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We study the general sixth Painlevé equation, develop, and justify the existence of several
groups of asymptotics of its real solutions. Our methods also justify the differentiability
of the asymptotics. Particular attention is paid to the solutions between 0 and 1. We find
the asymptotics of all real solutions between 0 and 1 of the sixth Painlevé equation as
x→ +∞.
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1. Introduction

The mathematical and physical significance of the six Painlevé transcendents has been
well established. In the last 20 to 30 years, many mathematicians have spent dramatic
effort on studying the properties of these transcendents. Although it is the most com-
plicated one among the six Painlevé equations, there have been many results about the
sixth Painlevé transcendent. In fact, the asymptotics problem of the sixth Painlevé tran-
scendent has been studied in many papers such as [1, 2, 4–7, 9–12], and the connection
problem is also studied in the papers [1, 4–7, 10, 11]. In this paper, we study the general
sixth Painlevé equation
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where α, β, γ, and δ are parameters. Heuristically, if y is a “small” solution of (PVI), the
following equation truncated from (PVI) would be its “major” part as x→ +∞:
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Letting t = lnx and applying elementary techniques to (1.1), one may solve it to get three
different solutions:

y =A+B sin(a lnx+ b), (1.2)

where A= 1/2 + (β+ γ)/a2 and B2 = (1/2 + (β+ γ)/a2)2− 2β/a2;

y = b

2
xa +

B2

2b
x−a +A, (1.3)

where A= 1/2− (β+ γ)/a2 and B2 = 2β/a2 + (1/2− (β+ γ)/a2)2; and

y = β+ γ

2
(lnx+ b)2 +

β

β+ γ
. (1.4)

It is reasonable to expect that some solutions of (PVI) take (1.2), (1.3), or (1.4) as
their asymptotics. Indeed, many authors [4–7, 9–12] have obtained the corresponding
asymptotics as x→ 0 that can be used to obtain (1.2), (1.3), and (1.4) by applying the well-
known symmetry transformations. In this paper, we will prove the following theorems.
The differences of our results are pointed out following each theorem.

Theorem 1.1. Let β > 0 and γ < 0. If x0 > 1, 0 < y0 < 1, and y is a solution of (PVI) with
y(x0)= y0, then 0 < y < 1 for all x > x0 and it satisfies, as x→ +∞,

y =A+B cos(a lnx+ b) +O
(
x−1),

y′ = −aBx−1 sin(a lnx+ b) +O
(
x−2), (1.5)

where A= 1/2 + (β+ γ)/a2 and B2 = (1/2 + (β+ γ)/a2)2− 2β/a2.

It is clear that the parameters need to satisfy the condition (1/2 + (β+ γ)/a2)2 ≥ 2β/a2.
The complex form of the asymptotics as x→ 0 corresponding to this asymptotics has been
obtained in many papers [7, 10], but our result provides the conditions on the coefficients
of the equation for the real solutions to exist, together with the bound 0 < y < 1. Our
proof of this theorem is also elementary and simple.

Theorem 1.2. Equation (PVI) has a group of solutions with the following asymptotics:

y = b

2
xa +A+O

(
x(3/2)a−1/2),

y′ = ab

2
xa−1 +O

(
x(3/2)a−3/2), as x −→ +∞,

(1.6)

where 0 < a < 1/4 or 3/4 < a < 1, and A= 1/2− (β+ γ)/a2.
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We have noticed that it makes more sense for this result to be true when 0 < a < 1.
But, it seems to be impossible to prove it using our method. This asymptotics is actually
a well-known result [4–6, 9–12], but our result here also estimates the second term of the
leading behavior of the solution as well as the differentiability of the asymptotics.

Theorem 1.3. If γ + β �= 0, then (PVI) has a group of solutions with the following asymp-
totics:

y ∼

β+ γ

2
(lnx+ b)2 +

β

β+ γ
,

y′ ∼ (β+ γ)x−1(lnx+ b), as x −→ +∞.

(1.7)

Various forms of this result occur in the literature. For example, in [7] Guzzetti has the
following result for x→ 0:
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x(r± θ0 lnx), θ0 =±θx.
(1.8)

The coefficients θ0 and θx come from the isomonodromy deformation theory and r is a
free complex parameter. Applying the symmetry transformations y(x) = xz(t) and x =
t−1 to this result, our result in Theorem 1.3 can be obtained.

It is well known that the transformation y = x/z transforms (PVI) to itself with
(α,β,γ,δ) changed to (−β,−α,1/2− δ,1/2− γ). Hence, based on the previous theorems,
one may easily obtain the following one.

Theorem 1.4. Equation (PVI) has solutions with the following asymptotics:

y ∼

x

A+B sin(a lnx+ b)
, as x −→ +∞, provided that α < 0, δ >

1
2

, (1.9)

where A= 1/2 + (1− 2α− 2δ)/2a2 and B2 = (1/2 + (1− 2α− 2δ)/2a2)2 + 2α/a2, and

y ∼

2x
(1/2−α− δ)(lnx+ b)2

, as x −→ +∞, provided that
1
2
�= α+ δ. (1.10)

2. Proof of Theorems 1.2 and 1.3

In this section, we use the classical successive approximation method to prove Theorem
1.2. The proof of Theorem 1.3 is similar. In fact, Shimomura [12] studied a more general
nonlinear ordinary differential equation, applied the successive approximation method
to it, and obtained the result as an application. We first denote the functions (1.2), (1.3),
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and (1.4) as y0 and substitute t = lnx and y = y0 + y1 into (PVI). The new equation is
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As a routine, we introduce a new function z by using the standard transformation

y1 =
√
y0
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y0− 1
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z. (2.3)

Now, (2.1) is changed to
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where

M
(
y0, y1

)=
√
y0
(
y0− 1

)
G
(
y0, y1

)
+

2y0− 1

2
√
y0
(
y0− 1

)H(y0, y1
)

+

(
2y0− 1

)2

4y3/2
0 (y0− 1)3/2

K
(
y0, y1

)
,

N
(
y0, y1

)=
√
y0
(
y0− 1

)
H
(
y0, y1

)
+

2y0− 1√
y0
(
y0− 1

)K(y0, y1
)
,

P
(
y0, y1

)=
√
y0
(
y0− 1

)
K
(
y0, y1

)
,

Q
(
y0, y1

)= 2y0− 1
2y0

(
y0− 1

) dy0

dt
I
(
y0, y1

)
.

(2.5)

To prove Theorem 1.2, we assume that y0 takes the function in (1.3). Then, there exist
constants L and t0 such that, for |a| < 1, t > t0, and |y1| � |y0|, the following estimates
are true:
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)∣∣ < L,
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We convert (2.4) into the following integral equation:
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In order to apply the successive approximation method to (2.7), we rewrite it as

Z(t)= L
(
t,Z(t)

)
, (2.9)



6 Asymptotics of the real solutions to Painlevé VI

where Z(t) = ( z1
z2 ) and L(t,τ,z) is the right-hand side of (2.7). Now, we can define the

sequence

Z−1(t)= 0,

Zn(t)= L
(
t,Zn−1(t)

)
, n= 0,1,2, . . . .

(2.10)

We first take care of the case when |a| < 1/4. Let t0 be large enough such that, when
t ≥ t0,
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Assume that
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∣∣≤ 1

2
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∣∣≤

(
1
2

)n−1
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(2.13)

Then, for t ≥ t0,

∣∣Zn+1(t)
∣∣≤

∫∞
t

(
τ − t

1

)(
5Le(a−1)τ +

1
2
e−((a+1)/2)τ + 2Le(3/2)(a−1)τ

)
dτ

≤ 1
2
e(a/2−1/2)t .

(2.14)
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Using the mean value theorem, we can also get

∣∣Zn+1(t)−Zn(t)
∣∣≤

∫∞
t

(
τ − t

1

)(
e−aτ + 2Le−aτ + 3Le(a−1)τ)∣∣Zn(τ)−Zn−1(τ)

∣∣dτ

≤
(

1
2

)n−1∫∞
t

(
τ − t

1

)(
e−((a+1)/2)τ + 2Le−((a+1)/2)τ + 3Le(3/2)(a−1)τ)dτ

≤
(

1
2

)n
e(a/2−1/2)t .

(2.15)

Therefore, the sequence {Zn(t)} converges uniformly to Z(t) and

∣∣Z(t)
∣∣≤ 1

2
e(a/2−1/2)t ∀t ≥ t0. (2.16)

Hence, we have proved that (PVI) has a solution satisfying

y = b

2
eat +A+O

(
e((3/2)a−1/2)t)= b

2
xa +A+O

(
x(3/2)a−1/2),

y′ = ab

2
xa−1 +O

(
x(3/2)a−3/2), as x −→∞, 0 < a <

1
4
.

(2.17)

Applying the transformation y = x/z to (PVI) and using the result we have obtained,
we can get the asymptotics for 3/4 < a < 1 and finish the proof of Theorem 1.2.

3. Proof of Theorem 1.1

We can easily prove Theorems 1.2 and 1.3 using the successive approximation method
since the corresponding homogeneous equation is easy to solve. When y0 takes the ex-
pression in (1.2), the corresponding homogeneous equation to (2.4) becomes one of the
famous Hill equations [3] whose solutions are very hard to analyze. Thus, we have dif-
ficulties to apply the successive approximation method to this case. Fortunately, we can
manage to manipulate (PVI) a little bit and apply a method used by Hastings and McLeod
[8] to it.

We first prove the first part of the theorem. Suppose that y(x1) = 0 for some x1 > x0.
Since y(x) is analytic near x1, we have the expansion

y(x)= c
(
x− x1

)n
+O

((
x− x1

)n+1)
, (3.1)

where c �= 0 and n > 0. Substituting (3.1) into (PVI), we get the equation

cn(n− 1)
(
x− x1

)n−2
+O

((
x− x1

)n−1)

= c

2
n2(x− x1

)n−2
+O

((
x− x1

)n−1)

+
β

c
(
x1− 1

)2

(
x− x1

)−n
+O

((
x− x1

)−n+1)
.

(3.2)
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Thus, we have n= 1 and c/2 +β/c(x1− 1)2 = 0. This is impossible when β > 0 and there-
fore, y(x) > 0 for all x > x0. Similarly, we can prove that y(x) < 1 for all x > x0 when γ < 0.
This result enables us to assume that y is a solution between 0 and 1 in this section. We
first apply the transformation

t = lnx (3.3)

to (PVI) and obtain

d2y

dt2
= 1

2

(
1
y

+
1

y− 1

)(
dy

dt

)2

+
β(1− y)

y
+

γy

1− y

+ e−t
{

1
2
(
ye−t − 1

)
(
dy

dt

)2

− y− 1(
1− e−t

)(
ye−t − 1

) dy
dt

+
αy(y− 1)

(
ye−t − 1

)
(
1− e−t

)2

+
β(y− 1)

(
y− 2 + e−t

)
y
(
1− e−t

)2 +
γy

1− e−t
+

δy(y− 1)(
1− e−t

)(
ye−t − 1

)
}
.

(3.4)

Since 0 < y < 1, we can rewrite (3.4) into

d

dt

{[
y(1− y)

]−1/2 dy

dt

}
· 2y−1/2(1− y)−1/2 dy

dt

= 2
y(1− y)

[
β(1− y)

y
+

γy

1− y

]
dy

dt
+

2e−t

y(1− y)
Q(y, t)

dy

dt
.

(3.5)

Integrating both sides of (3.5), we get

1
y(1− y)

(
dy

dt

)2

+
2β
y
− 2γ

1− y
= C+

1
y(1− y)

O
(
e−t
)
. (3.6)

Since β > 0, γ < 0, and 2β/y− 2γ/(1− y) dominates (1/y(1− y))O(e−t) when t is large,
C = a2 > 0, 1/y, 1/(1− y), and dy/dt are all bounded as t goes to infinity. Multiplying
both sides of (3.6) by y(1− y) and letting y = z+ r where r is a constant to be determined
later, we get

(
dz

dt

)2

+ a2z2 +
(
2ra2− 2β− 2γ− a2)z+ 2β− (2β+ 2γ+ a2)r + a2r2 =O

(
e−t
)
. (3.7)

We select r = 1/2 + (β+ γ)/a2 =A, then

(
dz

dt

)2

+ a2z2 = a2B2 +O
(
e−t
)
. (3.8)

To solve (3.8), we let

z(t)= ρ(t)cosφ(t),

z′(t)= aρ(t)sinφ(t).
(3.9)
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We are using two functions ρ(t) and φ(t) in z(t) and z′(t) to describe the relationship
of the function z(t) and its derivative. Because of this relationship, one of ρ(t) and φ(t)
should be depending on another as the product rule of derivatives prescribes. Substituting
(3.9) into (3.8), one first gets

ρ2(t)= B2 +O
(
e−t
)
. (3.10)

Following (3.8), we may also get

dφ

dt
=−a+

a
(
z′′z+ a2z2

)
ρ2(t)

=−a+O
(
e−t
)
. (3.11)

Integrating (3.11) and combining the result with (3.9) and (3.10), one gets

z(t)= (B+O
(
e−t
))

cos
(
at+ b+O

(
e−t
))

,

z′(t)= a
(
B+O

(
e−t
))

sin
(
at+ b+O

(
e−t
))

,
(3.12)

and finishes the proof of Theorem 1.1.

Acknowledgment

The authors are deeply grateful to the referee for his/her valuable comments and sugges-
tions.

References
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