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The Hamiltonian equation provides us an alternate description of the basic physical laws
of motion, which is used to be described by Newton’s law. The research on Hamiltonian
integrable systems is one of the most important topics in the theory of solitons. This ar-
ticle proposes a new hierarchy of integrable systems of 1 + 2 dimensions with its Hamil-
tonian form by following the residue approach of Fokas and Tu. The new hierarchy of
integrable system is of fundamental interest in studying the Hamiltonian systems.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The classical theory of mechanics began with the fundamental Newton’s laws of motion.
The second law asserts that the rate of change of the momentum of a body is propor-
tional to the resultant external force that acts on the body. With an appropriate choice of
physical units and the assumption that the mass stays constant, we may express that law
in the familiar form:

mass × acceleration = force or ma= F, (1.1)

where m and a represent the mass and acceleration of the body and F is the external
force. Suppose that the motion takes place in the 3-dimensional Euclidean space R3, then
in Cartesian coordinates the equation becomes

m
d2r

dt2
= F, (1.2)

where r ≡ (x, y,z) is the position of the body and F ≡ (X ,Y ,Z) is the force.
If we consider a system consisting of N particles, then the corresponding equation of

motion becomes

mi
d2ri
dt2

= Fi (i= 1,2, . . . ,N). (1.3)
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In many cases there exist geometrical constraints, which limit the motion of the sys-
tem. For example, the motion may be along a surface. In the presence of constraints the
coordinates ri = (xi, yi,ci), (i = 1,2, . . . ,n) are no longer all independent and are usually
connected by k equations: Gj(x, y,z)= 0, ( j = 1,2, . . . ,k). Thus, only n= 3N − k coordi-
nates are independent; in this case it is more convenient and natural to use the generalized
coordinates q1,q2, . . . ,qn so that we have

ri = ri
(
q1, . . . ,qn

)
(i= 1,2, . . . ,N) (1.4)

or, in terms of generalized coordinates,

d

dt

(
∂T

∂q̇ j

)
− ∂T

∂qj
=Qj ( j = 1,2, . . . ,n), (1.5)

where Qj = ΣiFi · (∂ri/∂qj) is the so-called generalized force, and

T =
∑

i

1
2
mi
(
ṙi · ṙi

)=
∑

i

1
2
mi
(
ẋ2
i + ẏ2

i + ż2
i

)
(1.6)

stands for the kinetic energy of the system.
If the system is conservative, then the force Fi can be expressed in terms of a scalar

potential function V =V(x), called the potential energy, in the form

Fi =−∇iV ≡−
(
∂V

∂xi
,
∂V

∂yi
,
∂V

∂zi

)
(i= 1,2, . . . ,N),

Qj =
∑

Fi · ∂ri
∂qi

=−
∑
∇iV · ∂ri

∂qj
=− ∂V

∂qj
( j = 1,2, . . . ,n).

(1.7)

Substituting the above equation into (1.5), we obtain the following equation of motion
for a conservative system:

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂qj
= 0 ( j = 1,2, . . . ,n), (1.8)

where

L= T −V. (1.9)

We call (1.8) Lagrange’s equation of motion and L the Lagrangian of the system.
From the above derivation it is clear that T = T(q, q̇), V = V(q) and that Lagrange’s

equation (1.8) is a set of ordinary differential equations of the second order.
A further important development in classical mechanics consists in reformulating

(1.8) as a set of 2n ordinary differential equations of the first order. This can be done
by introducing the generalized momenta pi,

pi = ∂L

∂q̇i
(i= 1,2, . . . ,n) (1.10)
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and the Hamiltonian H ,

H(p,q)=
n∑

i=1

q̇i pi−L(q, q̇), (1.11)

where, for simplicity, we assume that both H and L are not explicitly dependent on t.
Then, on the one hand, we have

dH ≡ dH(p,q)=
∑ ∂H

∂qi
dqi +

∑ ∂H

∂pi
dpi, (1.12)

dH = d

( n∑

i=1

q̇i pi−L(q, q̇)

)

=
∑

q̇idpi +
∑

pidq̇i−
∑ ∂L

∂q̇i
dq̇i−

∑ ∂L

∂qi
dqi. (1.13)

Then, by (1.10) and (1.8), we have ∂L/∂qi = ṗi, and thus

dH =
∑

q̇idpi−
∑

ṗidqi . (1.14)

Comparing the above equation with (1.12), we deduce the celebrated canonical equa-
tion of Hamilton for qi and pi,

q̇i = ∂H

∂pi
, ṗi =−∂H

∂qi
(i= 1,2, . . . ,n). (1.15)

The above Hamiltonian equation provides us with an alternate description of the basic
physical laws of motion. In this description, the coordinates qi and the momenta pi take
on equal status: both are treated as independent variables and appear in the equation
in a symmetric manner. This equal status gives us the freedom to choose the indepen-
dent variables as desired, which is convenient in many circumstances. However, the real
advantage of writing the equations of motion in their Hamiltonian form lies in the fact
that it gives us a deeper insight into the nature of physical laws. Thus, modern theory of
mechanics to be based on symplectic geometry and also formed into the KAM theorem
concerning the stability of motion represents an important contribution to physics. From
a physical point of view, the Hamiltonian formulation provides us with a most suitable
mathematical framework for the study of statistical mechanics and quantum mechanics.
Indeed, the development of these two areas was based entirely on Hamiltonian mechan-
ics.

Nowadays, the theory of Hamiltonian systems has developed into one of the richest
areas of mathematical physics. The study of these systems involves many branches of
physics as well as mathematics, ranging from fluid mechanics to quantum mechanics,
from classical theory of differential equations to modern representation theory of Lie
groups. Yet, the power and beauty of this theory have not been fully recognized and it
still inspires new ideas and provides a springboard for new developments.

One remarkable development of the theory of the classical Hamiltonian systems is the
successful extension from finite-dimensional to infinite-dimensional systems. To describe



4 A new hierarchy 1 + 2-dimensional integrable system

this development, let us reformulate the Hamiltonian equation (1.15) into a form that is
convenient to make such an extension. Thus, we introduce the vectors

u= (q1, . . . ,qn, p1, . . . , pn
)T

,

∇H =
(
∂H

∂qi
, . . . ,

∂H

∂qn
,
∂H

∂p1
, . . . ,

∂H

∂pn

)T (1.16)

and the matrix

J =
[

0 I
−I 0

]

, (1.17)

where I stands for the n× n identity matrix. The Hamiltonian equation (1.15) can now
be expressed as

ui = J∇H (1.18)

and the classical Poisson bracket

{ f ,g} =
n∑

i=1

(
∂ f

∂pi

∂g

∂qi
− ∂ f

∂qi

∂g

∂qi

)
(1.19)

can be written as

{ f ,g} = (J∇ f ,∇g), (1.20)

where (F,G)=∑FiGi denotes the usual inner product of vectors F = (Fi) and G= (Gi).
As a result of this reformulation of the classical Hamiltonian equation we have arrived at
a wider class of equation, the so-called generalized Hamiltonian equations. These equa-
tions are usually partial differential equations that may include also some difference,
difference-differential and integro-differential equations. Therefore, they are capable of
modeling a variety of infinite-dimensional physical phenomena. In this extended case,
the Hamiltonian function H should be replaced by a Hamiltonian functional H , and its
gradient∇H is then defined by

(∇H(u),v
)= d

dε

∣
∣
∣
∣
∣
ε=0

H(u+ εv). (1.21)

Moreover, the matrix J that appeared originally in (1.18) has to be replaced by a linear
operator, which we call a Hamiltonian operator. To be more precise, a linear operator J
is called a Hamiltonian operator if the corresponding Poisson bracket (1.20) gives a Lie
algebraic structure on a set of functionals, that is, if the following is true:

{ f ,g} = −{g, f },
{α f +βg,h} = α{ f ,h}+β{g,h} (α,β = const),

{
f ,{g,h}}+

{
g,{h, f }}+

{
h{ f ,g}}= 0.

(1.22)
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The most important example of such a generalized Hamiltonian system is the celebrated
korteweg-de Vries (KdV) equation:

ut = uxxx + 6uux, (1.23)

which describes the motion of shallow water. Setting J = D = ∂/∂x, we can rewrite the
KdV equation in the form

ut = ∂

∂x

(
uxx + 3u2)=D

δ

δu

(
u3− 1

4
u2
x

)
, (1.24)

where δ/δu = ∑n≥0(−1)i(dn/dxn)(∂/∂un) represents the variational derivative, and
d/dx = D +

∑
n≥1u

n(∂/∂u(n−1)), u(n) = Dnu. It will be shown later that J = ∂ is indeed
a Hamiltonian operator. Thus, the KdV equation serves as a typical example of a gener-
alized Hamiltonian system.

One of the basic theorems in classical mechanics is the Liouville theorem. It states that
if one can find a set of n independent functions fi = fi(p,q), (i= q, . . . ,n), which are the
first integrals of the Hamiltonian system (1.15) and are involution in pairs: { fi, f j} = 0,
1 ≤ i, j ≤ n, then one can find a canonical transformation (p,q)→ (P,Q), such that the
original equation (1.15) takes the simple form

Q̇i = ∂H̄

∂Pi
≡ 0, Ṗi = ∂H̄

∂Qi
, (1.25)

where H̄(Q,P)≡H(p(Q,P),q(Q,P)). The above equation can be easily integrated to ob-
tain

Qi ≡ αi, Pi = ωit+ω0i, (1.26)

where αi, ωi, and ω0i are constants, and

ωi = ∂H̄(Q)
∂Qi

= const. (1.27)

The set of variables Qi and Pi (i = 1, . . . ,n) are usually called the action-angle variables.
The Liouville theorem or its modern version, the Liouville-Arnold theorem, indicates an
effective way to find the solutions of the above system. In deference to this important the-
orem we define a generalized Hamiltonian equation to be Liouville integrable if it has an
infinite number of independent first integrals, which are in involution in pairs. Though
this definition on integrability is rather formal in the sense that it does not indicate a clear
way on how to integrate the system explicitly, there is strong evidence to suggest that in
many important cases it is possible to find some analytical solutions to these equations,
and to find an infinite number of variables that look like action-angle variables. Nowa-
days, the theory of integrable Hamiltonian systems has developed into one of the most
fruitful research areas, and the theoretical and methological progress made in the past
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twenty years has been recognized as one of the most remarkable achievements in the area
of applied mathematics.

We have shown that the KdV equation can be put in the form of generalized Hamil-
tonian equation. Having done this, it is natural to ask the following questions.

(1) Is KdV equation integrable in the sense of Liouville?
(2) For a given nonlinear equation, especially for those equations that are widely

used in various branches of physics, how can we judge whether the equation is
Liouville integrable?

(3) How can we search for new integrable Hamiltonian systems?
(4) Since we have reason to believe that these integrable systems have some common

algebraic and geometrical structure and share some special features, what is the
structure and what are these special features?

To summarize, we see that to put the KdV equation into its Hamiltonian form is not
the end but just the beginning of many interesting topics that we will consider. We will
come back to each of the above questions, but now just for the question number (3):
looking for new hierarchy of integrable systems, which is of fundamental importance in
the study of Hamiltonian integrable systems [4–7, 9–12]. A new hierarchy of integrable
systems of 1 + 2 dimensions with its Hamiltonian form is proposed in the next section.

2. A new hierarchy of integrable system of 1 + 2 dimensions

In the past decades there is a growing interest in the 1 + 2-dimensional systems that
involve two spatial variables x, y and one temporal variable t. The theory on 1 + 2-
dimensional systems is much more complicated than the one on 1 + 1-dimensional sys-
tems, which involves only x and t. It was known that 1 + 1-dimensional integrable systems
possess a remarkable rich algebraic structure, such as the existence of infinite number of
symmetries and conserved densities, the existence of bi-Hamiltonian structures and so
on. A certain operator φ, called recursion operator, plays a central role in investigating
the above algebraic properties (see, e.g., Magri and Morosi [7], Zhang [14]). One could
naturally expect that such operators would exist also in 1 + 2-dimensional case. However,
in [13] Zakharov and Konopel’chenko announced that such operators are merely one-
dimensional matter, and, moreover, there does not exist a recursion operator in 1 + 2-
dimensional case. A major step was made by Fokas and Santini in a series of papers (see
Fokas and Santini [1, 2, 8]). They successfully developed a unified theory on recursion
operators of both 1 + 1- and 1 + 2-dimensional systems. In their construction of recur-
sion operators the Dirac function δ(x− y) is frequently used. Since the Dirac function is
a kind of distributions (generalization functions), it is natural to expect for developing a
pure algebraic approach to the theory of recursion operators. In [7], Magri and Morosi
proposed such an algebraic approach. They constructed a recursion operator of the fa-
mous KP hierarchy. However their recursion scheme is not direct. In order to reach the
KP hierarchy they had to use several initial values φj and then making linear combination
of φiφj .

Fokas and Tu [3] (see, also [11]) propose a new algebraic recursion scheme for gen-
erating integrable systems of 1 + 2 dimensions. Their method was based on the theory of
pseudodifferential operators. The aim of this section is to propose another hierarchy of
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1 + 2-dimensional systems by following the residue approach of Fokas and Tu [3] and Tu
et al. [11]. The first equation (after a simple reduction) in this hierarchy reads

qt = i
(
qx − qy − q2 + 2|q|2)x. (2.1)

Let A be an associative algebra over the field K = C or R, and let ∂ : A→ A be a deriva-
tion, that is,

∂(α f +βg)= α∂ f +β∂g, ∂( f g)= f (∂g) + (∂ f )g, (2.2)

where α,β ∈ k and f ,g ∈ A. Following the notation of [3, 11], we form an associative
algebra A[ξ], which consists of all pseudodifferential operators

∑
N−∞aiξi, where the coef-

ficients a′i s are taken from A : ai ∈ A, and ξ stands for an operator defined by

ξ f = f ξ + (∂ f ), f ∈ A. (2.3)

The following operator R: A[ξ]→ A,

R
(∑

aiξ
i
)
= a−1, (2.4)

is called the residue operator due to the similarity with the residue in theory of complex
analysis.

The technique proposed by Fokas and Tu [3] for generating the KP and DS hierarchies
can be briefly described as follows.

First we fix a matrix operator U = U(λ,u) ∈ A[ξ], which depends on a parameter λ
and a vector function u= (u1, . . . ,up)T .

Second, solve the equation

Vx = [U ,V] (2.5)

for V =∑Vnλ−n. By solving the recursion relation among Vn’s we will obtain a recursion
relation among

g(n) ≡ (g(n)
1 , . . . ,gp(n)

)T
, (2.6)

where g(n)
i comes from the expansion

〈
V ,

∂U

∂ui

�
=
∑

n

g(n)
i λ−n, (2.7)
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here 〈·,·〉 is defined as

〈a,b〉 = tr
(
R(ab)

)
. (2.8)

Third, we try to find an operator J, and then form the hierarchy

utn = Jg(n). (2.9)

In the case of KP and DS hierarchies, the operator J is the same as used in the correspond-
ing 1 + 1-dimensional case.

Following the above approach we are able to suggest the following new hierarchy.
Levi (see [9, 10]) proposed a hierarchy starting from the matrix

[−q μq
−μ μ2 + r

]

. (2.10)

It is not difficult to show that the above matrix is similar to the matrix
[

0 q
r λ+ r− q

]

. (2.11)

Thus the same hierarchy will be obtained if one starts from the above matrix. Motivated
by this hierarchy we try to generate a similar one of 1 + 2 dimensions. Let us begin with
the following operator:

[
0 q
r λ+ ξ + r− q

]

. (2.12)

Substituting the formula (2.12) and

V =
[
A B
C D

]

=
∑

n≥0

Vnλ
−n, Vn =

[
An Bn

Cn Dn

]

(2.13)

into the following equation:

Vx = [U ,V] (2.14)

yields

Anx = qCn−Bnr, Dnx −Dny +
[
q− r,Dn

]= rBn−Cnq,

Bn+1 =−Bnx + qDn−Anq+Bn(q− r)−Bnξ,

Cn+1 = Cnx +Dnr− rAn + (q− r)Cn− ξCn.

(2.15)

From the above recursion relation we see that C0 = B0 = 0. Now we take the following
initial operators:

A0 = αξ−1, D0 = 0. (2.16)
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It is easy to calculate the subsequent An, Bn, Cn, and Dn as follows:

B1 = α
(− qξ−1 + qyξ

−2)+O
(
ξ−3),

C1 = α
(− rξ−1), A1x =O

(
ξ−2), D1 = 0,

B2 = α
(
q+
(
qx − qy − q2 + qr

)
ξ−1)+O

(
ξ−2),

C2 = α
(
r +
(
ry − rx + r2− qr

)
ξ−1)+O

(
ξ−2),

A2x = α
(− qr +

(
(qr)y − (qr)x

)
ξ−1)+O

(
ξ−2), D2 = α

(
(qr)ξ−1)+O

(
ξ−2).

(2.17)

Since in present case we have

〈
V ,Uq

〉= C−D,
〈
V ,Ur

〉= B+D, (2.18)

and since the operator J in the 1 + 1-dimensional case is

J =
[

0 ∂x
∂x 0

]

, (2.19)

we obtain the following hierarchy:

qtn = R
(
Bnx +Dnx

)
, rtn = R

(
Cnx −Dnx

)
. (2.20)

The first nontrivial pair of equations in this hierarchy are

qt1 = αqx, rt1 = αrx,

qt2 = α
(
qx − qy − q2 + 2qr

)
x, rt2 =−α

(
rx − qy − r2 + 2qr

)
x.

(2.21)

We observe that (2.21) reduces to the LMN equation when qy = 0. Equation (2.21) admits
a reduction α= i, q = r∗ (r∗ is the complex conjugate of r),

qt = i
(
qx − qy − q2 + 2|q|2)x. (2.22)

By applying the trace identity as Tu did in the case of KP and DS hierarchies [9], we
can write the above 2D LNM hierarchy in its Hamiltonian form:

utn = J
δHn

δu
, (2.23)

where

Hn =−Dn+1

n
. (2.24)

We thus complete this paper.

Acknowledgment

The authors extend their thanks to Professor Roman Andrushkiw for his useful discus-
sion.



10 A new hierarchy 1 + 2-dimensional integrable system

References

[1] A. S. Fokas and P. M. Santini, The recursion operator of the Kadomtsev-Petviashvili equation and
the squared eigenfunctions of the Schrödinger operator, Studies in Applied Mathematics 75 (1986),
no. 2, 179–185.

[2] , Recursion operators and bi-Hamiltonian structures in multidimensions. II, Communica-
tions in Mathematical Physics 116 (1988), no. 3, 449–474.

[3] A. S. Fokas and G. Tu, An algebraic recursion scheme for KP and DS hierarchies, Tech. Rep., Clark-
son University, New York, 1990.

[4] B. Fuchssteiner, Coupling of completely integrable systems: the perturbation bundle, Applications
of Analytic and Geometric Methods to Nonlinear Differential Equations (Exeter, 1992), NATO
Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 413, Kluwer Academic, Dordrecht, 1993, pp. 125–138.

[5] F. K. Guo, A hierarchy of integrable Hamiltonian equations, Acta Mathematicae Applicatae Sinica
23 (2000), no. 2, 181–187.

[6] W. X. Ma and B. Fuchssteiner, Integrable theory of the perturbation equations, Chaos, Solitons
and Fractals 7 (1996), no. 8, 1227–1250.

[7] F. Magri and C. Morosi, Old and new results on recursion operators: an algebraic approach to KP
equation, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations (Oberwolfach,
1986) (M. Ablowitz, B. Fuchssteiner, and M. Kruskal, eds.), World Scientific, Singapore, 1987,
pp. 78–96.

[8] P. M. Santini and A. S. Fokas, Recursion operators and bi-Hamiltonian structures in multidimen-
sions. I, Communications in Mathematical Physics 115 (1988), no. 3, 375–419.

[9] G. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable
systems, Journal of Mathematical Physics 30 (1989), no. 2, 330–338.

[10] , A trace identity and its applications to the theory of discrete integrable systems, Journal of
Physics. A. Mathematical and General 23 (1990), no. 17, 3903–3922.

[11] G. Tu, R. I. Andrushkiw, and X. Huang, A trace identity and its application to integrable systems
of 1 + 2 dimensions, Journal of Mathematical Physics 32 (1991), no. 7, 1900–1907.

[12] G. Tu and X. Huang, From Newton’s law to generalized Hamiltonian systems I: some results on
linear skew-symmetric operator, Journal of Yangzhou Polytechnic University 9 (2005), no. 2, 36–
46.

[13] V. E. Zakharov and B. G. Konopel’chenko, On the theory of recursion operator, Communications
in Mathematical Physics 94 (1984), no. 4, 483–509.

[14] Y. F. Zhang, A subalgebra of a Lie algebra and two types of associated loop algebras, Acta Mathe-
matica Sinica 48 (2005), no. 1, 141–152.

Xuncheng Huang: College of International Exchange, Yangzhou Polytechnic University,
Yangzhou, Jiangsu 225002, China
E-mail address: xunchengh@yzpc.edu.cn

Guizhang Tu: Bloomberg L. P., NY 10019, USA
E-mail address: tugz@yahoo.com

mailto:xunchengh@yzpc.edu.cn
mailto:tugz@yahoo.com

	1. Introduction
	2. A new hierarchy of integrable system of 1+2 dimensions
	Acknowledgment
	References

