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The notions of a right quasiregular element and right modular right ideal in a near-ring
are initiated. Based on these Jr0(R), the right Jacobson radical of type-0 of a near-ring R is
introduced. It is obtained that Jr0 is a radical map and N(R)⊆ Jr0(R), where N(R) is the nil
radical of a near-ring R. Some characterizations of Jr0(R) are given and its relation with
some of the radicals is also discussed.
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1. Introduction

Throughout this paper, R stands for a right near-ring. The structure of matrix near-rings
was studied by Rao in [3, 4]. It is clear from these papers that right Jacobson-type radicals
have an important role to play in the study of Meldrum-van der Walt matrix near-rings.
This motivated the authors to develop the right Jacobson-type radicals of near-rings.
The aim of this paper is to give a good beginning in this direction of investigation. Left
quasiregularity was introduced and studied in near-rings. In this paper, right quasireg-
ularity is developed, and right modules of near-rings and the right Jacobson radical of
type-0 are studied.

In Section 2, the notions of a right quasiregular element and a right modular right
ideal are introduced. Using these right 0-primitive ideal, right 0-primitive near-ring, and
Jr0(R), the right Jacobson radical of R of type-0 are introduced. A nil subset of R is right
quasiregular and the constant part of R is also right quasiregular. It is shown that Jr0 is a
radical map and Jr0(R) is the largest right quasiregular ideal of R. Moreover, N(R), the nil
radical of R, is contained in Jr0(R) and that P(R)⊆N(R)⊆ Jr0(R). If R is a zero-symmetric
near-ring with DCC on the left R-subgroups of R, then J0(R)⊆ Jr0(R).

In Section 3, a right R-group of type-0 is introduced. It is shown that G is a right R-
group of type-0 if and only if G is right R-isomorphic to R/K , for some maximal right
modular right ideal K of R. A right 0-primitive ideal of R is a prime ideal of R. An ideal
P of a d.g. near-ring R is a right 0-primitive ideal of R if and only if P = (0 : G), for some
right R-group G of type-0.
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2 The right Jacobson radical of type-0

In Section 4, the right Jacobson radical of type-0 of a biregular near-ring is studied.
For such a near-ring R, it is shown that Jr0(R) = J0(R) = {0}. Moreover, if R is biregular,
then an ideal P of R is right 0-primitive if and only if P is left 0-primitive if and only
if P is a maximal right and left modular ideal. It is shown by an example that in general
Jr0(R) differs from the existing Jacobson-type radicals ofR and the Jr0-radical class contains
almost all the classes of near-rings with trivial multiplication.

2. Right quasiregularity and the right J0-radical

Throughout this paper, R is a right near-ring.

Definition 2.1. An element a∈ R is called right quasiregular if and only if the right ideal
of R generated by the set {x− ax | x ∈ R} is R.

Remark 2.2. Note that unlike in the left quasiregularity case, if R is a near-ring and a∈ R,
then the right ideal of R generated by the set {x− ax | x ∈ R} is R if and only if a is in the
right ideal of R generated by the set {x− ax | x ∈ R}.
Definition 2.3. A right ideal (left ideal, ideal, subset) K of R is called a right quasiregular
right ideal (left ideal, ideal, subset) of R, if each element of K is right quasiregular.

Lemma 2.4. A nilpotent element of R is right quasiregular.

Proof. Let a be a nilpotent element in R, say an = 0 for some positive integer n. Let K
be the right ideal of R generated by x− ax, x ∈ R. Observe that x = x− anx = (x− ax) +
(ax − a(ax)) + (a2x − a(a2x)) + ··· + (an−1x − a(an−1x)) ∈ K . Therefore, K = R and
hence a is right quasiregular. �

One of the major differences between right and left quasiregular elements of R and
hence between its right and left Jacobson-type radicals is the following.

Lemma 2.5. The constant part of R is right quasiregular.

Proof. Let Rc be the constant part of R and a ∈ Rc. For x ∈ R, (x + a)− a(x + a) = (x +
a)− a= x. Therefore, a is right quasiregular. So, Rc is right quasiregular. �
Lemma 2.6. Let e be a nonzero distributive idempotent in R. Then e is not a right quasireg-
ular element of R.

Proof. Let e be a nonzero distributive idempotent in R. Now (0 : e)= {a∈ R | ea= 0} is
a right ideal of R. Also x− ex ∈ (0 : e) for all x ∈ R. But e is not in (0 : e). So (0 : e) �= R.
Therefore, e is not right quasiregular. �
Definition 2.7. A right ideal K of R is called right modular if there is an element e ∈ R
such that x− ex ∈ K for all x ∈ R. In this case K is said to be right modular by e.

Proposition 2.8. Let e ∈ R. Then e is right quasiregular if and only if no proper right ideal
of R is right modular by e.

The proof follows from the definitions.

Remark 2.9. Let K be a right ideal of R. If K is right modular by e, then e ∈ K if and only
if K = R.
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Proposition 2.10. Let K be a proper right ideal of R. If K is, right modular, then K is
contained in a maximal right ideal of R which is also right modular.

The proof of this result is easy and hence omitted.

Proposition 2.11. Let K and L be right modular right ideals of R and R = K + L. Then
K ∩L is also a right modular right ideal of R.

Proof. Suppose that K is right modular by e1 and L is right modular by e2. Let e1 = b11 +
b12 and let e2 = b21 + b22, where b11,b21 ∈ K and b12,b22 ∈ L. Let e = b21 + b12. Let r ∈
R; r − er = r − (b21 + b12)r = r − b12r − b21r = (r − e1r) + (b11r − b21r) ∈ K ; r − er = r −
(b21 + b12)r = r − b12r − b21r = (r − b12r + b22r − r) + (r − e2r) ∈ L. Therefore, r − er ∈
K ∩L, and hence K ∩L is a right modular right ideal. �
Proposition 2.12. If K1,K2, . . . ,Kn are maximal right modular right ideals of R such that
⋂n

i=1Ki = {0}, then R has a left identity.

The proof follows from Proposition 2.11.

Definition 2.13. Jr1/2(R) is the intersection of all maximal right modular right ideals of R
and if R has no maximal right modular right ideals, then Jr1/2(R)= R.

Theorem 2.14. Jr1/2(R) is the largest right quasiregular right ideal of R.

Proof. Let q ∈ Jr1/2(R). Suppose that q is not right quasiregular. Let K be the right ideal
of R generated by the set {x− qx | x ∈ R}. Now q /∈ K . By Zorn’s lemma, we get a right
ideal M, which is maximal for the property that K ⊆ M, q /∈M. Now M is a maximal
right ideal of R. M is right modular right ideal of R as x− qx ∈M, for all x ∈ R. As q
∈ Jr1/2(R), q ∈M, a contradiction. Therefore each element of Jr1/2(R) is right quasiregular.
We see now that each right quasiregular right ideal of R is contained in Jr1/2(R). Let K be
a right quasiregular right ideal of R. We claim that K ⊆ Jr1/2(R). Suppose that K is not
contained in Jr1/2(R). We get a maximal right modular right ideal M such that R=M +K .
Suppose thatM is right modular by e; e =m+ k,m∈M, k ∈ K ; x− kx = x− (−m+ e)x =
x− (−mx + ex) = x− ex +mx ∈M. Since M �= R, k is not right quasiregular, which is a
contradiction. Therefore, K ⊆ Jr1/2(R). Hence, Jr1/2(R) is the largest right quasiregular right
ideal of R. �
Remark 2.15. As expected, Jr1/2(R) is not an ideal of R. For this, consider the nonabelian
group G of order 6. Then M0(G) is a simple near-ring. Since G has only one nonzero
maximal normal subgroup, M0(G) has only one nonzero maximal right ideal which is
right modular by the identity element of M0(G). So, Jr1/2(M0(G)) is not an ideal of M0(G).

Remark 2.16. Let K be a right ideal of R. We show that there is a unique largest ideal
of R contained in K . Now {0} is an ideal of R and {0} ⊆ K . Let I and J be ideals of R
and I ⊆ K , J ⊆ K . Now I + J is an ideal of R. Since K is a subgroup of (R,+), I + J ⊆ K .
Similarly, if I1,I2, . . . ,In are ideals of R and I j ⊆ K , for all 1 ≤ j ≤ n, then we get that
I1 + I2 + ···+ In ⊆ K . Let {Ji | i∈ Δ} be the collection of all ideals T of R such that T ⊆ K .
Let J =∑i∈Δ Ji. Now J is an ideal of R. It is clear that J ⊆ K as any element a ∈ J can be
written as a = ai1 + ai2 + ···+ aik , aij ∈ Ji j , i j ∈ Δ. Obviously, J is the largest ideal of R
contained in K .
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Definition 2.17. The largest ideal of R contained in Jr1/2(R) is denoted by Jr0(R) and is called
the right Jacobson radical of R of type-0.

Theorem 2.18. R→ Jr0(R) is a radical map.

Proof. (1) First suppose that R has no maximal right modular right ideal. Now R= Jr0(R)
and that R/Jr0(R) = {0}. So Jr0(R/Jr0(R)) = {0}. Suppose now that R has a maximal right
modular right ideal. Let {Mα | α ∈ Δ} be the collection of all maximal right modular
right ideals of R. Since Mα is a maximal right modular right ideal of R and Jr0(R) ⊆Mα,
Mα/J

r
0(R) is a maximal right modular right ideal of R/Jr0(R) for all α∈ Δ. So Jr0(R/Jr0(R))⊆

⋂
α∈Δ(Mα/J

r
0(R)) = (

⋂
α∈ΔMα)/Jr0(R). Since Jr0(R) is the largest ideal of R contained in

⋂
α∈ΔMα, we get that the largest ideal of R/Jr0(R) contained in

⋂
α∈Δ(Mα/J

r
0(R)) is the zero

ideal. Therefore, Jr0(R/Jr0(R))= {0}.
(2) Let h be a homomorphism of the near-ring R onto a near-ring S. If S has no maxi-

mal right modular right ideal, then Jr0(S)= S. Then clearly h(Jr0(R))⊆ S= Jr0(S). Suppose
that S has a maximal right modular right ideal. Let {Nα | α ∈ Δ} be the collection of all
maximal right modular right ideals of S. Now h−1(Nα) is a maximal right modular right
ideal of R for each α∈ Δ. Let Mα = h−1(Nα), α∈ Δ. We have that h(h−1(Nα))=Nα, for all
α ∈ Δ, and also Jr0(R) ⊆⋂α∈ΔMα. So h(Jr0(R)) ⊆ h(

⋂
α∈ΔMα) ⊆⋂α∈Δh(Mα) =⋂α∈ΔNα.

Since h(Jr0(R)) is an ideal of S and Jr0(S) is the largest ideal of S contained in
⋂

α∈ΔNα,
h(Jr0(R))⊆ Jr0(S). Therefore, R→ Jr0(R) is a radical map. �

We denote the ideal of R generated by an element a of R by (a). The following result is
obvious in view of Theorem 2.14.

Theorem 2.19. Jr0(R)= {a∈ R | (a) is a right quasiregular ideal}.
Theorem 2.20. Jr0(R) is the largest right quasiregular ideal of R.

The proof follows from Theorem 2.14.

Theorem 2.21. The nil radical N(R) of R is contained in Jr0(R).

The proof follows from Lemma 2.4 and Theorem 2.20.

Corollary 2.22. P(R)⊆N(R)⊆ Jr0(R), where P(R) is the prime radical of R.

Proof. We know that P(R)⊆N(R). Therefore from Theorem 2.21, P(R)⊆N(R)⊆ Jr0(R).
�

Theorem 2.23. Let R be a zero symmetric right near-ring with DCC on left R-subgroups of
R. Then J0(R)⊆ Jr0(R).

Proof. By Pilz [2, Theorem 5.40], J0(R) is nilpotent. Therefore, J0(R)⊆N(R). By Theorem
2.21, N(R)⊆ Jr0(R). Hence, J0(R)⊆ Jr0(R). �

Definition 2.24. The largest ideal contained in a maximal right modular right ideal of R
is called a right 0-primitive ideal of R.

Remark 2.25. If R is a ring, then Jr0(R) is the (right) Jacobson radical of R and a right
0-primitive ideal of the near-ring R is a (right) primitive ideal of the ring R.
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Theorem 2.26. If Jr0(R) �= R, then Jr0(R) is the intersection of all right 0-primitive ideals
of R.

Proof. Jr0(R) is an ideal contained in each maximal right modular right ideal of R. So Jr0(R)
is contained in each right 0-primitive ideal of R. Hence it is contained in the intersection
of all right 0-primitive ideals of R. On the other hand, the intersection of all right 0-
primitive ideals of R is an ideal contained in each maximal right modular right ideal of R
and that it is contained in Jr0(R). �

Theorem 2.27. A maximal right modular ideal of a near-ring R is a right 0-primitive ideal
of R.

Proof. Let R be a near-ring and let K be a maximal right modular ideal of R. Since K is
a proper right modular right ideal of R, K is contained in a maximal right modular right
ideal M of R. Since K is a maximal ideal of R, K is the largest ideal contained in M. Hence,
K is a right 0-primitive ideal of R. �

Definition 2.28. R is called a right 0-primitive near-ring, if {0} is a right 0-primitive ideal
of R.

Definition 2.29. A 0-primitive ideal of R defined in Pilz [2] is called a left 0-primitive ideal
of R and similarly a left 0-primitive near-ring.

Theorem 2.30. Let P be an ideal of R. P is a right 0-primitive ideal of R if and only if R/P
is a right 0-primitive near-ring.

Proof. Let P be a right 0-primitive ideal of R. So we get a maximal right modular right
ideal M of R such that P is the largest ideal of R contained in M. Now M/P is a maximal
right modular right ideal of R/P. Since P is the largest ideal of R contained in M, the
zero ideal of R/P is the largest ideal of R/P contained in M/P. Therefore R/P is a right
0-primitive near-ring. Suppose now that R/P is a right 0-primitive near-ring. So we get
a maximal right modular right ideal M/P of R/P such that the zero ideal of R/P is the
largest ideal of R/P contained in M/P. Clearly M is a maximal right modular right ideal
of R. Since the zero ideal of R/P is the largest ideal of R/P contained in M/P, P is the
largest ideal of R contained in M. Therefore, P is a right 0-primitive ideal of R. �

Theorem 2.31. A commutative right 0-primitive near-ring is a field.

Proof. Let R be a commutative right 0-primitive near-ring. We get a modular maximal
right ideal M of R such that {0} is the largest ideal of R contained in M. Suppose that M
is right modular by e. x− ex ∈M, for all x ∈ R. Since R is commutative, M is an ideal of
R. Therefore M = {0}. Since x− ex ∈M = {0}, x = ex = xe. So e is the identity element
of R. Now R is a commutative ring with identity. Since M = {0} is a maximal ideal of R,
R is a field. �

3. Right R-groups of type-0

Definition 3.1. A group (G,+) is called a right R-group if there is a mapping (g,r)→ gr of
G×R into G such that (1) (g +h)r = gr +hr, (2) g(rs)= (gr)s, for all g,h∈G and r,s∈ R.



6 The right Jacobson radical of type-0

A subgroup (normal subgroup) H of a right R-group of G is called an R-subgroup (ideal)
of G, if hr ∈H for all h∈H and r ∈ R.

R is a right R-group. If K is a subgroup of (R,+) and kr ∈ K for all k ∈ K and r ∈ R,
then K is a right R-subgroup of R. Every right ideal of R is an ideal of the right R-group
R. Also, if K is a right ideal of R, then R/K is a right R-group, where (x +K)r = xr +K ,
for all x+K ∈ R/K and r ∈ R.

Definition 3.2. Let G be a right R-group. An element g ∈ G is called a generator of G if
gR=G and g(r + s)= gr + gs for all r,s∈ R. G is said to be monogenic if G has a generator.

Definition 3.3. Let G and H be right R-groups. A mapping f : G→ H is called an R-
homomorphism if f (x + y) = f (x) + f (y) and f (xr) = f (x)r for all x, y ∈ G and for all
r ∈ R. G is said to be R-isomorphic to H if there is a one-one R-homomorphism of G
onto H .

Proposition 3.4. Let G be a right R-group. Then G is monogenic if and only if there is a
right modular right ideal K of R such that G is R-isomorphic to R/K .

Proof. Let G be a right R-group. Suppose that G is monogenic. Let g be a generator of
G. Define h : R→ G by h(r) = gr, for all r ∈ R. h is an R-homomorphism of R onto G.
Let K be the kernel of h. K = {r ∈ R | h(r) = 0} is a right ideal of R. Therefore R/K
is R-isomorphic to G. We get b ∈ R such that g = gb. For each x ∈ R, gx = gbx. Now
g(x− bx)= 0, that is, x− bx ∈ K . So K is modular by b. Conversely, suppose that K is a
right ideal of R modular by e and R/K is R-isomorphic to G. Let f be an R-isomorphism
of R/K onto G. Let f (e +K) = g. We see that e +K is a generator of the right R-group
R/K . Let r,s ∈ R. Now r − er ∈ K . So r + K = er + K = (e + K)r ∈ (e + K)R and hence
(e+K)R= R/K . Also (r + s)− e(r + s), r − er, s− es∈ K . Let k = r − er and let t = s− es.
So r = k + er, s= t + es. Since (r + s)− e(r + s) ∈ K , we get that (k + er) + (t + es)− e(r +
s) = k + (er + t − er) + er + es− e(r + s) ∈ K and that er + es− e(r + s) ∈ K . Therefore
e(r + s) +K = (er + es) +K . So (e +K)(r + s) = (er +K) + (es+K) = (e +K)r + (e +K)s.
This shows that e + K is a generator of R/K . So g is a generator of G and hence G is
monogenic. �

Proposition 3.5. Let K be a right ideal of R. Then K is right modular if and only if there is
a right R-group G with a generator g such that K = (0 : g).

Proof. Suppose that K is right modular by e. As seen in the above proposition e +K is
a generator of the right R-group R/K . Now r ∈ (K : e + K) ⇔ er + K = K ⇔ er ∈ K ⇔
r ∈ K . Therefore K = (K : e +K). Conversely suppose that g is a generator of the right
R-group G and (0 : g)= K . Since gR= G, we get e ∈ R such that ge = g. Let r ∈ R. Now
g(r − er) = gr − gr = 0. Therefore r − er ∈ (0 : g) = K . Hence, K is right modular by e.

�

Definition 3.6. Let G be a right R-group. G is said to be simple if G �= {0} and {0} and G
are the only ideals of G.

Definition 3.7. A monogenic right R-group G is said to be a right R-group of type-0 if G is
simple.
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Proposition 3.8. Let G be a right R-group. G is a right R-group of type-0 if and only if
there is a maximal right modular right ideal K of R such that G is R-isomorphic to R/K .

Proof. G is a right R-group. Suppose that G is of type-0. Let g ∈G be a generator. There-
fore from the proof of Proposition 3.4, G is R-isomorphic to R/K for some right modular
right ideal K of R. Since G is simple, we get that R/K is also simple. Hence, K is a max-
imal right ideal of R. Conversely, suppose that G is R-isomorphic to R/K , where K is a
maximal right modular right ideal of R. Since R/K �= {K} has exactly two ideals, we get
that {0} and G are the only ideals of G, where {0} �= G. Let K be right modular by e. So
e+K is a generator of R/K . Therefore, G is also monogenic. Hence, G is a right R-group
of type-0. �

Definition 3.9. Let G be a right R-group. The annihilator of G denoted by (0 : G) is defined
as (0 : G)= {a∈ R |Ga= {0}}.

If A and B are nonempty subsets of R, then (A : B) denotes the set {r ∈ R | Br ⊆A}.
Corollary 3.10. Let K be a right modular right ideal of R. Then (K : R)⊆ K .

Proof. Since K is a right modular right ideal of R, by Proposition 3.5, there ia a right R-
group G with a generator g such that K = (0 : g). Therefore, K = (0 : g) ⊇ (0 : G) = (0 :
R/K)= (K : R). �

Proposition 3.11. Let R be a zero-symmetric near-ring and let K be a right ideal of R right
modular by e. Then (K : R)= (K : eR) and the largest ideal of R contained in K is the largest
ideal of R contained in (K : R).

Proof. Since eR ⊆ R, (K : R) ⊆ (K : eR). Let x ∈ (K : eR). Now eyx ∈ K , for all y ∈ R.
But yx− eyx ∈ K , for all y ∈ R. Therefore, yx ∈ K , for all y ∈ R, that is, x ∈ (K : R). So
(K : eR)⊆ (K : R). Therefore, (K : R)= (K : eR). Let J be the largest ideal of R contained
in K . For x ∈ J , Rx ⊆ J ⊆ K . Therefore, J ⊆ (K : R). Let I be an ideal of R contained in
(K : R). By Corollary 3.10, (K : R)⊆ K . So, I ⊆ K . Therefore, I ⊆ J . Hence, J is the largest
ideal of R contained in (K : R). �

Proposition 3.12. Let P be an ideal of a zero-symmetric near-ring R. P is right 0-primitive
if and only if P is the largest ideal of R contained in (0 : G) for some right R-group G of
type-0.

Proof. Let P be an ideal of a zero-symmetric near-ring R. Suppose that P is a right
0-primitive ideal of R. So we get a maximal right modular right ideal K of R such that
P is the largest ideal of R contained in K . Now by Proposition 3.8, R/K is a right R-group
of type-0. By Proposition 3.11, P is the largest ideal of R contained in (K : R)= (0 : R/K).
Conversely, suppose that P is the largest ideal of R contained in (0 : G), where G is a right
R-group of type-0. Now G is R-isomorphic to R/K for some maximal right modular right
ideal K of R. So (0 : G)= (0 : R/K)= (K : R). Since P is the largest ideal of R contained in
(0 : G)= (K : R), by Proposition 3.11, P is the largest ideal of R contained in K . Hence, P
is a right 0-primitive ideal of R. �
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Proposition 3.13. Let G be a monogenic right R-group. If R is a distributively generated
(d.g.) near-ring then there is a subset T of G such that h(a+ b)= ha+hb, for all h∈ T and
a,b ∈ R, and T generates (G,+).

Proof. Let G be a monogenic right R-group. Suppose that R is a d.g. near-ring. Since G
is a monogenic right R-group, by Proposition 3.4, we get a right modular right ideal K
of R such that G is R-isomorphic to R/K . Let f be a R-isomorphism of G onto R/K .
Let S be the set of distributive elements of R, where S generates (R,+). It is clear that
S = {s+K | s ∈ S} generates (R/K ,+). Let s ∈ S and let a,b ∈ R. Since s(a+ b) = sa+ sb,
we have that s(a + b) + K = (sa + sb) + K , that is, (s + K)[a + b] = (s + K)a + (s + K)b.
Therefore, T = { f −1(s+K) | s∈ S} is the required subset of G. �

Proposition 3.14. Let G be a monogenic right R-group. If R is a d.g. near-ring, then (0 : G)
is an ideal of R.

Proof. G is a monogenic right R-group and R is d.g. Let S be the set of distributive ele-
ments of R. By Proposition 3.13, we get a subset T of G such that h(x+ y)= hx+ hy, for
all h ∈ T and x, y ∈ R, and T generates (G,+). Let a,b ∈ (0 : G), p,q ∈ R, and let g ∈ G.
h(a + b) = ha + hb = 0 + 0 = 0, h(−b) = −hb = 0 for all h ∈ T . Now p = δ1s1 + δ2s2 +
···+ δnsn, where δi =±1 and si ∈ S, for 1≤ i≤ n:

p(q+ a)− pq = (δ1s1 + δ2s2 + ···+ δnsn
)
(q+ a)− (δ1s1 + δ2s2 + ···+ δnsn

)
q

= δ1s1(q+ a) + δ2s2(q+ a) + ···+ δnsn(q+ a)

− (δ1s1q+ δ2s2q+ ···+ δnsnq
)

= δ1
(
s1q+ s1a

)
+ δ2

(
s2q+ s2a

)
+ ···+ δn

(
snq+ sna

)

− δnsnq− δn−1sn−1q−···− δ1s1q.

(3.1)

Now

h
[
p(q+ a)− pq

]= h
(
δ1
(
s1q+ s1a

))
+h
(
δ2
(
s2q+ s2a

))
+ ···+h

(
δn
(
snq+ sna

))

−h
(
δnsnq

)−h
(
δn−1sn−1q

)−···−h
(
δ1s1q

)

= δ1
(
h
(
s1q
)

+
(
hs1
)
a
)

+ δ2
(
h
(
s2q
)

+
(
hs2
)
a
)

+ ···+ δn
(
h(snq

)

+
(
hsn
)
a
)− δnh

(
snq
)− δn−1h

(
sn−1q

)−···− δ1h
(
s1q
)

= δ1h
(
s1q
)

+ δ2h
(
s2q
)

+ ···+ δnh
(
snq
)− δnh

(
snq
)

− δn−1h
(
sn−1q

)−···− δ1h
(
s1q
)= 0.

(3.2)

Also h(ap) = (ha)p = 0p = 0. Since every element of G is a finite sum of elements h,
where h∈ T or −h∈ T , we get that

(1) g(a+ b)= 0;
(2) g(−a)= 0;
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(3) g(p+ a− p)= 0;
(4) g(p(q+ a)− pq)= 0;
(5) g(ap)= 0.

Therefore, (0 : G) is an ideal of R. �

Corollary 3.15. Let R be a d.g. near-ring and let P be an ideal of R. Then P is a right
0-primitive ideal of R if and only if P = (0 : G) for some right R-group G of type-0.

Proof. Since a d.g. near-ring is zero-symmetric, the proof follows from Propositions 3.14
and 3.12. �

Theorem 3.16. A right 0-primitive ideal of R is a prime ideal of R.

Proof. Let P be a right 0-primitive ideal of R. We get a right R-module G of type-0 with a
generator g such that P is the largest ideal ofR contained inM = (0 : g)= {r ∈ R | gr = 0},
M is a maximal right modular right ideal of R. Let A and B be ideals of R and AB ⊆ P.
Suppose that A �⊆ P and B �⊆ P. Since A �⊆ P, gA �= {0}. Clearly gA is a subgroup of G. Let
h∈G and let a∈ A. h= gr, for some r ∈ R. h+ ga−h= gr + ga− gr = g(r + a− r)∈ gA,
as r + a− r ∈A. So gA is a normal subgroup of G. Also (gA)R= g(AR)⊆ gA. This shows
that gA is an ideal of G. Since gA �= {0} and G is a right R-group of type-0, gA = G.
Similarly, for B, also gB = G. Now G⊇ gAB = (gA)B = GB ⊇ gB = G. Therefore, gAB =
G, a contradiction to the fact that gAB = {0}. So either A ⊆ P or B ⊆ P. Hence, P is a
prime ideal of R. �

4. The right J0-radical of a biregular near-ring

In this section, it will be shown that the right and left Jacobson radicals of type-0 of a
biregular near-ring R are equal, and an ideal P of R is right 0-primitive if and only if P is
left 0-primitive.

We recall the following definition of Betsch (Pilz [2, Remark 3.49]).

Definition 4.1. A near-ring R is called biregular if there exists a set E of central idempo-
tents of R such that

(1) Re is an ideal of R for all e ∈ E;
(2) for each r ∈ R, there exists an e ∈ E such that Re= (r);
(3) e+ f = f + e, for all e, f ∈ E;
(4) e f ,e+ f − e f ∈ E, if e, f ∈ E.

A biregular near-ring is zero-symmetric. Let R be a biregular near-ring. Now {0} =
(0)= Re, for some central idempotent e of R. Also e = ee ∈ Re= {0}. So e = 0 and hence
R0= {0}. Therefore R is zero-symmetric.

Theorem 4.2. Let R be a biregular near-ring. Then Jr0(R)= {0}.
Proof. Let R be a biregular near-ring. Let x ∈ Jr0(R). Let (x) be the ideal of R generated by
x. Now (x)= (e), for some central idempotent e ∈ R. Therefore e ∈ Jr0(R)⊆ Jr1/2(R). Since
e is central, e is a distributive idempotent. By Lemma 2.6, Jr1/2(R) contains no nonzero
distributive idempotent. Therefore, e = 0. Hence, Jr0(R)= {0}. �



10 The right Jacobson radical of type-0

Theorem 4.3. Let R be a biregular near-ring. Then R is right (left) 0-primitive if and only
if R is a nonzero simple near-ring with identity.

Proof. Let R be a biregular near-ring. Suppose thatR is a right (left) 0-primitive near-ring.
Let 0 �= a∈ R. Now (a)= Re, for some central idempotent e �= 0 in R. Since e is a central
idempotent, (0 : e) is an ideal of R. Now R= Re+(0 : e) is a direct sum of the ideals Re and
(0 : e). Since R is right (left) 0-primitive, {0} is a prime ideal of R by Theorem 3.16 (Pilz
[2, Theorem 4.34]). Since R is zero-symmetric, Re(0 : e) ⊆ Re∩(0 : e) = {0}. So either
Re= {0} or (0 : e)= {0}. Since e �= 0, Re �= {0}. Therefore, (0 : e)= {0}. Hence, R= Re=
(a). So R is a simple near-ring with identity e. Conversely, suppose that R is a nonzero
simple near-ring with identity. Since R is a near-ring with identity, R has a maximal right
(left) ideal K and is right (left) modular by the identity. Since R is simple, {0} is the largest
ideal of R contained in K . Therefore, {0} is a right (left) 0-primitive ideal of R and hence
R is right (left) 0-primitive. �

Corollary 4.4. A right (left) 0-primitive ideal of a biregular near-ring is a maximal ideal
which is both right and left modular.

Proof. Let R be a biregular near-ring and let P be a right (left) 0-primitive ideal of R. By
Theorem 2.30, R/P is a right (left) 0-primitive near-ring. Since R/P is also biregular, by
Theorem 4.3, R/P is a simple near-ring with identity. So, P is a maximal right and left
modular ideal. �

Corollary 4.5. Let R be a biregular near-ring and let P be an ideal of R. Then the following
statements are equivalent:

(1) P is a right 0-primitive ideal of R;
(2) P is a left 0-primitive ideal of R;
(3) P is a maximal ideal of R which is both right and left modular.

Proof. By Corollary 4.4, (1) implies (3) and (2) implies (3). Let P be a maximal right and
left modular ideal of R. Since P is a maximal right (left) modular ideal of R, R/P is a simple
near-ring with a left (right) identity. So R/P is a simple near-ring with identity. Since R/P
is biregular, by Theorems 4.3 and 2.30, we get that (3) implies (1) and (3) implies (2). �

Corollary 4.6. Let (G,+) be a group with more than one element. Then M0(G) is a right
and left 0-primitive near-ring.

Proof. Since M0(G) is a nonzero simple biregular near-ring, it is a right and left 0-
primitive by Theorem 4.3. �

Now we observe an interesting fact that unlike the left Jacobson-type radical classes,
the Jr0-radical class contains almost all the classes of near-rings with trivial multipli-
cation.

We consider Jr0-radical of a near-ring with trivial multiplication. Let (R,+) be a group
containing more than one element. Let S be a nonempty subset of R not containing 0.
The trivial multiplication on (R,+) determined by S is given by a · b = a, if b ∈ S and 0, if
b ∈ Sc, where Sc is the complement of S in R. Then (R,+,·) is a near-ring.
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Example 4.7. Let R, S, and Sc be as defined above. Then Sc is nilpotent and hence it is right
quasiregular. Moreover, R is right quasiregular if and only if Sc is not a normal subgroup
of (R,+) of index 2.

Let a ∈ R. Let A = {x − ax | x ∈ R}, let B = {x − ax | x ∈ S}, and let C = {x − ax |
x ∈ Sc}. Now A = B∪C, B = {x− a | x ∈ S} = S+ (−a), and C = {x | x ∈ Sc} = Sc. So
A= [S+ (−a)]∪ Sc. Let K be the normal subgroup of (R,+) generated by A. Clearly K is
a right ideal of R. Hence, K is the right ideal of R generated by A.

If a,b ∈ Sc, then ab = 0. Therefore, Sc is nilpotent and right quasiregular. Now suppose
that a∈ S. First assume that Sc is not a normal subgroup of (R,+). Since R= S∪ Sc, the
normal subgroup of (R,+) generated by Sc contains an element s ∈ S. So s ∈ K . Since
s,s− a∈ K , a=−(s− a) + s∈ K . Therefore, a is right quasiregular.

Assume now that Sc is a normal subgroup of (R,+). Since a∈ S, a is not in Sc. So −a
is not an element of Sc, as Sc is a subgroup. Since R= Sc∪ S, R= [Sc + (−a)]∪ [S+ (−a)].
Now Sc and Sc + (−a) are two right cosets of Sc in (R,+). Let Sc, Sc + (−a), Sc + rα, and
α∈� be the distinct right cosets of Sc in (R,+). So R= Sc∪ [Sc + (−a)]∪ [∪Sc + rα]. The
complement of Sc + (−a) in R is S+ (−a)= Sc ∪ [∪Sc + rα]. If the index of Sc in (R,+) is
2, then S+ (−a)= Sc and hence A= Sc = K �= R. Thus a is not right quasiregular.

Now assume that the index of Sc in (R,+) is not 2. So, S+ (−a) �= Sc. We will show that
S+ (−a) is not a normal subgroup of (R,+). Suppose that S+ (−a) is a normal subgroup
of (R,+). Since Sc ⊆ S+ (−a), R = [Sc + (−a)]∪ [S+ (−a)], and [Sc + (−a)]∩ [S+ (−a)]
is empty, Sc + (−a) = S+ (−a) + (−a). Since Sc is a proper subset of S+ (−a), Sc + (−a)
is a proper subset of S+ (−a) + (−a)= Sc + (−a), a contradiction. Therefore, S+ (−a) is
not a normal subgroup of (R,+). So, the normal subgroup of (R,+) generated by S+ (−a)
contains an element x + (−a) of Sc + (−a), x ∈ Sc. Now x + (−a), x ∈ K , and a = −(x +
(−a)) + x ∈ K . Therefore, a is right quasiregular.

Remark 4.8. Let R, S, and Sc be as defined above and let Sc be a normal subgroup of (R,+)
of index 2. Then, Sc is a nilpotent ideal of R, Sc = P(R) = Jr0(R) = J2(R). Moreover, Sc is
the set of right (left) quasiregular elements of R.

We see now by an example that there is a near-ring R which has a left 0-primitive
ideal, but has no right 0-primitive ideals and that the right and left Jacobson radicals of R
of type-0 are different. We know that every prime ideal of a zero-symmetric near-ring R
with DCC on left R-subgroups of R is left 0-primitive, but there is a finite zero-symmetric
near-ring R �= {0} in which no (proper) prime ideal is right 0-primitive. Even though for
a zero-symmetric near-ring R with DCC on left R-subgroups of R, every left quasiregular
left R-subgroup of R is nilpotent, we see that there is a finite zero-symmetric right near-
ring R in which no nonzero right quasiregular right R-subgroup of R is nil.

Example 4.9. Let (R,+) be a group containing more than two elements. Define a trivial
multiplication in R by rs = r if s �= 0 and 0 if s = 0 for all r,s ∈ R. R is a zero-symmetric
right near-ring. Clearly, R is a left R-group of type-2. Moreover, R is simple. Therefore,
R is 2-primitive on the left R-group R, as RR �= {0}. So J2(R) = {0} = J0(R). But each
element of R is right quasiregular. Therefore, Jr0(R) = R. If R is finite, then obviously R
has DCC on right (left) R-groups of R, but no nonzero right quasiregular right ideal of R
is nilpotent. Moreover, the zero ideal of R is prime but not right 0-primitive.
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We recall some of the definitions and results of [3] which are required to observe that
right Jacobson radicals are relevant for the study of near-rings in terms of matrix near-
rings.

Matrix near-rings were introduced in [1].

Definition 4.10. Let R be a zero-symmetric near-ring with identity. A subset {ei j | 1 ≤
i, j ≤ n} of distributive elements in R is said to be a set of matrix units in R if and only if
e11 + e22 + ···+ enn = 1 and ersepq = δsperq, where

δsp =
⎧
⎨

⎩

1 if s= p,

0 if s �= p.
(4.1)

Proposition 4.11. Let R be a zero-symmetric near-ring with identity. R= K1⊕K2⊕···⊕
Kn, a direct sum of n pairwise isomorphic right ideals Ki of R as right R-groups if and only if
R has a set of matrix units {ei j | 1≤ i, j ≤ n}. In this case Ki = eiiR, for all 1≤ i≤ n.

As stated soon after [3, Corollary 15], we have the following.

Theorem 4.12. Let R be a simple and d.g. near-ring with identity. Then R is isomorphic to
a matrix near-ring Mn(S) if and only if R has a set of matrix units {ei j | 1≤ i, j ≤ n}.
Theorem 4.13. Let R be a simple d.g. near-ring with DCC on right ideals of R and Jr1/2 =
{0}. Suppose that any two minimal right ideals of R are isomorphic as right R-groups. Then,
R = K1 ⊕K2 ⊕ ··· ⊕Kn, a direct sum of minimal right ideals Ki and is (isomorphic to) a
matrix near-ring Mn(S).

Proof. Since Jr1/2(R)= {0} and R has DCC on right ideals of R, we get that the intersection
of a finite number of maximal right modular right ideals of R is zero. So, R is a direct
sum of a finite number of minimal right ideals K1,K2, . . . ,Kn of R. By Proposition 2.12, R
has a left identity as the intersection of a finite number of maximal right modular right
ideals of R is zero. Since R is a simple near-ring with left identity, it has an identity. Also,
since by our assumption any two minimal right ideals of R are isomorphic as right R-
groups, by Proposition 4.11, R has a set of matrix units {ei j | 1≤ i, j ≤ n}. Therefore, by
Theorem 4.12, R is (isomorphic to) a matrix near-ring Mn(S). �

Example 4.14. We give an example of a nonring which satisfies the hypothesis of Theorem
4.13. Let G be a finite simple nonabelian additive group. By [3, Corollary 19], E(G2) is
isomorphic to the matrix near-ring M2(E(G)). As mentioned soon after [3, Corollary
19], E(G2) =M0(G2). So, M0(G2) is a simple d.g. near-ring with DCC on right ideals.
Let i ∈ {1,2}. Let G1 = G×{0} and let G2 = {0}×G. Since Gi is a maximal (minimal)
normal subgroups of G2, Ki = (Gi : G2) = {m ∈M0(G2) | m(a) ∈ Gi, for all a ∈ G2} is
a maximal right ideal of M0(G2). Moreover, K1 ∩ K2 = {0}. Thus Jr1/2(M0(G2)) = {0}.
This shows that M0(G2) = K1⊕K2, where Ki is a minimal right ideal of M0(G2). Define
ei : G2 →Gi by ei((a1,a2))= (b1,b2), where bj = ai if j = i and 0 if j �= i. Now ei is a group
homomorphism and hence it is a distributive idempotent in M0(G2) and eiM0(G2)⊆ Ki.
Since e1 and e2 are orthogonal distributive idempotents in M0(G2) and e1 + e2 = 1, by
[3, Proposition 2], we get that eiM0(G2) is a right ideal of M0(G2). Thus, Ki = eiM0(G2).
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The mapping e12 : G2 → G2 defined by e12((a1,a2)) = (a2,0) is an endomorphism of G2.
So, e12 is a distributive element in M0(G2). It is an easy verification that the mapping
h : e2M0(G2)→ e1M0(G2) defined by h(e2m) = e12(e2m) is an isomorphism of the right
M0(G2)-groups. So, K1 and K2 are isomorphic as right M0(G2)-groups. Since a minimal
right ideal K of M0(G2) is isomorphic to Kj for some j ∈ {1,2} as right M0(G2)-groups,
we get that any two minimal right ideals of M0(G2) are isomorphic as right M0(G2)-
groups. So, M0(G2) satisfies the hypothesis of Theorem 4.13.

Example 4.15. Let G be a finite simple nonabelian additive group. Now by Pilz [2, Corol-
lary 7.48], E(G)=M0(G). So, M0(G) is a finite simple d.g. near-ring with identity. More-
over, J2(M0(G)) = {0} and each minimal left ideal of M0(G) is isomorphic to G as left
M0(G)-groups. Since each distributive element of M0(G) is an endomorphism of (G,+),0
and the automorphisms of (G,+) are the only distributive elements of M0(G). Therefore,
M0(G) has no nontrivial matrix units. Hence, M0(G) is not isomorphic to a matrix near-
ring Mn(S), where n > 1.
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