ≤ w(X). The spaces with w(X) = ℵ0 are called second
countable. In a space X , a point x ∈ X is in the θ-closure of a set A⊆ X (x ∈ clθ A) if every
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closed neighborhood of x intersects A. A filter base Φ in X has a θ-cluster point x ∈ X
if x ∈⋂{clθ F | F ∈Φ}. We say that a space X is θ-regular if every filter base in X with
a θ-cluster point has a cluster point. For more detailed characterization of θ-regularity,
we refer the reader to [5, 7, 8]. The points x, y in a space X are T0-separable if there is
an open set containing only one of the points x, y. The points x, y are T2-separable if
they have open disjoint neighborhoods. Let X be a space. Two disjoint sets A,B ⊆ X are
said to be pointwise separated in X if every x ∈ A, y ∈ B are T2-separable in X . Recall that
the preorder of specialization is the reflexive and transitive binary relation on X defined
by x � y if and only if x ∈ cl{y}. This relation is antisymmetric, and hence a partial or-
der if and only if X is a T0 space. There are several modifications of local compactness
established in the literature. In this paper, we say that a space is (strongly) locally com-
pact if its every point has a compact (closed) neighborhood. It can be easily proved that
a space is strongly locally compact if and only if it is θ-regular and locally compact. Let
X be a strongly locally compact space which is dense in a compact space K and let the
sets X , K �X be pointwise separated in K . Then one can easily prove that X is an open
subspace of K . A filter in a space X is said to be ultra-closed if it is maximal among all
filters in X having a base consisting of closed sets [1]. By the Wallman compactification
of X , we mean the set ωX = X ∪{y | y is a nonconvergent ultra-closed filter in X}. The
sets �(U)=U ∪{y | y ∈ ωX �X ,U ∈ y}, where U is open in X , constitute an open base
of ωX (see [1]). The space X is called homogeneous provided that for all x, y ∈ X , there
is a homeomorphism h : X → X with h(x)= y, see [11]. We say that the space X is zero-
dimensional if X is T1 and has a base consisting of open-and-closed sets. Clearly, every
zero-dimensional space is T3.5.

2. Preliminaries and introduction

We will recall some notions and results from the previous papers [9, 10]. Let (X ,τX),
(Y ,τY ) be spaces with X ∩Y =∅. The space X is said to be compactificable by the space
Y or, in other words, X , Y are called mutually compactificable if there exists a compact
topology τK on K = X ∪ Y such that the topologies on X , Y induced by τK coincide
with τX , τY , respectively, and the sets X , Y are pointwise separated in (K ,τK ). Then we
say that the topology τK is �-acceptable. Recall that mutually compactificable spaces are
always θ-regular, and any two disjoint strongly locally compact spaces are always mutually
compactificable [9].

Let Top be the class of all topological spaces. For any pair of two spaces X , Z, we define
X ∼ Z if for every nonempty space Y disjoint from X , Z, the space X is compactificable
by Y if and only if Z is compactificable by Y . It can be easily seen that ∼ is reflexive,
symmetric, transitive, and hence it is an equivalence relation. Let us denote by �(X) the
equivalence subclass of Top with respect to ∼ containing X and call it the compactifica-
bility class of X . We proved in [10] that each compactificability class contains a T1 repre-
sentative, but there exist compactificability classes without any Hausdorff representatives.
Because of completeness, we briefly repeat the main arguments witnessing that it really
holds.

Let X be a topological space. We may assume that X is θ-regular, because otherwise,
the desired T1 representative of �(X) is any non-θ-regular T1 space. Consider the net
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idM(M,�), where � is the preorder of specialization on X and M ⊆ X is a nonempty
chain in the preordered set (X ,�). Then, idM(M,�) θ-converges to any point x ∈M. By
θ-regularity of X , it also has a cluster point, say z ∈ X . It is an easy exercise to show that
z is a lower bound of M. By Zorn’s lemma, the set X1 ⊆ X of minimal points of (X ,�)
is nonempty and each element of X is comparable with some element of X1. If X is a
T0-space, then X1 already is the desired T1 representative of �(X). Otherwise, one may
take the quotient space of X1 with respect to the equivalence relation given by setting

x ∼ y⇐⇒ x � y, y � x (2.1)

for every x, y ∈ X1, as the T1 representative.
On the other hand, let X be a regular space on which every real-valued function is

constant. Then X is a connected non-T3.5space. Suppose that there exist a Hausdorff

space Y such that X ∩Y =∅ and a �-acceptable topology on K = X ∪Y . Denote H =
clK X ∩ clK Y , S = K � clK Y and F = X � S. It is easy to show that both of F, S are T3.5

and nonempty because of the normality of H and the local compactness of S. Take x ∈ S.
Since X is regular, there exist an open set U ∈ τX with x ∈ U and clX U ⊆ S. Since X is
connected, it follows that clX U �= S which implies that A = S�U is a closed nonempty
subset of S. Let f : S→ I be a continuous function with f (x)= 0 and f (A)= {1}. Assign-
ing the value 1 also to all the points of F, we get a continuous and nonconstant extension
of f over X , which is a contradiction. Thus, X is compactificable by no Hausdorff space.
Since X is compactificable by ωX �X , the class �(ωX �X) contains no Hausdorff rep-
resentative. For more detail, we refer the reader to the previous papers [9, 10]. Note that
it is unknown whether every compactificability class contains a sober (or sober T1) rep-
resentative.

It is a natural question what the compactificability classes look like if we assume some-
thing more for the �-acceptable topology—for instance, Hausdorffness. We call such a
modification of the original concept mutual T2-compactificability in [9]. For example,
Thomas in [12] constructed an (relatively elementary) example of a regular non-T3.5

space, which is compactificable by the countably infinite discrete space, as shown in [9],
but certainly, T2-compactificable by no topological space. These initial considerations
witness that the compactificability classes and T2-compactificability classes are essentially
different and even the corresponding decomposition of Top is not a simple refinement of
the other. For spaces which are Hausdorff, it seems to be more natural and important to
study the mutual T2-compactificability, but this we will do in a separate paper, in which
we also will attempt to give a deeper insight into the relationship between these two mod-
ifications of the concept. The aim of this paper is to continue in an initial study of the
concept and we start with the version which seems to be less complicated. We also should
note that the T2 version of the theory cannot distinguish between the spaces which are
not at least T3.5, because the non-T3.5 spaces form a T2-compactificability class (similarly
as the non-θ-regular spaces form a compactificability class).

Now, for all spaces X , Z, we put �(X) � �(Z) if for every nonempty space Y , the
following hold. If the space X is compactificable by Y disjoint from X , Z, then Z is com-
pactificable by Y . Obviously, the relation � is reflexive, antisymmetric, transitive, and
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hence it is an order relation between the compactificability classes. If for some spaces X ,
Z, it holds that �(X) � �(Z) but �(X) �=�(Z), we write �(X) 
�(Z). The previously
mentioned fact that every compactificability class contains a T1 representative will be very
important for verifying the relation �(X) � �(Z) in the next section. Indeed, it is easy to
show that �(X) � �(Z) if and only if the following hold. If X is compactificable by a T1

space (or a T0 space), Y disjoint from X , Z, then Z is compactificable by Y .

3. Main results

We will have two main theorems in this section. The first one will state some relationship
between the compactificability classes of a strongly locally compact space and its closed
subspace. The second theorem will compare the compactificability class of a given space
with the compactificability class of some known space; more concretely, a certain space
constructed from the Cantor cube. Thus we will be able to determine the compactifica-
bility classes of some familiarly known spaces derived and constructed from the real line
R. But before formulating and proving these results, we need some more preparation.

Proposition 3.1. Let (X ,τX) be a closed subspace of a strongly locally compact space
(Z,τZ). Let (Y ,τY ) be a nonempty T0 space such that Y ∩Z =∅ and on the set K = X ∪Y ,
there exists a compact topology τK which induces on X , Y their original topologies and the
sets X , Y are in (K ,τK ) pointwise separated.

Then there exists a topology τL on the set L = Y ∪Z which induces on the sets Y , Z, K
their original topologies such that the sets Y , Z are pointwise separated in (L,τL). Moreover,
if X is dense in K , Z is dense in L.

Proof. We will define a topology on L by its open base. Let m ∈ Y be a point such that
{m} is a closed set in (Y ,τY ). Note that since (Y ,τY ) is θ-regular and T0, it follows from
Zorn’s lemma that each point in Y is comparable with some minimal point m∈ Y with
respect to the preorder of specialization, and, certainly, then {m} = cl{m} is a closed set.
For more detail, the reader is referred to [10, Lemma 2.14]. We will define two types of
neighborhoods.

(i) A neighborhood of type 1 is the set of the form

W(m,V ,C)=V ∪ [(Z �X) �C
]
, (3.1)

where m ∈ V ∈ τK and C ⊆ Z is a set compact and closed in (Z,τZ), such that
V ∩C =∅.

(ii) A neighborhood of type 2 is any set W ⊆ L such that m /∈W , W ∩Z ∈ τZ , W ∩
K ∈ τK .

Let W(m,V1,C1), W(m,V2,C2) be two neighborhoods of type 1. Then W(m,V1,C1)∩
W(m,V2,C2) = (V1 ∩V2)∪ [(Z �X) � (C1 ∪C2)]. Moreover, (V1 ∩V2)∩ (C1 ∪C2) =
∅, which means that the intersection of two neighborhoods of type 1 is a neighborhood
of type 1. It is clear that the intersection of two neighborhoods of type 2 is again a neigh-
borhood of type 2. Let W(m,V ,C) = V ∪ [(Z �X) �C] be a neighborhood of type 1
and W a neighborhood of type 2. Then, W(m,V ,C)∩ Z = (V ∩ Z)∪ [(Z � X) � C].
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Since V ∩C =∅, we have V ∩Z = (V ∩Z) �C, so

W(m,V ,C)∩Z = [(V ∩Z) �C
]∪ [(Z �X) �C

]= [(V ∩Z)∪ (Z �X)
]
�C. (3.2)

Since V ∈ τK , it follows that V ∩Z =V ∩X = S∩X for some S∈ τZ . Then

W(m,V ,C)∩Z = [(S∩X)∪ (Z �X)
]
�C

= [(S∪ (Z �X)
)∩ (X ∪ (Z �X)

)]
�C

= [(S∪ (Z �X)
)∩Z

]
�C = [S∪ (Z �X)

]
�C ∈ τZ.

(3.3)

Let U =W(m,V ,C)∩W . Then U ∩Z = [W(m,V ,C)∩Z]∩ (W ∩Z)∈ τZ . Further,

W(m,V ,C)∩K =V ∪ [((Z �X) �C
)∩K

]=V ∪ [((Z �K) �C
)∩K

]=V ∈ τK ,
(3.4)

so U ∩K =V ∩ (W ∩K)∈ τK . Since clearly m /∈U , U is a neighborhood of type 2. Since
W(m,K ,∅)= L, the neighborhoods of type 1 together with the neighborhoods of type 2
form an open base of some topology, say τL, on the set L= Y ∪Z. Moreover, we have just
checked that the topologies on the sets Z, K , respectively, induced from the space (L,τL)
are equal or weaker than the original topologies τZ , τK , respectively.

Conversely, let S ∈ τZ . Then S∩ X ∈ τX , so there exists V ∈ τK , such that S∩ X =
V ∩X = S∩K . We put U = S∪ (V � {m}). Clearly, m /∈U . We have

U ∩Z = S∪ [(V � {m})∩Z
]= S∪ [(V � {m})∩X

]

= S∪ (V ∩X)= S∪ (S∩X)= S∈ τZ ,

U ∩K = (S∩K)∪ (V � {m})= (V ∩X)∪ (V � {m})

= [(V � {m})∩X
]∪ (V � {m})=V � {m} ∈ τK .

(3.5)

Hence, U is a neighborhood of type 2 which induces the given set S∈ τZ on Z. Therefore,
the topology on Z induced from (L,τL) equals to τZ .

Similarly, let V ∈ τK . At first, suppose that m /∈V . We have V ∩X ∈ τX , so there exists
S∈ τZ such that V ∩X = S∩X = S∩K . We put U = S∪V . Of course, m /∈U . We have

U ∩Z = S∪ (V ∩Z)= S∪ (V ∩X)= S∪ (S∩X)= S,

U ∩K = (S∩K)∪V = (V ∩X)∪V =V ∈ τK .
(3.6)

Then U is a neighborhood of type 2 which induces the given set V ∈ τK on K . Finally,
suppose that m∈V . We put U =W(m,V ,∅)=V ∪ (Z �X). Then

U ∩K =V ∪ [(Z �X)∩K
]=V ∪ [(Z �K)∩K

]=V , (3.7)

so U is a neighborhood of type 1 which induces the given set V ∈ τK on K . Hence, the
topology on K induced from (L,τL) equals to τK . Then also the topology on Y ⊆ K in-
duced from (L,τL) equals to τY .
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Let z ∈ Z, y ∈ Y . Since Z is locally compact and θ-regular, it is strongly locally com-
pact, so there exists S ∈ τZ such that z ∈ S and C = clZ S is compact in (Z,τZ). Then
D = C ∩X is compact in (X ,τX), and hence in (K ,τK ). Since X , Y are pointwise sep-
arated in K , there exist V ,P ∈ τK such that y ∈ V , D ⊆ P, and V ∩ P = ∅. We put
U = V ∪ [(Z �X) � C]. Then y ∈ U and U ∩ S = (V ∩ S)∪ [((Z �X) �C)∩ S]. But
S⊆ C, so

V ∩ S⊆V ∩C =V ∩K ∩Z∩C =V ∩X ∩C =V ∩D ⊆V ∩P =∅,
[
(Z �X) �C

]∩ S⊆ (L�C)∩C =∅,
(3.8)

so U ∩ S =∅. We also can see that V ∩C =∅. If z ∈ Z �X , we put W = S∩ (Z �X).
Then z ∈W , W ∩Z =W ∈ τZ , W ∩K =∅∈ τK , so W is a neighborhood of type 2, and
W ∩U =∅. Otherwise, that is, if z ∈ X , we construct the set W in a different way. The
set S∩X ∈ τX is nonempty and there exists T ∈ τK such that S∩X = T ∩X . Without
loss of generality, we may assume that m /∈ T . On the other hand, P ∈ τK , so P∩X ∈ τX
and there exists some Q ∈ τZ such that P∩X = Q∩X . We put W = (P∪Q)∩ (S∪T).
We have m /∈W and z ∈ S∩X ⊆ C∩X =D ⊆ P, so z ∈W . Further,

W ∩Z = (P∪Q)∩ (S∪T)∩Z = (P∪Q)∩ [S∪ (T ∩Z)
]

= (P∪Q)∩ [S∪ (T ∩X)
]= (P∪Q)∩ [S∪ (S∩X)

]

= (P∪Q)∩ S= (P∩ S)∪ (Q∩ S)= (P∩K ∩Z∩ S)∪ (Q∩ S)

= (P∩X ∩ S)∪ (Q∩ S)= (Q∩X ∩ S)∪ (Q∩ S)=Q∩ S∈ τZ ,

W ∩K = (P∪Q)∩ (S∪T)∩K = [P∪ (Q∩K)
]∩ (S∪T)

= [P∪ (Q∩X)
]∩ (S∪T)= [P∪ (P∩X)

]∩ (S∪T)

= P∩ (S∪T)= (P∩ S)∪ (P∩T)= (P∩K ∩Z∩ S)∪ (P∩T)

= (P∩X ∩ S)∪ (P∩T)= (P∩X ∩T)∪ (P∩T)= P∩T ∈ τK .

(3.9)

Then

W =W ∩L=W ∩ (Z∪K)= (W ∩Z)∪ (W ∩K)= (Q∩ S)∪ (P∩T)

⊆ P∩ S= P∩K ∩Z∩ S= P∩X ∩ S⊆ P∩X.
(3.10)

Hence,

W ∩U = (P∩X)∩ [V ∪ (Z �X)
]= (P∩X ∩V)∪ [P∩X ∩ (Z �X)

]

⊆ P∩V ∪ [X ∩ (Z �X)
]= P∩V =∅.

(3.11)

Moreover, one can see that W is a neighborhood of z of type 2.
Now, if y = m, then U = V ∪ [(Z �X) �C] is a neighborhood of y of type 1, and

hence, the points z, y are pointwise separated. If y �=m, without loss of generality, we
can choose V ∈ τK such that m /∈V . Then m /∈U and U ∩Z = (V ∩Z)∪ [(Z �X) �C].
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Since V ∩C =∅, we have V ∩Z = (V ∩Z) �C, so

U ∩Z = [(V ∩Z) �C
]∪ [(Z �X) �C

]= [(V ∩Z)∪ (Z �X)
]
�C

= [(V ∩X)∪ (Z �X)
]
�C.

(3.12)

But V ∩X ∈ τX , so there is some R∈ τZ such that V ∩X = R∩X . Then

U ∩Z = [(R∩X)∪ (Z �X)
]= [R∪ (Z �X)

]∩ [X ∪ (Z �X)
]

= [R∪ (Z �X)
]∩Z = R∪ (Z �X)∈ τZ.

(3.13)

Similarly,

U ∩K =V ∪ [((Z �X) �C
)∩K

]⊆V ∪ [(Z �X)∩K
]

=V ∪ [(Z �K)∩K
]=V ∈ τK .

(3.14)

Hence, U is a neighborhood of y of type 2.
In any case, the points z, y have disjoint neighborhoods in (L,τL). It remains to show

that (L,τL) is compact. Let Ω ⊆ τL be an open cover of L. Without loss of generality, we
may assume that Ω consists of neighborhoods of type 1 or type 2. Since the topology
on K induced from τL coincides with τK , K is a compact subspace of L. Hence, there
exist W1,W2, . . . ,Wk ∈ Ω such that K ⊆ ⋃k

i=1Wi. There exist some i ∈ {1,2, . . . ,k}, say
i = 1, such that m ∈W1. Hence, W1 is a neighborhood of type 1, so there exist V ∈ τK
and C ⊆ Z compact and closed in (Z,τZ) such that W1 =W(m,V ,C)= V ∪ [(Z �X) �

C] and V ∩ C = ∅. Since τZ agrees with the topology on Z induced by τL, it follows
that C is a compact subspace of L. Hence, there exist Wk+1,Wk+2, . . . ,Wn ∈Ω such that
C ⊆⋃n

i=k+1Wi. Let x ∈ L. Suppose that x /∈⋃k
i=1Wi. Then x /∈ K , so x ∈ L�K = Z �X .

But also x /∈W1, so x ∈ C. But then, x ∈⋃n
i=k+1Wi. Therefore, L=⋃n

i=1Wi. Hence, L is
compact.

Finally, suppose that X is dense in K . Let y ∈ Y and suppose that y ∈W ∈ τL. Then
W ∩K ∈ τK , so W ∩Z ⊇W ∩X =W ∩K ∩X �=∅, which means that Z is dense in L.
Now, we can see that τL satisfies all the conditions stated in the proposition, and the proof
is complete. �

As an immediate corollary of the previous proposition, we can formulate our first
theorem.

Theorem 3.2. Let (X ,τX) be a closed subspace of a strongly locally compact space (Z,τZ).
Then �(X) � �(Z).

Proof. Let Y be a space disjoint from Z and suppose that X is compactificable by Y . Take
any T0 representative of �(Y), say Y0, such that Y0 ∩ Z = ∅. Then X , Y0 are mutually
compactificable. By Lemma 3.3, the spaces Z, Y0 are mutually compactificable, which
yields that Z is compactificable also by Y . Hence, we have �(X) � �(Z). �

Now we need to make some additional denotations. We denote by D3 the three-
element set {0,1,2}, equipped by the discrete topology. Similarly, we also consider the set
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D = {0,1} with the discrete topology. Further, we denote I = [0,1] and A = [1,∞) with
the Euclidean topology induced from R. For a space (X ,τ) and σ ⊆ τ, we denote by 0
the constant mapping such that 0(U)= 0 for every U ∈ σ . We also call it the “left corner”
of the cube Dσ

3 orDσ . By αX , we denote the one-point Alexandroff compactification of a
space (X ,τ). The aim of the following considerations is to prove that for a locally compact
Hausdorff space (X ,τ) with w(X) � ℵ0, it holds that �(X) � �(Dw(x)

� {0}). We present
here a proof which is elementary and relatively independent of the literature, but, on the
other hand, rather long and technical. The reader who will find it too boring may skip the
next part starting from the following paragraph and continue after Corollary 3.12 with
Remark 3.13.

Recall that the Khalimsky line (see, e.g., [4]) is the set Z of integers equipped with the
topology induced by the open subbase {{2i,2i+ 1,2i+ 2} | i ∈ Z} (in some papers, the
roles of odd and even numbers may be exchanged). The standard reference for the Khal-
imsky space is [6]. This space is mostly used in digital topology and perhaps that could
be a reason why, as far as the author knows, its universal properties yet have not been sys-
tematically studied. The Sierpiński space (see [4, page 20]) is the set S= {0,1}, where the
open sets are ∅, the whole space {0,1}, and one of the singletons, say {1}. Note that con-
sidered as a poset where 0 < 1, in which the partial order ≤ may arise as the preorder of
specialization from the Sierpiński topology, (S,≤) is called Sierpiński frame (see, e.g., [13,
page 22]). The power of the Sierpiński space is well known as the Alexandroff cube (see
[3, page 116], or [4, page 103]) and it is easy to show that any T0 space of weight m can
be embedded into the Alexandroff cube Sm. These universal properties of the Sierpiński
space are broadly well known, however, there exist finite T0 spaces which can do things
that the Sierpiński space can never do. A useful and interesting example of a universal T0

space was given by R. Sikorski and later studied by Dow and Watson in [2]. It has three
points {0,1,2} and five open sets ∅, {2}, {1,2}, {0,2}, {0,1,2}.

Inspired by the paper of Dow and Watson, we equip the set {0,1,2} by another four-
element topology {∅,{0},{2},{0,1,2}}, which can be induced from the Khalimsky line.
Considered with this topology, we denote {0,1,2} by K3. For a given T0 space, we define
a canonical mapping of X into the cube Kσ

3 . Let x ∈ X , U ∈ σ . We put

fx(U)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x /∈ clU ,

1 for x ∈ frU ,

2 for x ∈U.

(3.15)

Then we put h(x) = fx. This defines a (canonical) mapping h : X → Kσ
3 . The following

lemma establishes more precisely what we can (naturally) expect from the space K3 and
the mapping h.

Lemma 3.3. Let (X ,τ) be a T0 space, σ ⊆ τ open base of its topology. Then the canonical
mapping h : X → h(x)=Y⊆Kσ

3 is a homeomorphic embedding of X onto a subspace Y⊆Kσ
3 .

Proof. We will prove that h is injective. Let x, y ∈ X , x �= y. Since X is a T0 space, with-
out loss of generality, we may assume that there exists U ∈ σ such that x ∈ U , y /∈ U .
Then h(x)(U) = 2, while h(y)(U) ∈ {0,1}. Hence, h(x), h(y) are different mappings.
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Let us show that h is continuous. Denote by πU : Kσ
3 → K3 the projection such that for

every f ∈ Kσ
3 , it holds that πU( f ) = f (U) ∈ K3. According to the topology of K3, we

have to verify that the inverse images of Y ∩ π−1
U (0) and Y ∩ π−1

U (2) in the mapping h
are open in (X ,τ). We leave to the reader to check that h−1(Y ∩ π−1

U (0)) = X � clU and
h−1(Y ∩ π−1

U (2)) = U . Then h is continuous. From the second equality, it also follows
that h(U)= Y ∩π−1

U (2), which means that h is also an open mapping. Then h : X → Y is
a homeomorphism, which completes the proof. �
Proposition 3.4. Let (X ,τ) be a noncompact strongly locally compact T0 space, σ ⊆ τ an
open topology base such that for every U ∈ σ , the set clU is compact. Then the mapping
h : X → h(X)⊆Kσ

3 can be extended to the homeomorphism h : αX → h(X)∪{0}.
Proof. Let αX = X ∪ {∞} be the one-point Alexandroff compactification of (X ,τ). We
put

h(x)=
⎧
⎨

⎩

h(x) for x ∈ X ,

0 for x =∞.
(3.16)

First, we will show that 0 /∈ Y = h(X). Let y ∈ Y and let x = h−1(y). Let U ∈ σ be such
that x ∈ U . Then y(U) = h(x)(U) = 2, while 0(U) = 0, so y �= 0. Hence, 0 /∈ Y . Then
h : αX → h(X)∪{0} is a bijection. Since X is an open set in αX , it suffices to verify the
continuity of h at the point ∞. Let V ⊆Kσ

3 be an open set such that 0∈ V . We will show
that h−1(V ∩ (Y ∪{0})) is open in αX . Without loss of generality, we may assume that
V is a subbasic set in the product topology of Kσ

3 , so V = π−1
U (k), where k ∈ {0,2} and

U ∈ σ . Since 0∈V , we need πU(0)= 0(U)= 0∈ {k}, so k = 0. Then,

h
−1(

V ∩ (Y ∪{0}))= h
−1

(V ∩Y)∪h
−1({0})= h−1(V ∩Y)∪{∞}

= h−1(Y ∩π−1
U (0)

)∪{∞} = (X � clU)∪{∞},
(3.17)

which is an open neighborhood of∞ in the topology of αX . So h is continuous.
We will show that h is an open mapping. Let W ⊆ αX be open. Take any y ∈ h(W).

Suppose that y = 0. Then ∞ = h
−1

(0) ∈W , which means that X � W is closed and

compact in (X ,τ). There exist U1,U2, . . . ,Uk ∈ σ such that X � W ⊆ ⋃k
i=1Ui. We put

V = (Y ∪ {0})∩ (
⋂
π−1
Ui

(0)). Clearly, 0 ∈ π−1
Ui

(0), which gives y = 0 ∈ V . If 0 �= t ∈ V ,

then t ∈ Y ∩ (
⋂k

i=1π
−1
Ui

(0))=⋂k
i=1(Y ∩π−1

Ui
(0)). Then

h
−1

(t)= h−1(t)∈ h−1

( k⋂

i=1

(
Y ∩π−1

Ui
(0)
)
)

=
k⋂

i=1

h−1(Y ∩π−1
Ui

(0)
)=

k⋂

i=1

(
X � clUi

)

= X �

k⋃

i=1

clUi ⊆ X �

k⋃

i=1

Ui ⊆W.

(3.18)

This implies that t ∈ h(W), so we have y = 0∈V ⊆ h(W).



10 The compactificability classes of certain spaces

Let y �= 0 and denote x = h
−1

(y) = h−1(y) ∈W . There exists U ∈ σ such that x ∈
U ⊆W . We put V = (Y ∪ {0})∩ π−1

U (2). We have h(x)(U) = 2, so y = h(x) ∈ π−1
U (2),

which gives y ∈ V . Let t ∈ V . Then t ∈ π−1
U (2), so t(U) = 2. In particular, t �= 0, which

implies that t ∈ Y ∩ π−1
U (2), which means that h

−1
(t) = h−1(t) ∈ h−1(Y ∩ π−1

U (2)) = U .

Then h
−1

(t)∈U ⊆W , and so t ∈ h(W). Consequently, y ∈V ⊆ h(W).
From the two previous paragraphs, now it follows that for open W ⊆ αX , h(W) is

always an open set, which means that h : αX → h(X)∪{0} is an open mapping. Since it
is also bijective and continuous, it is a homeomorphism and the proof is finished. �
Lemma 3.5. Let (X ,τ) be noncompact locally compact Hausdorff space with w(X) = m.
Then there exist a closed subspace Z ⊆Dm

3 containing 0 and a continuous surjective mapping
f : Z → αX such that f (Z � {0})= X .

Proof. Let σ ⊆ τ be an open topology base of (X ,τ) such that |σ| =m and clU is compact
for every U ∈ σ . We denote Y = h(X), Y0 = h(X)∪{0}, where h : X →Kσ

3 is the canonical
embedding described above. By Proposition 3.4, there exists a homeomorphism h : αX →
Y0 such that h(∞) = 0 and h/X = h. We put A = Y0 and Z = clDσ

3
A, where we consider

the sets A, Z with the topologies induced from Dσ
3 . Since the topology of A is stronger

than the topology of Y0, which is induced fromKσ
3 , the identical mapping idA : A→ Y0 is

surjective and continuous. We will construct a continuous extension g : Z → Y0 of idA.
Let us denote by Finσ the family of all finite subsets of σ . The set Finσ is natu-

rally directed by the inclusion. For every t ∈ Z and K ∈ Finσ , the set
⋂

U∈K π−1
U (t(u))

is an open neighborhood of t and so there exists ϕt(K) ∈ A∩ [
⋂

U∈K π−1
U (t(u))] = Y0 ∩

[
⋂

U∈K π−1
U (t(u))]. We will show that the net ϕt(Finσ ,⊇) has a unique cluster point in Y0.

Let p,q ∈ Y0 be two distinct cluster points of ϕt(Finσ ,⊇).
Suppose first that p �= 0 �= q. Then p,q ∈ Y , and so there exist U1,U2 ∈ σ such that

h−1(p) ∈ U1, h−1(q) ∈ U2 and U1 ∩U2 =∅. We put K = {U1,U2}. There exist L1,L2 ∈
Finσ , L1 ⊇ K , L2 ⊇ K , such that ϕt(L1) ∈ h(U1) = Y ∩ π−1

U1
(2), ϕt(L2) ∈ h(U2) = Y ∩

π−1
U2

(2). In particular, ϕt(L1)(U1) = ϕt(L2)(U2). At the same time, it holds that ϕt(L1) ∈
⋂

U∈L1
π−1
U (t(U)) and ϕt(L2)∈⋂U∈L2

π−1
U (t(U)) by the definition of the net ϕt(Finσ ,⊇).

Hence, we have

ϕt
(
L1
)(
U1
)= t

(
U1
)
, ϕt

(
L1
)(
U2
)= t

(
U2
)
,

ϕt
(
L2
)(
U1
)= t

(
U1
)
, ϕt

(
L2
)(
U2
)= t

(
U2
)
,

(3.19)

which hold because U1,U2 ∈ L1,L2. We get ϕt(L1)(U1) = ϕt(L2)(U2) = 2, which gives
ϕt(L1) �= 0. Then

ϕt
(
L1
)∈ [Y ∩π−1

U1
(2)
]∩ [Y ∩π−1

U2
(2)
]= h

(
U1
)∩h

(
U2
)
, (3.20)

which contradict our former assumption that U1∩U2 =∅.
Now, suppose that, for example and certainty, p �= 0 and q = 0. Let U ∈ σ such that

h−1(p)∈U . We put K = {U}. There exist L1,L2 ∈ Finσ , L1 ⊇ K , L2 ⊇ K , such that

ϕt
(
L1
)∈ h(U)= Y ∩π−1

U (2),

ϕt
(
L2
)∈ π−1

U (0).
(3.21)
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Then, by the definition of the net ϕt(Finσ ,⊇), we have

ϕt
(
L1
)∈

⋂

V∈L1

π−1
V

(
t(V)

)
,

ϕt
(
L2
)∈

⋂

V∈L2

π−1
V

(
t(V)

)
.

(3.22)

Then ϕt(L1)(U)= t(U)= ϕt(L2)(U), which is a contradiction.
Hence, the net ϕt(Finσ ,⊇) has, for every t ∈ Z, the unique cluster point, say yt ∈ Y0.

We put

g(t)=
⎧
⎨

⎩

t for t ∈ A= Y0,

yt for t ∈ Z �A.
(3.23)

This defines a surjective mapping g : Z → Y0. We will check that g−1(0) = {0}. Let t ∈
g−1(0). Then g(t)= 0. Suppose that t �= 0. We have t /∈ A, because g is injective in A. Then
0 = yt is a cluster point of the net ϕt(Finσ ,⊇). Let us take any U ∈ σ and let K = {U}.
There exist L ∈ Finσ , L ⊇ K such that ϕt(L) ∈ π−1

U (0), and so ϕt(L)(U) = 0. But, at the
same time, we have ϕt(L) ∈⋂V∈L π−1

V (t(V)), which means that ϕt(L)(U) = t(U). Then
t(U)= 0 for every U ∈ σ , which is a contradiction to our previous assumption that t �= 0.
So, t = 0 is the unique element of g−1(0).

We will verify that g : Z → Y0 is continuous at any point t ∈ Z. Let t ∈ Z � {0}. Then
g(t) �= 0, so g(t) ∈ Y . Let W ⊆ Kσ

3 be an open set such that g(t) ∈W . Then Y ∩W is
open in Y and h−1(Y ∩W) is open in (X ,τ), while

x = h−1(g(t)
)∈ h−1(Y ∩W). (3.24)

Then there exists U ∈ σ such that

x = h−1(g(t)
)∈U ⊆ h−1(Y ∩W). (3.25)

Then

g(t)∈ h(U)= Y ∩π−1
U (2)= Y0∩π−1

U (2)⊆ Y ∩W ⊆W , (3.26)

where we have used the fact that 0(U)= 0 and so 0 /∈ π−1
U (2).

Since (X ,τ) is regular, there is someV∈σ such that x ∈V ⊆ clV ⊆U . Then h(x)(V)=
g(t)(V) = 2, so g(t) ∈ Y ∩ π−1

V (2). If t ∈ A, then t = g(t) ∈ Z ∩ π−1
V (2). Suppose that

t ∈ Z �A. Then g(t) is a cluster point of the net ϕt(Finσ ,⊇). Let K = {V}. There ex-
ist L∈ Finσ , L⊇ K , such that ϕt(L)∈ π−1

V (2), which means that ϕt(L)(V)= 2. Then, by
the definition of the net ϕt(Finσ ,⊇), we have ϕt(L)∈⋂S∈L π−1

S (t(S)), which means that
ϕt(L)(V) = t(V) = 2. Then t ∈ Z ∩ π−1

V (2), which is an open neighborhood of t in the
topology of Z.

We will show that g(Z ∩ π−1
V (2)) ⊆W . Let s ∈ Z ∩ π−1

V (2). Then s(V) = 2, which
means that s �= 0. If s ∈ A = Y0, we have g(s) = s ∈ Y0 ∩ π−1

V (2) ⊆ π−1
U (2) ⊆W . Let s ∈

Z �A. Then g(s) ∈ Y0, but it is not possible that g(s) = 0 since 0 has in g the unique
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preimage 0. Hence g(s) ∈ Y . Denote z = h−1(g(s)) ∈ X and suppose that z /∈ clV . Then
h(z)(V) = g(s)(V) = 0, that is, g(s) ∈ π−1

V (0). But g(s) is the cluster point of the net
ϕs(Finσ ,⊇), so there exist, for the open set π−1

V (0) and K = {V} ∈ Finσ , some L∈ Finσ ,
L ⊇ K such that ϕs(L) ∈ π−1

V (0). Then ϕs(L)(V) = 0. Further, ϕs(L) ∈ ⋂Q∈L π−1
Q (s(Q)),

which implies that ϕs(L)(V) = s(V) = 0. But this contradicts our previous assumption
that s ∈ Z ∩ π−1

V (2) which, in the contrary, gives s(V) = 2. Therefore, necessarily z ∈
clV ⊆U . Then

g(s)= h(z)∈ h(U)= Y ∩π−1
U (2)⊆ Y ∩W ⊆W. (3.27)

Now it is clear that g(Z∩π−1
V (2))⊆W , which means that g is continuous at every point

t ∈ Z � {0}.
Finally, we will check the continuity of g at t = 0. Let 0∈W ⊆Kσ

3 , where W is open in

the topology ofKσ
3 . Then Y0∩W is open in Y0, and so h

−1
(Y0∩W) is open in αX , while

∞∈ h
−1

(0)⊆ h
−1(

Y0∩W
)= (X �C)∪{∞}, (3.28)

where C ⊆ X is compact and closed in (X ,τ). Hence, there exist U1,U2, . . . ,Uk ∈ σ such
that C ⊆⋃k

i=1Ui. Then t = 0∈ Z∩ (
⋂k

i=1π
−1
Ui

(0)), while the set Z∩ (
⋂k

i=1π
−1
Ui

(0)) is open
in Z.

We will prove that

g

(

Z∩
( k⋂

i=1

π−1
Ui

(0)

))

⊆W. (3.29)

Let s ∈ Z ∩ (
⋂k

i=1π
−1
Ui

(0)) and denote z = h
−1

(g(s)) ∈ αX . First, we will show that z ∈
(X � C)∪ {∞}. Clearly, s(Ui) = 0 for i ∈ {1,2, . . . ,k}. If s = 0, then z = ∞ and we are
done. So suppose that s �= 0. It follows that g(s) �= 0, so g(s) ∈ Y , which means that z =
h−1(g(s)).

If s ∈ A, then g(s) = s ∈ ⋂k
i=1π

−1
Ui

(0), and so h(z)(Ui) = g(s)(Ui) = 0 for every i ∈
{1,2, . . . ,k}. Then z /∈ clUi for every i∈ {1,2, . . . ,k}, which means that z /∈ C, which yields
z ∈ (X �C)∪{∞}.

Consider now the second possibility, that is, suppose that s ∈ Z �A. Let z ∈ Ui for
some i∈ {1,2, . . . ,k}. Then h(z)(Ui)= g(s)(Ui)= 2. But g(s) is a cluster point of the net
ϕs(Finσ ,⊇) and so, for the open set π−1

Ui
(2) ⊆ Kσ

3 and for K = {Ui} ∈ Finσ , there ex-
ist L∈ Finσ , L⊇ K such that ϕs(L)∈ π−1

Ui
(2). Then ϕs(L)(Ui)= 2. We also have ϕs(L)∈

⋂
Q∈L π−1

Q (s(Q)), which together gives ϕs(L)(Ui) = s(Ui) = 2. But this contradicts the
choice of the element s, for which we have s(Uj) = 0 for every j ∈ {1,2, . . . ,k}. There-

fore, z /∈⋃k
i=1Ui, which implies that z /∈ C, and so z ∈ (X �C)∪{∞}. Overall, we have

z = h
−1

(g(s))∈ (X �C)∪{∞} for every z ∈ Z∩ (
⋂k

i=1π
−1
Ui

(0)). Then

g(s)= h(z)∈ h
(
(X �C)∪{∞})= Y0∩W ⊆W. (3.30)
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Hence,

g

(

Z∩
( k⋂

i=1

π−1
Ui

(0)

))

⊆W , (3.31)

which means that g is continuous at the point 0∈ Z.
Consequently, g is continuous at every point of Z, so it is continuous. Further, it is

surjective and g(Z � {0}) = Y . We put f = h−1 ◦ g. Now it is clear that f has all the
required properties. �

Lemma 3.6. For every cardinal m � ℵ0, there exists a continuous surjective mapping f :
Dm →Dm

3 such that f (Dm
� {0})=Dm

3 � {0}.
Proof. We put, for every α∈m, Xα =D×D, Yα =D3, fα(0,0)= 0, fα(0,1)= 1, fα(1,0)=
1, fα(1,1)= 2. The mapping fα : Xα→ Yα is continuous and surjective. We put f (t)(α)=
fα(t(α)) for every t ∈∏α∈mXα. Since

∏
α∈mXα is homeomorphic to Dm, we can identify

these spaces. Thus, the mapping f :
∏

α∈mXα = Dm →∏
α∈mYα = Dm

3 has the desired
properties. �

Remark 3.7. By a less elementary argument, the spaces Dm and Dm
3 are actually homeo-

morphic. Up to homeomorphism, the Cantor cube Dℵ0 is a unique nonempty compact
zero-dimensional space of countable weight without isolated points (see [11, page 135,
Theorem 4.2.5]). Since the spaces Dm and Dm

3 are also homogeneous, without loss of
generality we may immediately have that f (0)= 0.

We combine the previous results to a proposition.

Proposition 3.8. Let (X ,τ) be a noncompact locally compact Hausdorff space with
w(X) = m, where m � ℵ0. Then there exists a closed subspace Z ⊆ Dm, such that 0 ∈ Z
and a continuous surjective mapping f : Z → αX such that f (Z � {0})= X .

Proof. Denote by f3 : Z3 → αX the mapping whose existence is ensured by Lemma 3.5
and by f2 :Dm→Dm

3 the mapping described in Lemma 3.6, where Z3 ⊆Dm
3 is the closed

subspace of Dm
3 whose existence is also ensured by Lemma 3.5. We put Z = f −1

2 (Z3) and
f = f3 ◦ f2, where we consider the composition f3 ◦ f2 to be restricted to its domain Z.

�

The next proposition shows that one space can be replaced, under some conditions,
by the other space in mutual compactificability, if it is a continuous image of that space.

Proposition 3.9. Let (X ,τX) be a locally compact space, let (Y ,τY ), (Z,τZ) be topological
spaces such that X ∩Y = ∅, Y ∩ Z = ∅. Suppose that there exists a compact topology τK
on K = X ∪Y such that the sets X , Y are pointwise separated in (K ,τK ) and the topologies
induced on the sets X , Y by τK coincide with their original topologies. Let f : Z → X be a
surjective continuous mapping such that for any ultrafilter � on Z having no cluster point,
the ultrafilter f (�) has no cluster point in X .

Then there exists a compact topology τL on the set L= Y ∪Z such that the sets Y , Z are
pointwise separated, and the topologies on Y , Z induced by τL coincide with their original
topologies.
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Proof. Denote F = clK X � X ⊆ Y . We will define a topology on L by setting its open
subbase. We will define two types of neighborhoods.

(i) A neighborhood of type 1 is the set of the form U ∪ (W ∩ Y), where U ∈ τZ ,
W ∈ τK , W ∩F =∅, U ⊆ f −1(W ∩X).

(ii) A neighborhood of type 2 is the set of the form f −1(W ∩X)∪ (W ∩Y), where
W ∈ τK , W ∩F �=∅.

The reader may check that the neighborhoods of type 1 and of type 2 together constitute
a base of some topology, say τL, on the set L = Y ∪Z, but the subbase features of these
neighborhoods are fully sufficient.

The intersection of a neighborhood of any type with the sets Y or Z, respectively, is
open in the original topology onY orZ, respectively, so the induced topologies are weaker
or equal to the original topologies on the sets Y , Z, respectively. Let V ∈ τY . There exists
W ∈ τK such that V =W ∩ Y . Then W ∩X ∈ τK , so U = f −1(W ∩X) ∈ τZ . The set
P = U ∪V = U ∪ (W ∩ Y) = f −1(W ∩X)∪ (W ∩ Y) is a neighborhood of type 1 or
type 2 depending on the emptiness of W ∩ F, and we have V = Y ∩P. Hence, V can be
induced by τL, so τY and the topology induced on Y from (L,τL) are equal. Let U ∈ τZ .
The set X is locally compact and θ-regular, so X is an open subspace of clK X . Then, there
exists W ∈ τK such that X =W ∩ clK X . Then W ∩X = X , so f −1(W ∩X) = Z, and,
consequently, U ⊆ f −1(W ∩X). Moreover, W ∩F =W ∩F ∩ clK X = (W ∩ clK X)∩F =
X ∩ (clK X �X)=∅. We put Q =U ∪ (W ∩Y), which is then a neighborhood of type 1,
and so Q ∈ τL. Since U =Q∩Z, U can be induced by τL. Hence, τZ and the topology on
Z induced from (L,τL) coincide.

We will prove that Y , Z are pointwise separated in (L,τL). Let y ∈ Y and z ∈ Z. Then
x = f (z)∈ X , so there exist W1,W2 ∈ τK such that y ∈W1, x ∈W2, and W1∩W2 =∅.
Let U1 = f −1(W1∩X) and U2 = f −1(W2∩X). We put

P =U1∪
(
W1∩Y

)= f −1(W1∩X
)∪ (W1∩Y

)
,

P =U2∪
(
W2∩Y

)= f −1(W2∩X
)∪ (W2∩Y

)
.

(3.32)

Clearly, P,Q, respectively, are neighborhoods of type 1 or type 2, depending on the empti-
ness of W1 ∩ F, W2 ∩ F, respectively. We have y ∈ P, z ∈ Q, and P ∩Q =∅. Indeed, if
t ∈ P∩Q, then t ∈ U1 ∩U2, since W1 ∩W2 =∅. But then, f (t) ∈W1 ∩W2, which is a
contradiction. Hence, Y and Z are pointwise separated in (L,τL).

Finally, it remains to show that (L,τL) is compact. Let � be an ultrafilter in L. Then
either Y ∈� or Z ∈�. Suppose that Y ∈�. If � has a cluster point in Y , we are done.
So, suppose that � has no cluster point in Y . Since K is compact, the ultrafilter �Y =
{A∩ Y | A ∈�} on Y has a cluster point in K , say x ∈ X . The mapping f : Z → X is
surjective, so there is z ∈ Z such that f (z)= x. Let P be a neighborhood of type 1 or type 2
containing z. Then P =U ∪ (W ∩Y), where U ∈ τZ , W ∈ τK , and U ⊆ f −1(W ∩X). We
have z ∈U ⊆ f −1(W ∩X), so x = f (z)∈W ∩X ⊆W . Let A∈�. Then A∩Y ∩W �=∅

since x is a cluster point of �Y and W is its open neighborhood in (K ,τK ), but then also
A∩P �=∅. Hence, z is a cluster point of � in (L,τL).

Suppose that Z ∈�. If � has a cluster point, we are done. So, suppose that � has
no cluster point in Z. Then, by the assumption, the ultrafilter � = { f (A∩Z) | A ∈�}
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on X has no cluster point in X . Since (K ,τK ) is compact, � has a cluster point in K , say
y ∈ Y . Let Q ∈ τL be a neighborhood of y of type 1 or type 2. Since the elements of �
are subsets of X , we have y ∈ F = clK X �X . Then, Q cannot be a neighborhood of type
1 because the neighborhoods of type 1 cannot meet F. Hence, Q = f −1(W ∩X)∪ (W ∩
Y), where W ∈ τK and W ∩ F �=∅. Let A ∈�. From y ∈ Q, it follows that y ∈W , so
f (A∩Z)∩W �=∅. Then there exists t ∈ A∩Z such that f (t) ∈W ∩X . Consequently,
t ∈ f −1(W ∩X)∩A⊆Q∩A, which means that y is a cluster point of �.

Hence, in any case, � has a cluster point in L, so (L,τL) is compact. This completes the
proof. �

Now, we can state the second theorem.

Theorem 3.10. Let (X ,τ) be a locally compact Hausdorff space with w(X) = m, where
m � ℵ0. Then �(X) � �(Dm

� {0}).

Proof. By Proposition 3.8, there exist a closed subspace Z ⊆Dm containing 0 and a con-
tinuous surjective mapping f : Z → αX such that f (Z � {0}) = X . For a given ultrafil-
ter � in Z � {0} which has no cluster point in Z � {0}, f (�) has no cluster point in
X . Indeed, Z is compact, so 0 must be the cluster point of �. Since f is continuous,
f (0)=∞ must be the cluster point of f (�). However, the Alexandroff compactification
of (X ,τ) is Hausdorff, so f (�) cannot have another cluster point in αX . It follows from
Proposition 3.9 that �(X) � �(Z � {0}). But Z � {0} is a closed subspace of Dm

� {0},
so we may use Proposition 3.1 similarly as in the proof of Theorem 3.2 and show that
�(Z � {0}) � �(Dm

� {0}). Then �(X) � �(Dm
� {0}). �

Combining our two theorems, we have a tool for determining some compactificability
classes practically. The next proposition is an immediate consequence of Theorems 3.2
and 3.10.

Proposition 3.11. Let (X ,τ) be a locally compact Hausdorff space with w(X)=m, where
m � ℵ0. IfX contains a closed subspace Y with �(Dm

� {0}) � �(Y), then �(X)=�(Y)=
�(Dm

� {0}).

Since the Cantor cubeDm is a closed subspace of the Tichonov cube Im, which has the
weight m, we have the following result.

Corollary 3.12. For any m � ℵ0, it holds that �(Im � {0})=�(Dm
� {0}).

Proof. Dm is a closed subspace in Im, so Dm
� {0} is a closed subspace of Im � {0}. Both

of these spaces have the weight m and they are locally compact and Hausdorff. It follows
from Theorem 3.2 that �(Dm

� {0}) � �(Im � {0}). From Theorem 3.10, it follows that
�(Im � {0}) � �(Dm

� {0}), so together we have �(Im � {0})=�(Dm
� {0}). �

Remark 3.13. Note that another, but less elementary argument proving Theorem 3.10 and
Corollary 3.12 follows from the fact that Iℵ0 is a homogeneous space (see [11, page 254,
Theorem 6.1.6]). Then Im is also homogeneous for m � ℵ0 (as a product of m copies of
Iℵ0 ). Let (X ,τ) be a locally compact Hausdorff space withw(X)=m � ℵ0. It is well known
that there is an embedding f : αX → Im such that f (αX) is a closed subspace of Im (see [3,
page 115, Theorem 2.3.23]). The homogeneity of Im allows to have f (∞) = 0. Then, by
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Theorem 3.2, we get �(X) � �(Im � {0}). Of course, similarly we have �(Dm
� {0}) �

�(Im � {0}). On the other hand, it is also well known that there exists a continuous
surjection g : Dm → Im such that g−1({0}) = {0} (adjust [3, Exercise 3.2.B, page 193]).
Now, Proposition 3.9 yields �(Im � {0}) � �(Dm

� {0}), which completes the proof.

The Cantor space Dℵ0 is homeomorphic to a closed subspace of I. Applying Theorem
3.2 several times, we obtain the next corollary.

Corollary 3.14. For any k,n ∈N, the spaces Ak, Rn, Ak ×Rn, Iℵ0
� {0}, Dℵ0

� {0} are
of the same class of mutual compactificability.

Proof. All the spaces mentioned in the corollary are Hausdorff locally compact having
the weight ℵ0. The mapping h : Dℵ0 → I = [0,1] defined as h(x) =∑∞

i=1(2xi/3i), where
x = (xi), is a homeomorphic embedding in which h(0) = 0. Then Dℵ0

� {0} is homeo-
morphic to a closed subspace of the space (0,1], which is homeomorphic with the real
ray A. Hence, �(Dℵ0

� {0}) � �(A). Further, A is homeomorphic with a closed sub-
space of Rn, Rn is a closed subspace of A×Rn, which is again a closed subspace of Rn+1.
By Theorem 3.10, �(Rn+1) � �(Dℵ0

� {0}). Then, by Theorem 3.2, we have

�(A) � �
(
Rn
)
� �

(
A×Rn

)
� �

(
Rn+1)� �

(
Dℵ0

� {0})=�
(
Iℵ0

� {0})� �(A).
(3.33)

�

Recall that a space is said to be a generalized continuum if it is a locally compact con-
nected Hausdorff space. We also have the following corollary.

Corollary 3.15. Let (X ,τ) be a noncompact locally connected metrizable generalized con-
tinuum. Then �(X)=�(R).

Proof. If (X ,τ) is a noncompact locally connected metrizable generalized continuum,
then it is second countable and contains a closed copy of A (see, e.g., [14]). Then w(X)=
ℵ0, so by Proposition 3.11 and Corollary 3.14, we get �(X) = �(A) = �(Dℵ0

� {0}) =
�(R). �

In the previous results, we have found the compactificability classes of various spaces
constructed or derived in some way from the real line. These spaces are usually uncount-
able, second countable, locally compact, and Hausdorff. Therefore, one may state a nat-
ural question if it is true that every such a space must be of the same class of compactifi-
cability as R. It is not difficult to prove that the space which is a disjoint union of N with
the discrete topology and any uncountable second-countable compact space is a proper
counterexample. After some further investigation, the reader may find out that the be-
havior at infinity of a space is a more determining property for the classes of the mutual
compactificability than its cardinality or its separation properties. But these considera-
tions will be a subject of our next, forthcoming, paper.
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