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The notions of a right quasiregular element and right modular right ideal in a near-ring
are initiated. Based on these Jj(R), the right Jacobson radical of type-0 of a near-ring R is
introduced. It is obtained that J§ is a radical map and N(R) < J§(R), where N (R) is the nil
radical of a near-ring R. Some characterizations of Jj(R) are given and its relation with
some of the radicals is also discussed.
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1. Introduction

Throughout this paper, R stands for a right near-ring. The structure of matrix near-rings
was studied by Rao in [3, 4]. It is clear from these papers that right Jacobson-type radicals
have an important role to play in the study of Meldrum-van der Walt matrix near-rings.
This motivated the authors to develop the right Jacobson-type radicals of near-rings.
The aim of this paper is to give a good beginning in this direction of investigation. Left
quasiregularity was introduced and studied in near-rings. In this paper, right quasireg-
ularity is developed, and right modules of near-rings and the right Jacobson radical of
type-0 are studied.

In Section 2, the notions of a right quasiregular element and a right modular right
ideal are introduced. Using these right 0-primitive ideal, right 0-primitive near-ring, and
J5(R), the right Jacobson radical of R of type-0 are introduced. A nil subset of R is right
quasiregular and the constant part of R is also right quasiregular. It is shown that Jj is a
radical map and J§(R) is the largest right quasiregular ideal of R. Moreover, N(R), the nil
radical of R, is contained in Jj(R) and that P(R) < N(R) < J§(R). If R is a zero-symmetric
near-ring with DCC on the left R-subgroups of R, then Jy(R) < J§(R).

In Section 3, a right R-group of type-0 is introduced. It is shown that G is a right R-
group of type-0 if and only if G is right R-isomorphic to R/K, for some maximal right
modular right ideal K of R. A right 0-primitive ideal of R is a prime ideal of R. An ideal
P of a d.g. near-ring R is a right 0-primitive ideal of R if and only if P = (0 : G), for some
right R-group G of type-0.
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2 The right Jacobson radical of type-0

In Section 4, the right Jacobson radical of type-0 of a biregular near-ring is studied.
For such a near-ring R, it is shown that J§(R) = Jo(R) = {0}. Moreover, if R is biregular,
then an ideal P of R is right O-primitive if and only if P is left 0-primitive if and only
if P is a maximal right and left modular ideal. It is shown by an example that in general
Jo (R) differs from the existing Jacobson-type radicals of R and the Jj-radical class contains
almost all the classes of near-rings with trivial multiplication.

2. Right quasiregularity and the right Jy-radical
Throughout this paper, R is a right near-ring.

Definition 2.1. An element a € R is called right quasiregular if and only if the right ideal
of R generated by the set {x —ax | x € R} isR.

Remark 2.2. Note that unlike in the left quasiregularity case, if R is a near-ring and a € R,
then the right ideal of R generated by the set {x — ax | x € R} is Rif and only if a is in the
right ideal of R generated by the set {x —ax | x € R}.

Definition 2.3. A right ideal (left ideal, ideal, subset) K of R is called a right quasiregular
right ideal (left ideal, ideal, subset) of R, if each element of K is right quasiregular.

LEMMA 2.4. A nilpotent element of R is right quasiregular.

Proof. Let a be a nilpotent element in R, say a” = 0 for some positive integer n. Let K
be the right ideal of R generated by x — ax, x € R. Observe that x = x — a"x = (x — ax) +
(ax — a(ax)) + (a*x — a(a’*x)) + - - + (@ 'x — a(a"'x)) € K. Therefore, K = R and
hence a is right quasiregular. O

One of the major differences between right and left quasiregular elements of R and
hence between its right and left Jacobson-type radicals is the following.

LemMa 2.5. The constant part of R is right quasiregular.

Proof. Let R, be the constant part of R and a € R.. For x € R, (x+a) —a(x+a) = (x +
a) — a = x. Therefore, a is right quasiregular. So, R, is right quasiregular. O

LEmMMA 2.6. Let e be a nonzero distributive idempotent in R. Then e is not a right quasireg-
ular element of R.

Proof. Let e be a nonzero distributive idempotent in R. Now (0:¢e) = {a € R| ea =0} is
a right ideal of R. Also x —ex € (0:¢) for all x € R. But e isnotin (0: e). So (0:e) # R.
Therefore, e is not right quasiregular. O

Definition 2.7. A right ideal K of R is called right modular if there is an element e € R
such that x — ex € K for all x € R. In this case K is said to be right modular by e.

ProprosiTION 2.8. Lete € R. Then e is right quasiregular if and only if no proper right ideal
of R is right modular by e.

The proof follows from the definitions.

Remark 2.9. Let K be a right ideal of R. If K is right modular by e, then e € K if and only
if K =R.
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ProrositioN 2.10. Let K be a proper right ideal of R. If K is, right modular, then K is
contained in a maximal right ideal of R which is also right modular.

The proof of this result is easy and hence omitted.

ProrosriTioN 2.11. Let K and L be right modular right ideals of R and R = K + L. Then
K N L is also a right modular right ideal of R.

Proof. Suppose that K is right modular by e; and L is right modular by e,. Let e; = by; +
b1, and let e; = by; + by, where by1,by1 € K and byp,by € L. Let e = by; + by, Let r €
Rir—er=r—(by+bp)r=r—>bypr—byr=((r—er)+(byr—byur)eK;r—er=r-—
(bo1 +b12)r =1 = biar — byir = (r — biar + byyr —r) + (r — ear) € L. Therefore, r —er €
K NL,and hence K N L is a right modular right ideal. O

ProrosrtioN 2.12. IfKy,K;,..., K, are maximal right modular right ideals of R such that
N, K; = {0}, then R has a left identity.

The proof follows from Proposition 2.11.

Definition 2.13. J{,,(R) is the intersection of all maximal right modular right ideals of R
and if R has no maximal right modular right ideals, then J{,(R) = R.

THEOREM 2.14. J{,(R) is the largest right quasiregular right ideal of R.

Proof. Let g € J{,;(R). Suppose that g is not right quasiregular. Let K be the right ideal
of R generated by the set {x — qx | x € R}. Now g ¢ K. By Zorn’s lemma, we get a right
ideal M, which is maximal for the property that K = M, g ¢ M. Now M is a maximal
right ideal of R. M is right modular right ideal of R as x — gx € M, for all x € R. As ¢
€ J{»(R), g € M, a contradiction. Therefore each element of ] ,(R) is right quasiregular.
We see now that each right quasiregular right ideal of R is contained in Ji,,(R). Let K be
a right quasiregular right ideal of R. We claim that K < J{,,(R). Suppose that K is not
contained in J{,,(R). We get a maximal right modular right ideal M such that R = M + K.
Suppose that M is right modularbye;e =m+k,me M,k e K;x —kx =x— (—m+e)x =
x — (—mx+ex) = x —ex+mx € M. Since M # R, k is not right quasiregular, which is a
contradiction. Therefore, K < J{,,(R). Hence, J{,,(R) is the largest right quasiregular right
ideal of R. O

Remark 2.15. As expected, J{,(R) is not an ideal of R. For this, consider the nonabelian
group G of order 6. Then My(G) is a simple near-ring. Since G has only one nonzero
maximal normal subgroup, My(G) has only one nonzero maximal right ideal which is
right modular by the identity element of My(G). So, J{,,(My(G)) is not an ideal of My(G).

Remark 2.16. Let K be a right ideal of R. We show that there is a unique largest ideal
of R contained in K. Now {0} is an ideal of R and {0} = K. Let I and J be ideals of R
and I € K, ] € K. Now I +] is an ideal of R. Since K is a subgroup of (R,+), I +] < K.
Similarly, if Iy, I,...,I, are ideals of R and I; € K, for all 1 < j < n, then we get that
Li+L+---+1I,< K. Let {J; | i € A} be the collection of all ideals T of R such that T < K.
Let ] = >.;caJi- Now J is an ideal of R. It is clear that ] < K as any element a € ] can be
written as a = a;, +a;, + -+ - +aj, a;, € Ji;, ij € A. Obviously, ] is the largest ideal of R
contained in K.
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Definition 2.17. The largest ideal of R contained in J,,(R) is denoted by J§(R) and is called
the right Jacobson radical of R of type-0.

TaEOREM 2.18. R — Ji(R) is a radical map.

Proof. (1) First suppose that R has no maximal right modular right ideal. Now R = J§(R)
and that R/J§(R) = {0}. So J§(R/J;(R)) = {0}. Suppose now that R has a maximal right
modular right ideal. Let {M, | « € A} be the collection of all maximal right modular
right ideals of R. Since M, is a maximal right modular right ideal of R and Jj(R) S M,
M,/J§(R) is a maximal right modular right ideal of R/J§(R) for all @ € A. So J§(R/J§(R)) <
Nacr Mo/J§(R)) = (Naea Ma)/J5(R). Since J5(R) is the largest ideal of R contained in
(Naca Ma, we get that the largest ideal of R/J§(R) contained in (Nyep (Mo/J§(R)) is the zero
ideal. Therefore, Jj(R/J;(R)) = {0}.

(2) Let h be a homomorphism of the near-ring R onto a near-ring S. If § has no maxi-
mal right modular right ideal, then Jj(S) = S. Then clearly h(J§(R)) < S = J§(S). Suppose
that S has a maximal right modular right ideal. Let {N, | @ € A} be the collection of all
maximal right modular right ideals of S. Now h~!(N,) is a maximal right modular right
ideal of R for each &« € A. Let My = h™'(N,), &« € A. We have that hi(h~1(N,)) = N,, for all
« € A, and also J§(R) € Ngea Ma. So h(J5(R)) € h(Ngea Ma) S Naea B(My) = Naea Na-
Since A(J§(R)) is an ideal of S and J§(S) is the largest ideal of S contained in ()zep Na»
h(J5(R)) < J5(S). Therefore, R — Jj(R) is a radical map. O

We denote the ideal of R generated by an element a of R by (a). The following result is
obvious in view of Theorem 2.14.

TaEOREM 2.19. Ji(R) = {a € R | (a) is a right quasiregular ideal}.
THEOREM 2.20. J§(R) is the largest right quasiregular ideal of R.
The proof follows from Theorem 2.14.
TaEOREM 2.21. The nil radical N(R) of R is contained in J§(R).
The proof follows from Lemma 2.4 and Theorem 2.20.
CoRroOLLARY 2.22. P(R) € N(R) < J§(R), where P(R) is the prime radical of R.

Proof. We know that P(R) € N(R). Therefore from Theorem 2.21, P(R) = N(R) < J;(R).
O

THEOREM 2.23. Let R be a zero symmetric right near-ring with DCC on left R-subgroups of
R. Then Jo(R) < J§(R).

Proof. By Pilz [2, Theorem 5.40], Jo(R) is nilpotent. Therefore, Jo(R) = N(R). By Theorem
2.21, N(R) < J§(R). Hence, Jo(R) < J§(R). O

Definition 2.24. The largest ideal contained in a maximal right modular right ideal of R
is called a right 0-primitive ideal of R.

Remark 2.25. 1f R is a ring, then J§(R) is the (right) Jacobson radical of R and a right
0-primitive ideal of the near-ring R is a (right) primitive ideal of the ring R.
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TueorREM 2.26. If J§(R) # R, then J{(R) is the intersection of all right 0-primitive ideals
of R.

Proof. Jj(R) is an ideal contained in each maximal right modular right ideal of R. So J§(R)
is contained in each right 0-primitive ideal of R. Hence it is contained in the intersection
of all right 0-primitive ideals of R. On the other hand, the intersection of all right 0-
primitive ideals of R is an ideal contained in each maximal right modular right ideal of R
and that it is contained in J§(R). O

THEOREM 2.27. A maximal right modular ideal of a near-ring R is a right 0-primitive ideal
of R.

Proof. Let R be a near-ring and let K be a maximal right modular ideal of R. Since K is
a proper right modular right ideal of R, K is contained in a maximal right modular right
ideal M of R. Since K is a maximal ideal of R, K is the largest ideal contained in M. Hence,
K is a right 0-primitive ideal of R. O

Definition 2.28. R is called a right 0-primitive near-ring, if {0} is a right 0-primitive ideal
of R.

Definition 2.29. A 0-primitive ideal of R defined in Pilz [2] is called a left O-primitive ideal
of R and similarly a left O-primitive near-ring.

THEOREM 2.30. Let P be an ideal of R. P is a right 0-primitive ideal of R if and only if R/P
is a right 0-primitive near-ring.

Proof. Let P be a right 0-primitive ideal of R. So we get a maximal right modular right
ideal M of R such that P is the largest ideal of R contained in M. Now M/P is a maximal
right modular right ideal of R/P. Since P is the largest ideal of R contained in M, the
zero ideal of R/P is the largest ideal of R/P contained in M/P. Therefore R/P is a right
0-primitive near-ring. Suppose now that R/P is a right 0-primitive near-ring. So we get
a maximal right modular right ideal M/P of R/P such that the zero ideal of R/P is the
largest ideal of R/P contained in M/P. Clearly M is a maximal right modular right ideal
of R. Since the zero ideal of R/P is the largest ideal of R/P contained in M/P, P is the
largest ideal of R contained in M. Therefore, P is a right 0-primitive ideal of R. O

THEOREM 2.31. A commutative right 0-primitive near-ring is a field.

Proof. Let R be a commutative right 0-primitive near-ring. We get a modular maximal
right ideal M of R such that {0} is the largest ideal of R contained in M. Suppose that M
is right modular by e. x — ex € M, for all x € R. Since R is commutative, M is an ideal of
R. Therefore M = {0}. Since x — ex € M = {0}, x = ex = xe. So e is the identity element
of R. Now R is a commutative ring with identity. Since M = {0} is a maximal ideal of R,
R is a field. |

3. Right R-groups of type-0

Definition 3.1. A group (G, +) is called a right R-group if there is a mapping (g,r) — gr of
G x Rinto Gsuch that (1) (g + h)r = gr + hr, (2) g(rs) = (gr)s, forallg,h € Gand r,s € R.
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A subgroup (normal subgroup) H of a right R-group of G is called an R-subgroup (ideal)
of G,if hr e H forallhe H andr € R.

R is a right R-group. If K is a subgroup of (R,+) and kr e K for all k € K and r € R,
then K is a right R-subgroup of R. Every right ideal of R is an ideal of the right R-group
R. Also, if K is a right ideal of R, then R/K is a right R-group, where (x + K)r = xr + K,
forallx+ K € R/K andr € R.

Definition 3.2. Let G be a right R-group. An element g € G is called a generator of G if
gR=Gandg(r+s) = gr+gsforall r,s € R. Gis said to be monogenic if G has a generator.

Definition 3.3. Let G and H be right R-groups. A mapping f : G — H is called an R-
homomorphism if f(x+ y) = f(x)+ f(y) and f(xr) = f(x)r for all x,y € G and for all
r € R. G is said to be R-isomorphic to H if there is a one-one R-homomorphism of G
onto H.

ProrosiTiON 3.4. Let G be a right R-group. Then G is monogenic if and only if there is a
right modular right ideal K of R such that G is R-isomorphic to R/K.

Proof. Let G be a right R-group. Suppose that G is monogenic. Let ¢ be a generator of
G. Define h: R — G by h(r) = gr, for all r € R. h is an R-homomorphism of R onto G.
Let K be the kernel of h. K = {r € R | h(r) = 0} is a right ideal of R. Therefore R/K
is R-isomorphic to G. We get b € R such that g = gb. For each x € R, gx = gbx. Now
g(x —bx) =0, that is, x — bx € K. So K is modular by b. Conversely, suppose that K is a
right ideal of R modular by e and R/K is R-isomorphic to G. Let f be an R-isomorphism
of R/K onto G. Let f(e+K) = g. We see that e + K is a generator of the right R-group
R/K.Letr,se R.Nowr—ere K.Sor+K =er+K = (e+ K)r € (e+ K)R and hence
(e+K)R=R/K.Also (r+s)—e(r+s),r—er,s—es€ K.Letk=r —er andlet t = s — es.
Sor=k+er,s=t+es. Since (r+s) —e(r+s) € K, we get that (k+er) + (t+es) —e(r +
s)=k+(er+t—er)+er+es—e(r+s) € K and that er + es — e(r +s) € K. Therefore
e(r+s)+K=(er+es)+K.So (e+K)(r+s)=(er+K)+(es+K) = (e+K)r+ (e+K)s.
This shows that e + K is a generator of R/K. So g is a generator of G and hence G is
monogenic. ]

ProrosiTioN 3.5. Let K be a right ideal of R. Then K is right modular if and only if there is
a right R-group G with a generator g such that K = (0: g).

Proof. Suppose that K is right modular by e. As seen in the above proposition e + K is
a generator of the right R-group R/K. Now r € (K:e+K) ¢ er+ K=K s ereK ¢
r € K. Therefore K = (K : e + K). Conversely suppose that g is a generator of the right
R-group G and (0:g) = K. Since gR = G, we get e € R such that ge = g. Let r € R. Now
g(r—er) =gr —gr =0. Therefore r —er € (0: g) = K. Hence, K is right modular by e.

O

Definition 3.6. Let G be a right R-group. G is said to be simple if G # {0} and {0} and G
are the only ideals of G.

Definition 3.7. A monogenic right R-group G is said to be a right R-group of type-0 if G is
simple.
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ProrosritioN 3.8. Let G be a right R-group. G is a right R-group of type-0 if and only if
there is a maximal right modular right ideal K of R such that G is R-isomorphic to R/K.

Proof. G is a right R-group. Suppose that G is of type-0. Let g € G be a generator. There-
fore from the proof of Proposition 3.4, G is R-isomorphic to R/K for some right modular
right ideal K of R. Since G is simple, we get that R/K is also simple. Hence, K is a max-
imal right ideal of R. Conversely, suppose that G is R-isomorphic to R/K, where K is a
maximal right modular right ideal of R. Since R/K # {K} has exactly two ideals, we get
that {0} and G are the only ideals of G, where {0} # G. Let K be right modular by e. So
e+ K is a generator of R/K. Therefore, G is also monogenic. Hence, G is a right R-group
of type-0. O

Definition 3.9. Let G be a right R-group. The annihilator of G denoted by (0 : G) is defined
as(0:G)={aeR|Ga={0}}.

If A and B are nonempty subsets of R, then (A : B) denotes the set {r € R | Br < A}.
CoRrOLLARY 3.10. Let K be a right modular right ideal of R. Then (K : R) < K.

Proof. Since K is a right modular right ideal of R, by Proposition 3.5, there ia a right R-
group G with a generator g such that K = (0: g). Therefore, K= (0:¢)2(0: G) = (0:
R/K) = (K :R). (I

ProrosITION 3.11. Let R be a zero-symmetric near-ring and let K be a right ideal of R right
modular by e. Then (K : R) = (K : eR) and the largest ideal of R contained in K is the largest
ideal of R contained in (K : R).

Proof. Since eR < R, (K:R) € (K : eR). Let x € (K : eR). Now eyx € K, for all y € R.
But yx —eyx € K, for all y € R. Therefore, yx € K, for all y € R, that is, x € (K : R). So
(K :eR) = (K :R). Therefore, (K : R) = (K : eR). Let J be the largest ideal of R contained
in K. For x € J, Rx € ] < K. Therefore, ] < (K : R). Let I be an ideal of R contained in
(K : R). By Corollary 3.10, (K : R) € K. So, I € K. Therefore, I < J. Hence, ] is the largest
ideal of R contained in (K : R). O

ProposIiTION 3.12. Let P be an ideal of a zero-symmetric near-ring R. P is right 0-primitive
if and only if P is the largest ideal of R contained in (0 : G) for some right R-group G of

type-0.

Proof. Let P be an ideal of a zero-symmetric near-ring R. Suppose that P is a right
0-primitive ideal of R. So we get a maximal right modular right ideal K of R such that
P is the largest ideal of R contained in K. Now by Proposition 3.8, R/K is a right R-group
of type-0. By Proposition 3.11, P is the largest ideal of R contained in (K : R) = (0: R/K).
Conversely, suppose that P is the largest ideal of R contained in (0 : G), where G is a right
R-group of type-0. Now G is R-isomorphic to R/K for some maximal right modular right
ideal K of R. So (0: G) = (0: R/K) = (K : R). Since P is the largest ideal of R contained in
(0:G) = (K :R), by Proposition 3.11, P is the largest ideal of R contained in K. Hence, P
is a right O-primitive ideal of R. O
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ProrosritioN 3.13. Let G be a monogenic right R-group. If R is a distributively generated
(d.g.) near-ring then there is a subset T of G such that h(a+b) = ha+hb, forallh € T and
a,b € R, and T generates (G,+).

Proof. Let G be a monogenic right R-group. Suppose that R is a d.g. near-ring. Since G
is a monogenic right R-group, by Proposition 3.4, we get a right modular right ideal K
of R such that G is R-isomorphic to R/K. Let f be a R-isomorphism of G onto R/K.
Let S be the set of distributive elements of R, where S generates (R,+). It is clear that
S={s+K | s € S} generates (R/K,+). Let s € S and let a,b € R. Since s(a+b) = sa+sb,
we have that s(a+b) + K = (sa+sb) + K, that is, (s+ K)[a+ b] = (s+ K)a+ (s + K)b.
Therefore, T = {f‘l(s +K) | s € S} is the required subset of G. O

ProrosITION 3.14. Let G be a monogenic right R-group. If R is a d.g. near-ring, then (0: G)
is an ideal of R.

Proof. G is a monogenic right R-group and R is d.g. Let S be the set of distributive ele-
ments of R. By Proposition 3.13, we get a subset T of G such that h(x+ y) = hx + hy, for
all h € T and x,y € R, and T generates (G,+). Let a,b € (0: G), p,q € R, and let g € G.
h(a+b) =ha+hb=0+0=0, h(=b) = —hb =0 for all h € T. Now p = ;51 + 25, +
-« 408,85, where §; = xl ands; € S, for1 <i<n:

plg+a)—pg = (S1s1+ 0252+ - +0usn)(g+a) — (151 + 8252+ -+ - +6nsn)q
=81s1(g+a)+8s(q+a)+ - +8,5,(q+a)
— (01519 + 6252q+ - - - +8usnq) (3.1
=01 (s1q+s10) + 02 (529 +520) + - - - + 8 (549 + 502)
~8n$nqg = On-15n-19 — - - - — d1514.
Now
hlp(g+a) = pq] = h(d1(s19+s1a)) +h(82(s29 +520)) + - - - + 1 (S (snqg +5na))
= h(8usnq) —h(8n-152-1q) — - - - — h(81519)
=01 (h(s1q) + (hs1)a) + 82 (h(s2g) + (hs2)a) + - - - + 8, (h(suq)
+ (hsy)a) — 8uh(snq) — 8u—1h(sn-1q) — - - - — 61h(s19)
= 81h(s1q) + 6:h(s2q) + - - - + 8,0 (suq) — 8uh(snq)

— 8,171]’1(5,171(]) — = 81h(slq) =0.
(3.2)

Also h(ap) = (ha)p = 0p = 0. Since every element of G is a finite sum of elements £,
where h € T or —h € T, we get that

(1) gla+b)=0;

(2) g(=a) = 0;
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(3) glpt+a—-p)=0;
(4) g(p(q+a)—pqg) =0;
(5) glap) = 0.
Therefore, (0 : G) is an ideal of R. O

CoROLLARY 3.15. Let R be a d.g. near-ring and let P be an ideal of R. Then P is a right
0-primitive ideal of R if and only if P = (0 : G) for some right R-group G of type-O0.

Proof. Since a d.g. near-ring is zero-symmetric, the proof follows from Propositions 3.14
and 3.12. 0

THEOREM 3.16. A right 0-primitive ideal of R is a prime ideal of R.

Proof. Let P be a right 0-primitive ideal of R. We get a right R-module G of type-0 with a
generator g such that P is the largest ideal of R containedin M = (0:g) = {r e R | gr = 0},
M is a maximal right modular right ideal of R. Let A and B be ideals of R and AB < P.
Suppose that A & P and B & P. Since A & P, gA # {0}. Clearly gA is a subgroup of G. Let
heGandletac A.h=gr,forsomer e R-h+ga—h=gr+ga—gr=g(r+a—r)cgA,
asr+a—r € A.So gA is a normal subgroup of G. Also (gA)R = g(AR) < gA. This shows
that gA is an ideal of G. Since gA # {0} and G is a right R-group of type-0, gA = G.
Similarly, for B, also gB = G. Now G 2 gAB = (gA)B = GB = gB = G. Therefore, gAB =
G, a contradiction to the fact that gAB = {0}. So either A < P or B < P. Hence, P is a
prime ideal of R. O

4. The right Jo-radical of a biregular near-ring

In this section, it will be shown that the right and left Jacobson radicals of type-0 of a
biregular near-ring R are equal, and an ideal P of R is right 0-primitive if and only if P is
left 0-primitive.

We recall the following definition of Betsch (Pilz [2, Remark 3.49]).

Definition 4.1. A near-ring R is called biregular if there exists a set E of central idempo-
tents of R such that

(1) Reis an ideal of R for all e € E;

(2) for each r € R, there exists an e € E such that Re = (r);

(3) e+ f=f+eforalle, f €E;

(4) ef,et f—ef €E,ife, f €E.

A biregular near-ring is zero-symmetric. Let R be a biregular near-ring. Now {0} =
(0) = Re, for some central idempotent e of R. Also e = ee € Re = {0}. So e = 0 and hence
RO = {0}. Therefore R is zero-symmetric.

THEOREM 4.2. Let R be a biregular near-ring. Then Jj(R) = {0}.

Proof. Let R be a biregular near-ring. Let x € J§(R). Let (x) be the ideal of R generated by
x. Now (x) = (e), for some central idempotent e € R. Therefore e € J§(R) < J{,(R). Since
e is central, e is a distributive idempotent. By Lemma 2.6, J{,(R) contains no nonzero
distributive idempotent. Therefore, e = 0. Hence, J;(R) = {0}. O
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THEOREM 4.3. Let R be a biregular near-ring. Then R is right (left) 0-primitive if and only
if R is a nonzero simple near-ring with identity.

Proof. Let Rbe a biregular near-ring. Suppose that R is a right (left) 0-primitive near-ring.
Let 0 # a € R. Now (a) = Re, for some central idempotent e # 0 in R. Since e is a central
idempotent, (0: e) is an ideal of R. Now R = Re+(0: e) is a direct sum of the ideals Re and
(0:e). Since R is right (left) 0-primitive, {0} is a prime ideal of R by Theorem 3.16 (Pilz
[2, Theorem 4.34]). Since R is zero-symmetric, Re(0:e) € Ren(0:e) = {0}. So either
Re = {0} or (0:¢e) = {0}. Since e # 0, Re # {0}. Therefore, (0:¢e) = {0}. Hence, R = Re =
(a). So R is a simple near-ring with identity e. Conversely, suppose that R is a nonzero
simple near-ring with identity. Since R is a near-ring with identity, R has a maximal right
(left) ideal K and is right (left) modular by the identity. Since R is simple, {0} is the largest
ideal of R contained in K. Therefore, {0} is a right (left) O-primitive ideal of R and hence
R is right (left) 0-primitive. O

CoROLLARY 4.4. A right (left) 0-primitive ideal of a biregular near-ring is a maximal ideal
which is both right and left modular.

Proof. Let R be a biregular near-ring and let P be a right (left) 0-primitive ideal of R. By
Theorem 2.30, R/P is a right (left) O-primitive near-ring. Since R/P is also biregular, by
Theorem 4.3, R/P is a simple near-ring with identity. So, P is a maximal right and left
modular ideal. O

COROLLARY 4.5. Let R be a biregular near-ring and let P be an ideal of R. Then the following
statements are equivalent:

(1) P is a right 0-primitive ideal of R;

(2) P is a left 0-primitive ideal of R;

(3) P is a maximal ideal of R which is both right and left modular.

Proof. By Corollary 4.4, (1) implies (3) and (2) implies (3). Let P be a maximal right and
left modular ideal of R. Since P is a maximal right (left) modular ideal of R, R/P is a simple
near-ring with a left (right) identity. So R/P is a simple near-ring with identity. Since R/P
is biregular, by Theorems 4.3 and 2.30, we get that (3) implies (1) and (3) implies (2). O

CoOROLLARY 4.6. Let (G,+) be a group with more than one element. Then My(G) is a right
and left 0-primitive near-ring.

Proof. Since My(G) is a nonzero simple biregular near-ring, it is a right and left 0-
primitive by Theorem 4.3. U

Now we observe an interesting fact that unlike the left Jacobson-type radical classes,
the Jy-radical class contains almost all the classes of near-rings with trivial multipli-
cation.

We consider J§-radical of a near-ring with trivial multiplication. Let (R,+) be a group
containing more than one element. Let S be a nonempty subset of R not containing 0.
The trivial multiplication on (R,+) determined by Sis given by a - b =g, if b € Sand 0, if
b € §¢, where §° is the complement of S in R. Then (R, +, -) is a near-ring.
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Example4.7. LetR, S, and §¢ be as defined above. Then §¢ is nilpotent and hence it is right
quasiregular. Moreover, R is right quasiregular if and only if $¢ is not a normal subgroup
of (R,+) of index 2.

letacR Let A={x—ax|xe€R},let B={x—ax|x €S}, and let C = {x — ax |
xe€S}t NowA=BUC,B={x—alxeS} =S+(—a),and C= {x|x € §} = 5. So
A =[S+ (—a)] US-. Let K be the normal subgroup of (R,+) generated by A. Clearly K is
a right ideal of R. Hence, K is the right ideal of R generated by A.

Ifa,b € S, then ab = 0. Therefore, §¢ is nilpotent and right quasiregular. Now suppose
that a € S. First assume that $¢ is not a normal subgroup of (R,+). Since R = SU §¢, the
normal subgroup of (R,+) generated by S° contains an element s € S. So s € K. Since
s,s—a€K,a=—(s—a)+s e K. Therefore, a is right quasiregular.

Assume now that 8¢ is a normal subgroup of (R,+). Since a € S, a is not in §°. So —a
is not an element of S¢, as §¢ is a subgroup. Since R=8°U S, R = [§°+ (—a)] U [S+ (—a)].
Now 8¢ and §° + (—a) are two right cosets of §¢ in (R,+). Let S, S + (—a), §° + 14, and
a € A be the distinct right cosets of S in (R, +). So R = 8§ U [S§ + (—a)] U [US® +1,]. The
complement of §+ (—a) in Ris S+ (—a) = 8§ U [US* + 14]. If the index of §° in (R, +) is
2, then S+ (—a) = 8¢ and hence A = §¢ = K # R. Thus 4 is not right quasiregular.

Now assume that the index of §¢ in (R, +) is not 2. So, S+ (—a) # S°¢. We will show that
S+ (—a) is not a normal subgroup of (R,+). Suppose that S+ (—a) is a normal subgroup
of (R,+). Since S € S+ (—a), R=[S°+(—a)] U [S+(—a)], and [S°+ (—a)] N [S+ (—a)]
is empty, S+ (—a) = S+ (—a) + (—a). Since §° is a proper subset of S+ (—a), S+ (—a)
is a proper subset of S+ (—a) + (—a) = 8¢+ (—a), a contradiction. Therefore, S+ (—a) is
not a normal subgroup of (R, +). So, the normal subgroup of (R, +) generated by S+ (—a)
contains an element x + (—a) of S+ (—a), x € §°. Now x+ (—a), x € K, and a = —(x +
(—a)) +x € K. Therefore, a is right quasiregular.

Remark 4.8. Let R, S, and S° be as defined above and let ¢ be a normal subgroup of (R,+)
of index 2. Then, S° is a nilpotent ideal of R, ¢ = P(R) = J§(R) = J2(R). Moreover, S° is
the set of right (left) quasiregular elements of R.

We see now by an example that there is a near-ring R which has a left 0-primitive
ideal, but has no right 0-primitive ideals and that the right and left Jacobson radicals of R
of type-0 are different. We know that every prime ideal of a zero-symmetric near-ring R
with DCC on left R-subgroups of R is left 0-primitive, but there is a finite zero-symmetric
near-ring R # {0} in which no (proper) prime ideal is right 0-primitive. Even though for
a zero-symmetric near-ring R with DCC on left R-subgroups of R, every left quasiregular
left R-subgroup of R is nilpotent, we see that there is a finite zero-symmetric right near-
ring R in which no nonzero right quasiregular right R-subgroup of R is nil.

Example 4.9. Let (R,+) be a group containing more than two elements. Define a trivial
multiplication in R by rs = r if s # 0 and 0 if s = 0 for all r,s € R. R is a zero-symmetric
right near-ring. Clearly, R is a left R-group of type-2. Moreover, R is simple. Therefore,
R is 2-primitive on the left R-group R, as RR # {0}. So />(R) = {0} = Jo(R). But each
element of R is right quasiregular. Therefore, Jj(R) = R. If R is finite, then obviously R
has DCC on right (left) R-groups of R, but no nonzero right quasiregular right ideal of R
is nilpotent. Moreover, the zero ideal of R is prime but not right 0-primitive.
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We recall some of the definitions and results of [3] which are required to observe that
right Jacobson radicals are relevant for the study of near-rings in terms of matrix near-
rings.

Matrix near-rings were introduced in [1].

Definition 4.10. Let R be a zero-symmetric near-ring with identity. A subset {e;; | 1 <
i, j < n} of distributive elements in R is said to be a set of matrix units in R if and only if
el tep+---+ey =1and e ey, = §sperq, where

1 ifs=p,
Osp = (4.1)
0 ifs#p.

ProposiTiON 4.11. Let R be a zero-symmetric near-ring with identity. R=K, @ K, & - - - &
K., a direct sum of n pairwise isomorphic right ideals K; of R as right R-groups if and only if
R has a set of matrix units {e;; | 1 < i, j < n}. In this case K; = e;R, forall 1 <i<n.

As stated soon after [3, Corollary 15], we have the following.

THEOREM 4.12. Let R be a simple and d.g. near-ring with identity. Then R is isomorphic to
a matrix near-ring M, (S) if and only if R has a set of matrix units {e;; | 1 <i, j <n}.

TaEOREM 4.13. Let R be a simple d.g. near-ring with DCC on right ideals of R and J{,, =
{0}. Suppose that any two minimal right ideals of R are isomorphic as right R-groups. Then,
R=K &K, ®---®K,, adirect sum of minimal right ideals K; and is (isomorphic to) a
matrix near-ring M,(S).

Proof. Since J{,(R) = {0} and R has DCC on right ideals of R, we get that the intersection
of a finite number of maximal right modular right ideals of R is zero. So, R is a direct
sum of a finite number of minimal right ideals K;,K5,...,K, of R. By Proposition 2.12, R
has a left identity as the intersection of a finite number of maximal right modular right
ideals of R is zero. Since R is a simple near-ring with left identity, it has an identity. Also,
since by our assumption any two minimal right ideals of R are isomorphic as right R-
groups, by Proposition 4.11, R has a set of matrix units {e;; | 1 <i, j < n}. Therefore, by
Theorem 4.12, R is (isomorphic to) a matrix near-ring M, (S). O

Example 4.14. We give an example of a nonring which satisfies the hypothesis of Theorem
4.13. Let G be a finite simple nonabelian additive group. By [3, Corollary 19], E(G?) is
isomorphic to the matrix near-ring M,(E(G)). As mentioned soon after [3, Corollary
19], E(G?) = My(G?). So, My(G?) is a simple d.g. near-ring with DCC on right ideals.
Let i € {1,2}. Let G; = G x {0} and let G, = {0} X G. Since G; is a maximal (minimal)
normal subgroups of G?, K; = (G; : G?) = {m € My(G?) | m(a) € G;, foralla € G?} is
a maximal right ideal of M,(G?). Moreover, K; N K, = {0}. Thus J{,,(My(G?)) = {0}.
This shows that My(G?) = K; @ K, where K; is a minimal right ideal of My(G?). Define
ei: G* — Gi by ei((ar,a)) = (b1, by), where bj = a; if j = iand 0 if j # i. Now e; is a group
homomorphism and hence it is a distributive idempotent in My(G?) and e;M,(G?) € K;.
Since e, and e, are orthogonal distributive idempotents in My(G?) and e; + e, = 1, by
[3, Proposition 2], we get that e;My(G?) is a right ideal of Mo(G?). Thus, K; = e;My(G?).
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The mapping ey, : G — G? defined by e;((a1,a2)) = (a,,0) is an endomorphism of G2.
So, e, is a distributive element in My(G?). It is an easy verification that the mapping
h:eaMo(G?*) — e;Mo(G?) defined by h(e;m) = e12(em) is an isomorphism of the right
My (G?)-groups. So, K; and K, are isomorphic as right M(G?)-groups. Since a minimal
right ideal K of My(G?) is isomorphic to K for some j € {1,2} as right Mo(G?)-groups,
we get that any two minimal right ideals of My(G?) are isomorphic as right My(G?)-
groups. So, My(G?) satisfies the hypothesis of Theorem 4.13.

Example 4.15. Let G be a finite simple nonabelian additive group. Now by Pilz [2, Corol-
lary 7.48], E(G) = Mo(G). So, My(G) is a finite simple d.g. near-ring with identity. More-
over, [,(My(G)) = {0} and each minimal left ideal of My(G) is isomorphic to G as left
My (G)-groups. Since each distributive element of My(G) is an endomorphism of (G, +),0
and the automorphisms of (G, +) are the only distributive elements of My(G). Therefore,
My (G) has no nontrivial matrix units. Hence, My(G) is not isomorphic to a matrix near-
ring M,(S), where n > 1.
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