
AN EXTENSION AND A REFINEMENT OF VAN DER
CORPUT’S INEQUALITY

JIAN CAO, DA-WEI NIU, AND FENG QI

Received 1 April 2006; Revised 18 June 2006; Accepted 22 June 2006

van der Corput’s inequality is extended and refined by using Euler-Maclaurin formula
and other analytic techniques.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let Sn =
∑n

k=1(1/k) and an ≥ 0 for n∈N such that 0 <
∑∞

n=1 an <∞. The famous van der
Corput inequality [10] reads that

∞∑

n=1

( n∏

k=1

a1/k
k

)1/Sn

< e1+γ
∞∑

n=1

(n+ 1)an, (1.1)

where γ = 0.57721566 . . . stands for Euler-Mascheroni constant. The constant e1+γ in
(1.1) is the best possible.

Hu [5] gave a strengthened version of (1.1) as

∞∑

n=1

( n∏

k=1

a1/k
k

)1/Sn

< e1+γ
∞∑

n=1

(

n− lnn
4

)

an. (1.2)

Yang [14] established a relation between Carleman’s inequality and van der Corput’s
inequality and presented the following:

∞∑

n=1

( n∏

k=1

a1/kα
k

)1/Sn(α)

< e
∞∑

n=1

eαn
α−1Sn(α)an, (1.3)

where Sn(α)=∑n
k=1(1/kα) and α∈ [0,1].
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2 An extension and a refinement of van der Corput’s inequality

In a recent paper [15], Yang has obtained another extension of (1.1) as follows:

∞∑

n=1

( n∏

k=1

a
1/(k+β)
k

)1/Sn(β)

< e1+γ1(β)
∞∑

n=1

(

n+
1
2

+β
)

an, (1.4)

where β ∈ (−1,∞), Sn(β)=∑n
k=1(1/(k+β)), and

γ1(β)= lim
n→∞

[ n∑

k=1

1
k+β

− ln(n+β)

]

. (1.5)

Applying β = 0 in (1.4) leads to

∞∑

n=1

( n∏

k=1

a1/k
k

)1/Sn

< e1+γ
∞∑

n=1

(

n+
1
2

)

an, (1.6)

which improved inequality (1.1) clearly.
For more information about van der Corput’s inequality, please refer to [2, 5, 10, 14,

15] and the references therein.
The aim of this paper is to further extend and refine van der Corput’s inequality by

using Euler-Maclaurin formula and other analytic techniques.
Our main results are the following two theorems.

Theorem 1.1. Let an ≥ 0 for n∈N such that 0≤∑∞
n=1 an <∞. Then

∞∑

n=1

[ n∏

k=1

a
1/
√

k(k+λ)
k

]1/Sn(λ)

< e1+(1+λ/3)γ(λ)
∞∑

n=1

(n+ 1)λ/3
[

1− ln(n+ 1)
4(n+ 1 + λ/2)

]

an,

(1.7)

where λ∈ [0,∞),

Sn(λ)=
n∑

k=1

1
√
k(k+ λ)

, (1.8)

γ(λ)= lim
n→∞

[

Sn(λ)− 2ln
√
n+

√
n+ λ

1 +
√

1 + λ

]

. (1.9)

Theorem 1.2. Let an ≥ 0 for n∈N such that 0≤∑∞
n=1 an <∞. Then

∞∑

n=1

( n∏

k=1

a1/k
k

)1/Sn

< e1+γ
∞∑

n=1

n
(

1− lnn
3n− 1/4

)

an. (1.10)

Remark 1.3. It is easy to see that inequality (1.10) refines inequalities (1.1), (1.2), and
(1.6).



Jian Cao et al. 3

2. Lemmas

To prove our main results, the following lemmas are necessary.
Recall [7, 9] that a function f is called completely monotonic on an interval I if f has

derivatives of all orders on I and 0 < (−1)k f (k)(x) <∞ for all k ≥ 0 on I . The background
information and an extensive bibliography about the theory of completely monotonic
function can be found in the recent papers [4, 7, 8].

Lemma 2.1. The function f (x) = 1/
√
x(x+ λ) for λ ∈ [0,∞) is completely monotonic in

(0,∞) and limx→∞ f (i)(x)= 0 for any nonnegative integer i.

Proof. It is not difficult to verify that the functions 1/
√
x and 1/

√
x+ λ are completely

monotonic in x ∈ (0,∞). Since the product of any finite completely monotonic functions
is also strictly completely monotonic (see [11]), then the function f (x) is strictly com-
pletely monotonic in (0,∞).

By induction, it is easy to verify that limx→∞ f (i)(x) = 0 holds for any nonnegative
integer i. The proof of Lemma 2.1 is complete. �

Recall that Euler-Maclaurin formula (see [1, pages 617–623] and [6, 12, 14]) states

n∑

k=1

f (k)=
∫ n

1
f (x)dx+

1
2

[
f (n) + f (1)

]
+
∫ n

1
ρ1(x) f ′(x)dx, (2.1)

where ρ1(x) = x − [x] + 1/2 is Bernoulli’s function and f ∈ C1[1,∞). Furthermore, if
(−1)i f (i)(x) > 0 and limx→∞ f (i)(x)= 0 for i= 1,2,3, then

∫∞

n
ρ1(x) f ′(x)dx =− 1

12
f ′(n)ε, 0 < ε < 1. (2.2)

Lemma 2.2. For n∈N and λ∈ [0,∞),

Sn(λ) < ln(n+ 1) + γ(λ), (2.3)

where Sn(λ) and γ(λ) are defined by (1.8) and (1.9), respectively.

Proof. It is clear that Lemma 2.1 allows us to apply Euler-Maclaurin formula (2.1) and
formula (2.2) to f (x)= 1/

√
x(x+ λ). From this, it follows that

Sn(λ)= 2ln
√
n+

√
n+ λ

1 +
√

1 + λ
+

1
2

[
1√

1 + λ
+

1
√
n(n+ λ)

]

+
∫ n

1
ρ1(x)

[
1

√
x(x+ λ)

]′
dx,

∫∞

n
ρ1(x)

[
1

√
x(x+ λ)

]′
dx =− 1

12

[
1

√
n(n+ λ)

]′
ε = (2n+ λ)ε

24[n(n+ λ)]3/2
,

(2.4)

where 0 < ε < 1, and

γ(λ)= 1
2
√

1 + λ
+
∫∞

1
ρ1(x)

[
1

√
x(x+ λ)

]′
dx. (2.5)
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Therefore,

Sn(λ)= 2ln
√
n+

√
n+ λ

1 +
√

1 + λ
+ γ(λ)− (2n+ λ)ε

24
[
n(n+ λ)

]3/2 +
1

2
√
n(n+ λ)

< lnn+ γ(λ) +
1

2
√
n(n+ λ)

,

(2.6)

and then

Sn(λ)=
n+1∑

k=1

1
√
k(k+ λ)

− 1
√

(n+ 1)(n+ 1 + λ)

< ln(n+ 1) + γ(λ)− 1
2
√

(n+ 1)(n+ 1 + λ)
< ln(n+ 1) + γ(λ).

(2.7)

The proof of Lemma 2.2 is complete. �

Lemma 2.3. For k ∈N and λ∈ [0,∞),

√
k(k+ λ)

(k+ 1)(k+ 1 + λ)
≤ k+ λ/2

k+ 1 + λ/2
, (2.8)

√
(k+ 1)(k+ 1 + λ)−

√
k(k+ λ)≤ 1 +

λ

3
. (2.9)

Proof. Inequality (2.8) is equivalent to

(

k+
λ

2

)2

(k+ 1)(k+ 1 + λ)≥ k(k+ λ)
(

k+ 1 +
λ

2

)2

. (2.10)

The difference between both sides of (2.10) equals

[

k4 + 2k3(λ+ 1) + k2
(

5
4
λ2 + 3λ+ 1

)

+ k
(
λ3

4
+

3
2
λ2 + λ

)

+
λ+ 1

4
λ2
]

−
[

k4 + 2k3(λ+ 1) + k2
(

5
4
λ2 + 3λ+ 1

)

+ k
(
λ3

4
+ λ2 + λ

)]

= kλ2

2
+
λ2

4
+
λ3

4
≥ 0.

(2.11)

Inequality (2.9) can be deduced straightforwardly from

√
(k+ 1)(k+ 1 + λ)−

√
k(k+ λ)

= 2k+ λ+ 1
√

(k+ 1)(k+ 1 + λ) +
√
k(k+ λ)

≤ 1 +
λ

3
.

(2.12)

The proof of Lemma 2.3 is complete. �
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Lemma 2.4. For x ∈ (0,∞) and λ∈ [0,∞),

[

1− 1
2(x+ 1 + λ/2)

]ln(x+1)

< 1− ln(x+ 1)
4(x+ 1 + λ/2)

. (2.13)

Proof. Let u(x,λ) = 2
(
x + 1 + λ/2

) − ln(x + 1) for x ∈ (0,∞) and λ ∈ [0,∞). Then
∂u(x,λ)/∂x = 2− 1/(x+ 1) > 0 and u(0,λ)= 2 + λ > 0. Thus,

ln2(x+ 1)
8(x+ 1 + λ/2)2

<
ln(x+ 1)

4(x+ 1 + λ/2)
. (2.14)

As a result, by

(

1− 1
t

)−t
> e (2.15)

for t > 1 and

et < 1 + t+
t2

2
(2.16)

for t < 0, it follows that

[

1− 1
2(x+ 1 + λ/2)

]ln(x+1)

<
(

1
e

)ln(x+1)/2(x+1+λ/2)

< 1− ln(x+ 1)
2(x+ 1 + λ/2)

+
ln2(x+ 1)

8(x+ 1 + λ/2)2
< 1− ln(x+ 1)

4(x+ 1 + λ/2)
.

(2.17)

The proof of Lemma 2.4 is complete. �

Lemma 2.5. For k ∈N and λ∈ [0,∞),

Bk(λ) �
[√

(k+ 1)(k+ 1 + λ)Sk+1(λ)
√
k(k+ λ)Sk(λ)

]
√

k(k+λ)Sk(λ)

≤ e1+(1+λ/3)γ(λ)(k+ 1)1+λ/3
[

1− ln(k+ 1)
4(k+ 1 + λ/2)

]

.

(2.18)

Proof. For k ∈N,

Bk(λ)=
{

1 +
1 +
[√

(k+ 1)(k+ 1 + λ)−√k(k+ λ)
]
Sk(λ)

√
k(k+ λ)Sk(λ)

}
√

k(k+λ)Sk(λ)

� Ch(k,λ)
k , (2.19)

where

Ck =
[

1 +
1

g(k,λ)

]g(k,λ)

, g(k,λ)=
√
k(k+ λ)Sk(λ)

h(k,λ)
,

h(k,λ)= 1 +
[√

(k+ 1)(k+ 1 + λ)−
√
k(k+ λ)

]
Sk(λ).

(2.20)
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It is easy to see that

g(k,λ) + 1= 1 +
√

(k+ 1)(k+ 1 + λ)Sk(λ)
1 +
[√

(k+ 1)(k+ 1 + λ)−√k(k+ λ)
]
Sk(λ)

≤
√

(k+ 1)(k+ 1 + λ)
√

(k+ 1)(k+ 1 + λ)−√k(k+ λ)
.

(2.21)

By using the inequality (1 + 1/x)x < e[1− 1/2(x+ 1)] obtained in [13], inequalities (2.21)
and (2.8) in Lemma 2.3, it is deduced that

Ck =
[

1 +
1

g(k,λ)

]g(k,λ)

≤ e
{

1− 1
2[g(k,λ) + 1]

}

≤ e
[

1
2

+

√
k(k+ λ)

2
√

(k+ 1)(k+ 1 + λ)

]

≤ e
[

1− 1
2(k+ 1 + λ/2)

]

.

(2.22)

Hence, from inequalities (2.3), (2.9), (2.22) in Lemma 2.2, and (2.13) in Lemma 2.4, it is
shown that

Bk(λ)≤
{

e
[

1− 1
2(k+ 1 + λ/2)

]}h(k,λ)

≤
{

e
[

1− 1
2(k+ 1 + λ/2)

]}1+(1+λ/3)[ln(k+1)+γ(λ)]

≤ e1+(1+λ/3)γ(λ)(k+ 1)1+λ/3
[

1− 1
2(k+ 1 + λ/2)

]ln(k+1)

≤ e1+(1+λ/3)γ(λ)(k+ 1)1+λ/3
[

1− ln(k+ 1)
4(k+ 1 + λ/2)

]

.

(2.23)

The proof of Lemma 2.5 is complete. �

Lemma 2.6. For n∈N,

(

1− 1
2n+ 11/6

)lnn

≤ 1− lnn
3n− 1/4

. (2.24)

Proof. For n= 1, inequality (2.24) holds clearly. For n= 2,

1− ln2
6− 1/4

−
(

1− 1
4 + 11/6

)ln2

= 0.0016626 . . . > 0, (2.25)

inequality (2.24) holds also.
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For n≥ 3, by using (2.15) and (2.16), it is shown that

(

1− 1
2n+ 11/6

)lnn

< e−lnn/(2n+11/6) < 1− lnn
2n+ 11/6

+
ln2n

2(2n+ 11/6)2
. (2.26)

So, it is sufficient to prove that

1− lnn
2n+ 11/6

+
ln2n

2(2n+ 11/6)2
< 1− lnn

3n− 1/4
(2.27)

for n≥ 3. For this purpose, let m= n− 1/12, then inequality (2.27) can be rearranged as

g(m) � 4m
3
− 4

3
− 8

3m
− ln

(

m+
1

12

)

> 0. (2.28)

Differentiation of g(x) gives

g′(x)= 4
3

+
8

3x2
− 1
x+ 1/12

> 0. (2.29)

This means that g(m) is increasing. Further, since

g
(

3− 1
12

)

= 4
3

(

3− 1
12

)

− 4
3
− 8

3(3− 1/12)
− ln3= 0.5426575526 . . . > 0, (2.30)

then g(m) is positive for m≥ 3. The proof of Lemma 2.6 is complete. �

3. Proofs of theorems

Proof of Theorem 1.1. Setting ck > 0 for 1≤ k ≤ n and letting

[ n∏

k=1

c
1/
√

k(k+λ)
k

]−1/Sn(λ)

= 1
√

(n+ 1)(n+ 1 + λ)Sn+1(λ)
, (3.1)

then

ck =
[√

(k+ 1)(k+ 1 + λ)Sk+1(λ)
]√k(k+λ)Sk(λ)

[√
k(k+ λ)Sk(λ)

]√k(k+λ)Sk−1(λ)
. (3.2)
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Using the discrete weighted arithmetic-geometric mean inequality and (3.2) and in-
terchanging the order of summation yield

∞∑

n=1

( n∏

k=1

a
1/
√

k(k+λ)
k

)1/Sn(λ)

=
∞∑

n=1

( n∏

k=1

(
ckak

)1/
√

k(k+λ)
)1/Sn(λ)( n∏

k=1

c
1/
√

k(k+λ)
k

)−1/Sn(λ)

≤
∞∑

n=1

n∑

k=1

1
√
k(k+ λ)Sn(λ)

ckak
1

√
(n+ 1)(n+ 1 + λ)Sn+1(λ)

=
∞∑

k=1

1
√
k(k+ λ)

ckak

∞∑

n=k

1
√

(n+ 1)(n+ 1 + λ)Sn(λ)Sn+1(λ)

=
∞∑

k=1

1
√
k(k+ λ)

ckak

∞∑

n=k

[
1

Sn(λ)
− 1
Sn+1(λ)

]

=
∞∑

k=1

1
√
k(k+ λ)

ckak
1

Sk(λ)

=
∞∑

k=1

[√
(k+ 1)(k+ 1 + λ)Sk+1(λ)

√
k(k+ λ)Sk(λ)

]
√

k(k+λ)Sk(λ)

ak.

(3.3)

Applying inequality (2.18) in the final line of (3.3) gives inequality (1.7). The proof of
Theorem 1.1 is complete. �

Proof of Theorem 1.2. It is easy to see that

B1(0)= 3 < e1+γ, B2(0)=
(

11
6

)3

< e1+γ · 2
(

1− ln2
6− 1/4

)

. (3.4)

For n≥ 3, inequality

e1/2n
(

1− 1
2n+ 11/6

)1+γ

< e1/2ne−(1+γ)/(2n+11/6) < 1 (3.5)

follows from using an inequality

(

1 +
1
x

)x
< e
(

1− 1
2x+ 11/6

)

(3.6)
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in [3]. By (2.3), (3.6), Lemma 2.6, and inequality (3.5),

Bn(0)=
[

(n+ 1)Sn + 1
nSn

]nSn
=
{[

1 +
1

nSn/(Sn + 1)

]nSn/(Sn+1)
}Sn+1

<
{

e
[

1− 1
2nSn/(Sn + 1) + 11/6

]}Sn+1

<
{

e
[

1− 1
2nSn/(Sn + 1) + 11/6

]}1+lnn+γ+1/2n

<
[

e
(

1− 1
2n+ 11/6

)]1+lnn+γ+1/2n

< e1+γne1/2n
(

1− 1
2n+ 11/6

)1+lnn+γ

< e1+γn
(

1− lnn
3n− 1/4

)

.

(3.7)

Taking λ= 0 in inequality (3.3) yields

∞∑

n=1

( n∏

k=1

a1/k
k

)1/Sn

≤
∞∑

n=1

[
(n+ 1)Sn+1

nSn

]nSn
an

=
∞∑

n=1

Bn(0)an < e1+γ
∞∑

n=1

n
(

1− lnn
3n− 1/4

)

an.

(3.8)

The proof of Theorem 1.2 is complete. �
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