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We show that if v is a symmetric regular Laguerre-Hahn linear form (functional), then
the linear form u defined by u = −λx−2v + δ0 is also regular and symmetric Laguerre-
Hahn linear form for every complex λ except for a discrete set of numbers depending on
v. We explicitly give the coefficients of the second-order recurrence relation, the structure
relation of the orthogonal sequence associated with u, and the class of the linear form u
knowing that of v. Finally, we apply the above results to the symmetric associated form
of the first order for the classical polynomials.
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1. Introduction

The product of a linear form by a polynomial is one of the construction processes of
linear forms. Christoffel has proved that the product of a positive definite linear form
by a positive polynomial gives a positive definite linear form [7]. This result has been
generalized in [9]. It was proved that, on certain regularity conditions, the product of a
regular linear form u by a polynomial R gives a regular linear form. In particular, if u is
a semiclassical [14] (resp., Laguerre-Hahn [2, 8]), then the linear form Ru, if it is regular,
is also semiclassical (resp., Laguerre-Hahn). Then it is interesting to consider the inverse
problem, which consists in determining all regular linear forms u, satisfying Ru = −λv,
where v is a given regular linear form and λ �= 0. When R(x)= x− c,x2 (resp., R(x)= x3),
Maroni [13, 15] (resp., Maroni and Nicolau [16]) found necessary and sufficient condi-
tions for u to be regular. Also, an explicit expression for the orthogonal polynomials (OP)
with respect to u is proved. Finally, it was proved that, if v is semiclassical linear form (see
[1, 3, 13, 16]), then u is a semiclassical linear form. See also [11]. In particular, in this
paper, Marcellán and Prianes proved that if v is Laguerre-Hahn linear form, then u is also
a Laguerre-Hahn linear form. When R(x) is of degree two, Branquinho and Marcellán [4]
found necessary and sufficient conditions for u to be regular. More generally, when R(x)
is any nonzero polynomial, Lee and Kwon [10] found a necessary and sufficient condition
for u to be regular and gave its corresponding OP in terms of the OP relative to v.
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2 Symmetric Laguerre-Hahn linear forms

In this paper, we consider the same problem as in [1, 3] in the symmetric Laguerre-
Hahn case: given a symmetric Laguerre-Hahn linear form v, find the linear form u de-
fined by u = −λx−2v + δ ⇔ x2u = −λv, (u)1 = 0. Section 2 is devoted to the preliminary
results and notations used in the sequel. In Section 3, an explicit necessary and sufficient
condition for the regularity of the new linear form different from that in [15] is given. We
compute the exact class of the Laguerre-Hahn linear form obtained by the above modifi-
cation and we give the structure relation of the OP sequence relatively to the linear form
u. Finally, we apply our results to some examples.

2. Notations and preliminary results

Let � be the vector space of polynomials with coefficients in C and let �′ be its dual.
We denote by 〈u, f 〉 the action of u ∈�′ on f ∈�. In particular, we denote by (u)n :=
〈u,xn〉, n≥ 0, the moments of u. For any linear form u and any polynomial h, we let Du=
u′, hu, δ and x−1u be the linear forms defined by 〈u′, f 〉 :=−〈u, f ′〉, 〈hu, f 〉 := 〈u,h f 〉,
〈δ, f 〉 := f (0), and 〈x−1u, f 〉 := 〈u,θ0 f 〉 where (θ0 f )(x)= ( f (x)− f (0))/x, f ∈�.

Then, it is straightforward to prove that for f ∈� and for u∈�′, we have

x
(
x−1u

)= u, (2.1)

x−1(xu)= u− (u)0δ. (2.2)

We also define the right multiplication of a linear form by a polynomial with

(uh)(x) :=
〈

u,
xh(x)− ξh(ξ)

x− ξ

〉

=
n∑

m=0

( n∑

j=m
aj(u) j−m

)

xm, h(x)=
n∑

j=0

ajx
j . (2.3)

Next, it is possible to define the product of two linear forms through

〈uv, f 〉 := 〈u,v f 〉, f ∈�. (2.4)

For f ,g ∈� and u,v ∈�′, we have the following results [14]:
(
uθ0 f

)
(x)= (θ0(u f )

)
(x),

f (uv)= ( f u)v+ x
(
uθ0 f

)
(x)v,

( f u)′ = f u′ + f ′u.

(2.5)

Let us define the operator σ : �−→� by (σ f )(x) := f (x2). Then, we define the even
part σu of u by 〈σu, f 〉 := 〈u,σ f 〉.

Therefore, we have [12]

f (x)(σu)= σ
(
f
(
x2)u

)
, (2.6)

σu′ = 2
(
σ(xu)

)′
. (2.7)

The linear form v will be called regular if we can associate with it a sequence {Sn}n≥0

(deg(Sn)≤ n) such that
〈
v,SnSm

〉= rnδnm, n,m≥ 0, rn �= 0, n≥ 0. (2.8)
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Then, deg(Sn) = n, n ≥ 0 and we can always suppose each Sn a monic. The sequence
{Sn}n≥0 is said to be orthogonal with respect to v.

It is a very well-known fact that the sequence {Sn}n≥0 satisfies the recurrence relation
(see, e.g., the monograph by Chihara [6])

Sn+2(x)= (x− ξn+1
)
Sn+1(x)− δn+1Sn(x), n≥ 0,

S1(x)= x− ξ0, S0(x)= 1
(2.9)

with (ξn,δn+1)∈ C× (C−{0}), n≥ 0, by convention we set δ0 = (v)0 = 1.

In this case, we let {S(1)
n }n≥0 be the associated sequence of first order for the sequence

{Sn}n≥0 satisfying the second order recurrence relation

S(1)
n+2(x)= (x− ξn+2

)
S(1)
n+1(x)− δn+2S

(1)
n (x), n≥ 0,

S(1)
1 (x)= x− ξ1, S(1)

0 (x)= 1,
(
S(1)
−1(x)= 0

)
.

(2.10)

Another important representation of S(1)
n (x) is, (see [5]),

S(1)
n (x) :=

〈
v,
Sn+1(x)− Sn+1(ζ)

x− ζ

�
. (2.11)

Also, let {Sn(·,μ)}n≥0 be the corecursive polynomials for the sequence {Sn}n≥0 satisfying
[5]

Sn(x,μ)= Sn(x)−μS(1)
n−1(x), n≥ 0. (2.12)

A linear form v is called symmetric if (v)2n+1 = 0, n≥ 0. In (2.9), we have ξn = 0, n≥ 0
[6].

Throughout this paper, unless otherwise mentioned, the linear form v will be sup-
posed normalized, (i.e., (v)0 = 1), symmetric, and regular.

Let us consider the quadratic decomposition of {Sn}n≥0 and {S(1)
n }n≥0 [6, 12]:

S2n(x)= P̃n
(
x2), S2n+1(x)= xR̃n

(
x2), (2.13)

S(1)
2n (x)= R̃n

(
x2,−δ1

)
, S(1)

2n+1(x)= xP̃(1)
n

(
x2). (2.14)

The sequences {P̃n}n≥0 and {R̃n}n≥0 are, respectively, orthogonal with respect to σv and
xσv. We also have

P̃n+2(x)= (x− ξP̃n+1

)
P̃n+1(x)− δP̃n+1P̃n(x), n≥ 0,

P̃1(x)= x− ξP̃0 , P̃0(x)= 1,
(2.15)

with

ξP̃0 = δ1, ξP̃n+1 = δ2n+2 + δ2n+3, δP̃n+1 = δ2n+1δ2n+2, n≥ 0. (2.16)
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By virtue of (2.9), with ξn = 0, we get Sn+2(0)=−δn+1Sn(0). Consequently,

S0(0)= P̃0(0)= 1, S2n+2(0)= P̃n+1(0)= (−1)n+1
n∏

v=0

δ2v+1, n≥ 0. (2.17)

Proposition 2.1 [14]. v is regular if and only if σv and xσv are regular.

3. The Laguerre-Hahn case

For a λ∈ C−{0}, we can define a new linear form in �′,

u=−λx−2v+ δ0. (3.1)

From (2.1) and (3.1), we have

x2u=−λv. (3.2)

Remark 3.1. The above problem was partially treated by the second author and Maroni
[1, 15] and we are going to handle it differently.

Proposition 3.2. u is regular if and only if P̃n(0,λ) �= 0, n ≥ 0, where P̃n is defined by
(2.13).

Proof. Applying the operator σ for (3.2) and using (2.6), we obtain

xσu=−λσv. (3.3)

From (2.2) and (3.3), we get

σu=−λx−1σv+ δ0. (3.4)

From (3.1), it is plain that u is symmetric linear form. Then, according to Proposition
2.1 u is regular if and only if xσu and σu are regular. But xσu=−λσv is regular because
λ �= 0 and σv is regular. So u is regular if and only if σu=−λx−1σv+ δ0 is regular.

Or, {P̃n}n≥0 is the corresponding orthogonal sequence to σv, and it was shown in [13]
that σu = −λx−1σv + δ0 is regular if and only if λ �= 0 and P̃n(0,λ) �= 0, n ≥ 0. Then, we
deduce the desired result. �

Remarks 3.3. (1) u is regular if and only if λ �= λn, n≥ 0, where λn = P̃n(0)/P̃(1)
n−1(0).

(2) In fact, we have the well-known identity (see [6, page 86])

P̃n+1(0)P̃(1)
n+1(0)− P̃n+2(0)P̃(1)

n (0)=
n∏

v=0

δP̃v+1, n≥ 0. (3.5)

Dividing the above equation by P̃n+2(0)P̃n+1(0) and using (2.13), (2.16), and (2.17),
we obtain

P̃(1)
n+1(0)

P̃n+2(0)
− P̃(1)

n (0)

P̃n+1(0)
=−

n+1∏

v=0

δ2v

δ2v+1
, n≥ 0. (3.6)
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This leads to

P̃(1)
n (0)=−P̃n+1(0)

n∑

k=0

k∏

v=0

δ2v

δ2v+1
, n≥ 0. (3.7)

Using (2.12) and (3.7), we can easily find the result given in [15] according to Propo-
sition 3.2: when the linear form v is symmetric, then

u is regular ⇐⇒ λ �= −
( n∑

k=0

k∏

v=0

δ2v

δ2v+1

)−1

. (3.8)

When u is regular, let {Zn}n≥0 be the corresponding sequence satisfying the recurrence
relation

Zn+2(x)= xZn+1(x)− γn+1Zn(x), n≥ 0,

Z1(x)= x, Z0(x)= 1.
(3.9)

Let us now consider the quadratic decomposition of the sequence {Zn}n≥0,

Z2n(x)= Pn
(
x2), Z2n+1(x)= xRn

(
x2), n≥ 0. (3.10)

From (3.4), we can deduce the following result.

Proposition 3.4 [13]. The polynomials of the sequence {Pn}n≥0 satisfy the relation

Pn+1(x)= P̃n+1(x) + ãnP̃n(x), n≥ 0, (3.11)

where

ãn =− P̃n+1(0,λ)

P̃n(0,λ)
, n≥ 0. (3.12)

Lemma 3.5 (cf. [1]).

Zn+2(x)= Sn+2(x) + anSn(x), n≥ 0, (3.13)

with

a2n = ãn, a2n+1 = δ2n+2, n≥ 0. (3.14)

Proof. On the basis of [1], we have a2n+1 = δ2n+2, n≥ 0 and

Z2n+2(x)= S2n+2(x) + a2nS2n(x), n≥ 0. (3.15)

In (3.13), replace x by x2 and compare the obtained equation with the above one, we
obtain a2n = ãn, n≥ 0, according to (3.10). �

Proposition 3.6 (cf. [15]).

γ1 =−λ, γ2n+2 = ãn, γ2n+3 = δ2n+1δ2n+2

ãn
, n≥ 0. (3.16)
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Remarks 3.7. (1) The decomposition (3.10) shows that Rn(x)= P̃n(x), n≥ 0, since xσu=
−λσv. Consequently, the polynomial Z2n+1 does not depend on λ.

(2) From (2.16), (3.9), and (3.16), the sequence {Pn}n≥0 satisfies the recurrence rela-
tion (2.13) with

βP0 =−λ, βPn+1 = ãn +
δ2n+1δ2n+2

ãn
, n≥ 0,

γP1 =−λã0, γPn+2 =
ãn+1δ2n+1δ2n+2

ãn
, n≥ 0.

(3.17)

Definition 3.8 [2]. The regular linear form v is called Laguerre-Hahn if its formal Stieltjes
function satisfies the Riccati equation

Φ̃(z)S′(v)(z)= B̃(z)S2(v)(z) + C̃0(z)S(v)(z) + D̃0(z), (3.18)

where Φ̃ is monic, B̃, C̃0, and D̃0 are polynomials, and S(v)(z)=−∑n≥0((v)n/zn+1).

It was shown in [8] that (3.18) is equivalent to

(
Φ̃(x)v

)′
+ Ψ̃v+ B̃

(
x−1v2)= 0 (3.19)

with

Ψ̃(x)=−Φ̃′(x)− C̃0(x). (3.20)

We also have the following relation:

D̃0(x)=−(vθ0Φ̃
)′

(x)− (vθ0Ψ̃
)
(x)− (v2θ2

0B̃
)
(x). (3.21)

Remark 3.9 [14]. When B = 0 in (3.18) or (3.19), the linear form v is semiclassical.

Proposition 3.10 [1]. Define d̃ =max(deg(Φ̃),deg(B̃)) and p̃ = deg(Ψ̃).

The Laguerre-Hahn linear form v satisfying (3.19) is of class s̃=max(d̃− 2, p̃− 1) if and
only if

∏

c∈�

{∣∣Φ̃′(c) + Ψ̃(c)
∣
∣+

∣
∣B̃(c)

∣
∣+

∣
∣〈v,θ2

c Φ̃+ θcΨ̃+ vθ0θcB̃
〉∣∣} �= 0, (3.22)

where � denotes the set of zeros of Φ̃.

Corollary 3.11. The Laguerre-Hahn linear form v satisfying (3.18) is of class s̃=max(d̃−
2, p̃− 1) if and only if

∏

c∈�

{∣∣C̃0(c)
∣
∣+

∣
∣B̃(c)

∣
∣+

∣
∣D̃0(c)

∣
∣} �= 0. (3.23)
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Remark 3.12. Equation (3.23) is equivalent to the fact that the polynomial coefficients in
(3.18) are coprime.

Proposition 3.13. If v is a Laguerre-Hahn linear form and satisfies (3.18), then for every
λ∈ C−{0} such that P̃n(0,λ) �= 0, n≥ 0, the linear form u defined by (3.1) is regular and
Laguerre-Hahn. It satisfies

Φ(z)S′(u)(z)= B(z)S2(u)(z) +C0(z)S(u)(z) +D0(z), (3.24)

where

Φ(z)= z2Φ̃(z),

B(z)=−λ−1z4B̃(z),

C0(z)= z2C̃0(z)− 2λ−1z3B̃(z)− 2zΦ̃(z),

D0(z)=−Φ̃(z)− λD̃0(z) + zC̃0(z)− λ−1z2B̃(z),

(3.25)

and u is of class s such that s≤ s̃+ 4.

Proof. We have [14]

S(v)(z)= S
(− λ−1ξ2u

)
(z)

=−λ−1{z2S(u)(z) +
(
uθ0

(
ξ2))(z)

}

=−λ−1{z2S(u)(z) + z
}
.

(3.26)

By substituting (3.26) in (3.18), we easily find (3.24)-(3.25).
The linear form u satisfies the distributional equation

(
Φ(x)u

)′
+Ψu+B

(
x−1u2)= 0, (3.27)

where Φ and B are the polynomials defined by (3.25) and

Ψ(x)=−Φ′(x)−C0(x)= x2(Ψ̃(x) + 2λ−1xB̃(x)
)
. (3.28)

Then deg(Φ)≤ s̃+ 4, deg(B)≤ s̃+ 6, and deg(Ψ)= p ≤ s̃+ 5.
Thus d =max(deg(Φ),deg(B))≤ s̃+ 6 and s=max(d− 2, p− 1)≤ s̃+ 4. �

Proposition 3.14. The class of u depends only on the zero x = 0 of Φ.

Proof. Since v is a Laguerre-Hahn linear form of class s, S(v)(z) satisfies (3.18), where the
polynomials Φ̃, B̃, C̃0, and D̃0 are coprime. Let Φ, B, C0, and D0 be as in Proposition 3.13.
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Let c be a zero of Φ different from 0, this implies that Φ̃(c) = 0. We know that |B̃(c)|+
|C̃0(c)|+ |D̃0(c)| �= 0,

(i) if B̃(c) �= 0, then B(c) �= 0,
(ii) if B̃(c)= 0 and C̃0(c) �= 0, then C0(c) �= 0,

(iii) if B̃(c)= C̃0(c)= 0, then D0(c) �= 0, whence |B(c)|+ |C0(c)|+ |D0(c)| �= 0. �

Concerning the class of u, we have the following result.

Proposition 3.15. Let t̃ = degΦ̃, r̃ = deg B̃, and p̃ = degΨ̃. Under the conditions of Prop-
osition 3.13, for the class of u, the following two different cases hold.

(1) If −Φ̃(0)− λD̃0(0) �= 0, then

s=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s̃+ 4 if p<̃r̃, t̃ ≤ r̃,

s̃+ 3 if p̃ = r̃, t̃ < r̃ + 2 or p̃ < r̃, t̃ = r̃ + 1,

s̃+ 2 if p̃ ≤ r, t̃ ≥ r̃ + 2 or p̃ ≥ r̃ + 1.

(3.29)

(2) If −Φ̃(0)− λD̃0(0)= 0 and Φ(0) �= 0, then

s=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s̃+ 3 if p<̃r̃, t̃ ≤ r̃,

s̃+ 2 if p̃ = r̃, t̃ < r̃ + 2 or p̃ < r̃, t̃ = r̃ + 1,

s̃+ 1 if p̃ ≤ r, t̃ ≥ r̃ + 2 or p̃ ≥ r̃ + 1,

(3.30)

where the polynomials Φ̃, Ψ̃, B̃, C̃0, and D̃0 are defined in (3.18)-(3.19).

Proof. If −Φ̃(0)− λD̃0(0) �= 0, then from (3.25) and (3.28) we have

deg(Φ)= t̃+ 2, deg(B)= r̃ + 4, p := deg(Ψ)≤max( p̃+ 2, r̃ + 3). (3.31)

We will distinguish three cases:
(a) p̃ < r̃, then p = r̃ + 3 and s=max(t̃, r̃ + 2). If t̃ ≤ r̃, then s= r̃ + 2= s̃+ 4. If t̃ = r̃ +

1, then s= r̃ + 2= s̃+ 3, since s̃= r̃− 1 in this case. If t̃ ≥ r̃ + 2, then s= t̃ = s̃+ 2;
(b) p̃ = r̃, then p = r̃ + 3= p̃+ 3 and s=max(t̃, p̃ + 2). If t̃ < p̃+ 2, then s= p̃+ 2=

s̃+ 3. If t̃ ≥ p̃+ 2, then s= t̃ = s̃+ 2;
(c) p̃ > r̃, then p ≤ p̃+ 2 and s=max(t̃, p̃+ 1).

Since t̃ = s̃+ 2 or p̃+ 1= s̃+ 2, then s= s̃+ 2.
Therefore, from the above situations, we deduce

s=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s̃+ 4 if p<̃r̃, t̃ ≤ r̃,

s̃+ 3 if p̃ = r̃, t̃ < r̃ + 2 or p̃ < r̃, t̃ = r̃ + 1,

s̃+ 2 if p̃ ≤ r, t̃ ≥ r̃ + 2 or p̃ ≥ r̃ + 1.

(3.32)
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If −Φ̃(0)− λD̃(0)= 0, then (3.24)-(3.25) is divisible by z. Thus,

zΦ̃(z)S′(u)(z)=−λ−1z3B̃(z)S2(u)(z) +
{− 2Φ̃(z)− 2λ−1z2B̃(z) + zC̃0(z)

}
S(u)(z)

+
{− (θ0Φ̃

)
(z)− λ−1zB̃(z) + C̃0(z)− λ

(
θ0D̃

)
(z)
}
.

(3.33)

If Φ̃(0) �= 0, it is not possible to simplify, which means that the class of u is

s=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s̃+ 3 if p<̃r̃, t̃ ≤ r̃,

s̃+ 2 if p̃ = r̃, t̃ < r̃ + 2 or p̃ < r̃, t̃ = r̃ + 1,

s̃+ 1 if p̃ ≤ r, t̃ ≥ r̃ + 2 or p̃ ≥ r̃ + 1.

(3.34)

�

Note that the sequence of orthogonal polynomials (OPs) relatively to a Laguerre-Hahn
linear form has a structure relation [2]. Then, if we consider that the linear form v is
Laguerre-Hahn, its OPs {Sn}n≥0 fulfills the following structure relation:

Φ̃(x)S′n+1(x)− B̃(x)S(1)
n (x)= 1

2

(
C̃n+1(x)− C̃0(x)

)
Sn+1(x)− δn+1D̃n+1(x)Sn(x), n≥ 0,

(3.35)

with

C̃n+1(x)=−C̃n(x) + 2xD̃n(x),

δn+1D̃n+1(x)=−Φ̃(x) + δnD̃n−1(x)− xC̃n(x) + x2D̃n(x),
n≥ 0, (3.36)

where C̃0(x) and D̃0(x) are given by (3.18) and δ0D̃−1(x)= B̃(x).
Replacing n by n− 1 in (3.35) and using (2.9), we obtain

Φ̃(x)S′n(x)− B̃(x)S(1)
n−1(x)= D̃n(x)Sn+1(x) +

(
1
2

(
C̃n(x)− C̃0(x)

)− xD̃n(x)
)
Sn(x).

(3.37)

According to Proposition 3.13, the linear form u is also Laguerre-Hahn and its OPs
{Zn}n≥0 satisfies a structure relation. In general, {Zn}n≥0 fulfills

Φ(x)Z′n+1(x)−B(x)Z(1)
n (x)= 1

2

(
Cn+1(x)−C0(x)

)
Zn+1(x)− γn+1Dn+1(x)Zn(x), n≥ 0,

(3.38)

with

Cn+1(x)=−Cn(x) + 2xDn(x),

γn+1Dn+1(x)=−Φ(x) + γnDn−1(x)− xCn(x) + x2Dn(x),
n≥ 0, (3.39)

where C0(x), D0(x) are given by (3.25) and γ0D−1(x)= B(x).
We are going to establish the expression of Cn and Dn, n≥ 0, in terms of those of the

sequence {Sn}n≥0.
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Proposition 3.16. The sequence {Zn}n≥0 satisfies the structure relation (3.38) with (for
n≥ 0)

Cn+2(x)= x2C̃n+1(x) + 2
(
an− δn+1

)
xD̃n(x)− 2

(
an+1− δn+2

)
xD̃n+1(x),

Dn+2(x)= x2D̃n+1(x) +
(
an− δn+1

)
(
D̃n(x)− an+1

an
D̃n+2(x)

)
,

C1 = x2C̃0(x)− 2λxD̃0(x), D1(x)= x2D̃0(x),

(3.40)

C0(x) and D0(x) are given by (3.25).

To prove the above proposition, we need the following lemma.

Lemma 3.17.

anx
2Sn+1(x)= anxZn+2 + γn+2

(
δn+1− an

)
Zn+1(x), n≥ 0, (3.41)

anx
2Sn(x)= (an+1− δn+2

)
Zn+2 + γn+2xZn+1(x), n≥ 0, (3.42)

x2Z(1)
n+1(x)= xZn+2(x)− λ

(
S(1)
n+1(x) + anS

(1)
n−1(x)

)
, n≥ 0. (3.43)

Proof. For (3.41)-(3.42) see [1].
It is clear that

x
(
Sn(x)− Sn(ξ)

)− (x− ξ)
(
Sn(x)− Sn(0)= ξ

(
Sn(x)− Sn(ξ)

)
+ (ξ − x)

(
Sn(ξ)− Sn(0)

)
,

(3.44)

then

〈
ξ−2v,

Sn(ξ)− Sn(x)
ξ − x

�
= S(1)

n−1(x)− S(1)
n−1(0)

x2
− S(1)

n−1

′
(0)

x
. (3.45)

From (3.2) and (3.13), the conditions 〈u,Zn+2〉 = 0 and 〈u,xZn+2〉 = 0 imply, respec-
tively,

−λ
(
S(1)
n+1

′
(0) + anS

(1)
n−1

′
(0)
)

+ Sn+2(0) + anSn(0)= 0, (3.46)

−λ
(
S(1)
n+1(0) + anS

(1)
n−1(0)

)
= 0. (3.47)

From (2.11) and (3.13), we have

Z(1)
n+1(x)=

〈
u,
Zn+2(ξ)−Zn+2(x)

ξ − x

�

= Sn+2(x)− Sn+2(0)
x

+ an
Sn(x)− Sn(0)

x

− λ

{〈
ξ−2v,

Sn+2(ξ)− Sn+2(x)
ξ − x

�
+ an

〈
ξ−2v,

Sn(ξ)− Sn(x)
ξ − x

�}

.

(3.48)

Taking into account (3.45)–(3.47) in the above equation, we get (3.43). �

Now, we are able to prove Proposition 3.16.
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Proof. After derivation, we multiply (3.13) by Φ̃(x), we obtain

Φ̃(x)Z′n+2(x)= Φ̃(x)S′n+2(x) + anΦ̃(x)S′n(x). (3.49)

Multiplying (3.43) by λ−1B̃(x), adding (3.49), and taking into account (3.35)–(3.37),
we get

Φ̃(x)Z′n+2(x) + λ−1x2B̃(x)Z(1)
n+1(x)=G(x,n)Sn+1(x) +H(x,n)Sn(x) + λ−1xB̃(x)Zn+2(x),

(3.50)

where

G(x,n)= 1
2

(
C̃n+2(x)− C̃0(x)

)
x+ anD̃n(x)− δn+2D̃n+2(x),

H(x,n)=−1
2

(
C̃n+2(x)− C̃0(x)

)
δn+1 + an

{
1
2

(
C̃n(x)− C̃0(x)

)− xD̃n(x)
}
.

(3.51)

Multiplying (3.50) by x2 and taking into account (3.14), (3.25), (3.36), and (3.41)-
(3.42), we obtain

Φ(x)Z′n+2(x)−B(x)Z(1)
n+1(x)

=
{

1
2
x2(C̃n+1(x)− C̃0(x)

)
+
(
an− δn+1

)
xD̃n(x)

− (an+1− δn+2
)
xD̃n+1(x) + xΦ̃(x) + λ−1x3B̃(x)

}
Zn+2(x)

− γn+2

{
x2D̃n+1(x) +

(
an− δn+1

)
(
D̃n(x)− an+1

an
D̃n+2(x)

)}
Zn+1(x).

(3.52)

Comparing with (3.38), we get the desired result for n≥ 2.
Finally, using (3.39) with n= 0 and (3.25), we easily obtain C1 and D1. �

Remark 3.18. In the Laguerre-Hahn case, the polynomials Cn and Dn of (3.38) enable
to obtain the coefficients of the fourth-order differential equation satisfied by each Zn,
n≥ 0. See, for instance [8, page 90].

Examples 3.19. In the next examples, we apply our results to the associated linear form
of the first order for the classical polynomials which are symmetric.

(1) Let v be the associated linear form of the first order of Hermite. Here [8, 11]

δ2n+1 = n+ 1, δ2n+2 = 2n+ 3
2

, n≥ 0, (3.53)

Φ̃(x)= 1, Ψ̃(x)= 2x, B̃(x)=−1,

C̃n(x)=−2x, D̃n(x)=−2, n≥ 0.
(3.54)

In this case, the linear form v is a Laguerre-Hahn linear form of class s̃= 0. From (2.17)
and (3.53), we have

P̃n(0)= (−1)nΓ(n+ 1), n≥ 0. (3.55)
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From (3.53), (2.15), (2.16), and (2.10), we get the second-order recurrence relation

satisfied by {P̃(1)
n }n≥0. Using this relation, we deduce by induction

P̃(1)
n (0)= 2(−1)n+1

(
Γ(n+ 2)− 2Γ(n+ 5/2)√

π

)
, n≥ 0. (3.56)

From (2.12), and (3.55)-(3.56), we obtain

P̃n(0,λ)= (−1)n√
π

(
(1− 2λ)

√
πΓ(n+ 1) + 4λΓ

(
n+

3
2

))
, n≥ 0, (3.57)

then u is regular for every λ �= 0 such that

λ−1 �= 2− 4Γ(n+ 3/2)√
πΓ(n+ 1)

, n≥ 0. (3.58)

From (3.12) and (3.57), we obtain

ãn = (1− 2λ)
√
πΓ(n+ 2) + 4λΓ(n+ 5/2)

(1− 2λ)
√
πΓ(n+ 1) + 4λΓ(n+ 3/2)

, n≥ 0. (3.59)

Using (3.53), (3.59), and (3.16), we get

γ1 =−λ,

γ2n+2 = (1− 2λ)
√
πΓ(n+ 2) + 4λΓ(n+ 5/2)

(1− 2λ)
√
πΓ(n+ 1) + 4λΓ(n+ 3/2)

, n≥ 0,

γ2n+3 = (1− 2λ)
√
π(2n+ 3)Γ(n+ 2) + 8λ(n+ 1)Γ(n+ 5/2)

2(1− 2λ)
√
πΓ(n+ 2) + 8λΓ(n+ 5/2)

, n≥ 0.

(3.60)

Taking into account that the linear form v is Laguerre-Hahn and by virtue of Prop-
osition 3.13, the linear form u is also Laguerre-Hahn. It satisfies (3.24) and (3.27) with

Φ(x)= x2, B(x)= λ−1x4, Ψ(x)= (2− 2λ−1)x3,

C0(x)= (2λ−1− 2
)
x3− 2x, D0(x)= (λ−1− 2

)
x2 + 2λ− 1.

(3.61)

From (3.54), we have −Φ̃(0)− λD̃0(0)=−1 + 2λ and Φ(0)= 1.
Now it is enough to use Proposition 3.15 to obtain the following.
(i) If λ satisfies (3.58) and λ−1 �= 2, then the class of u is s= 2.

(ii) If λ−1 = 2, then the class of u is s= 1.

Remark 3.20. The symmetric Laguerre-Hahn linear forms of class s = 1 have been de-
scribed in [2].
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Finally, from (3.54), (3.59), and Proposition 3.16, we give the elements of the structure
relation of the sequence {Zn}n≥0 for n≥ 0,

C0(x)= (2λ−1− 2
)
x3− 2x, C1(x)=−2x3 + 4λx,

C2n+2(x)=−2x3− 6λΓ(n+ 3/2)
(1− 2λ)

√
πΓ(n+ 1) + 4λΓ(n+ 3/2)

x,

C2n+3(x)=−2x3 +
6λΓ(n+ 5/2)

(1− 2λ)
√
πΓ(n+ 2) + 4λΓ(n+ 5/2)

x,

D0(x)= (λ−1− 2
)
x2 + 2λ− 1, D2n+1(x)=−2x2,

D2n+2(x)=−2x2

− λ(2λ− 1)
√
π Γ(n+ 3/2)Γ(n+ 1)

2
(
(1− 2λ)

√
πΓ(n+ 1) + 4λΓ(n+ 3/2)

)(
(1− 2λ)

√
πΓ(n+ 2) + 4λΓ(n+ 5/2)

) .

(3.62)

(2) Let v be the associated linear form of the first order of �(α,α). Here [8, 11]

δ2n+1 = 4(n+ 1)(n+α+ 1)
(4n+ 2α+ 3)(4n+ 2α+ 5)

,

δ2n+2 = (2n+ 3)(2n+ 2α+ 3)
(4n+ 2α+ 5)(4n+ 2α+ 7)

, n≥ 0,

(3.63)

Φ̃(x)= x2− 1, Ψ̃(x)=−2(α+ 2)x, B̃(x)= 2α+ 1
2α+ 3

,

C̃n(x)= 2(n+α+ 1)x, D̃n(x)= 2n+ 2α+ 3, n≥ 0.
(3.64)

We assume (2α+ 1) �= 0, then v is a Laguerre-Hahn linear form of class s̃= 0.
By applying the same process as we did to obtain (3.57) and using the above results,

we can get for n≥ 0,

P̃n(0,λ)= (−1)n

Γ(2n+α+ 5/2)
dn(λ), n≥ 0, (3.65)

where

dn(λ)= (1− (2α+ 3)λ
)Γ(α+ 3/2)Γ(n+ 1)Γ(n+α+ 1)

Γ(α+ 1)

+
2(2α+ 3)λ√

π
Γ
(
n+

3
2

)
Γ
(
n+α+

3
2

)
, n≥ 0.

(3.66)

Then, u is regular for every λ �= 0 such that

λ−1 �= 2α+ 3− 2Γ(α+ 1)Γ(n+ 3/2)Γ(n+α+ 3/2)√
πΓ(α+ 3/2)Γ(n+ 1)Γ(n+α+ 1)

, n≥ 0. (3.67)
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From (3.12) and (3.65)-(3.66), we obtain

ãn = 4dn+1(λ)
(4n+ 2α+ 3)(4n+ 2α+ 5)dn(λ)

, n≥ 0. (3.68)

Using (3.63), (3.68), and (3.16), we get

γ1 =−λ,

γ2n+2 = 4dn+1(λ)
(4n+ 2α+ 3)(4n+ 2α+ 5)dn(λ)

, n≥ 0,

γ2n+3 = (n+ 1)(n+α+ 1)(2n+ 3)(2n+ 2α+ 3)dn(λ)
(4n+ 2α+ 5)(4n+ 2α+ 7)dn+1(λ)

, n≥ 0.

(3.69)

According to Proposition 3.13, the linear form u is also Laguerre-Hahn. It satisfies
(3.24) and (3.27) with

Φ(x)= x2(x2− 1
)
, B(x)=−λ−1 2α+ 1

2α+ 3
x4, Ψ(x)=−2

(
α+ 2− λ−1 2α+ 1

2α+ 3

)
x3,

C0(x)= 2
(
α− λ−1 2α+ 1

2α+ 3

)
x3 + 2x, D0(x)=

(
2α+ 1− λ−1 2α+ 1

2α+ 3

)
x2 + 1− (2α+ 3)λ.

(3.70)

From (3.64), we have −Φ̃(0)− λD̃0(0)= 1− λ(2α+ 3) and Φ(0)=−1.
Now it is enough to use Proposition 3.15 to obtain the following.

(i) If λ satisfies (3.67) and λ−1 �= 2α+ 3, then the class of u is s= 2.
(ii) If λ−1 = 2α+ 3, then the class of u is s= 1.

Finally, from Proposition 3.16, we have for n≥ 0,

C0(x)= 2
(
α− λ−1 2α+ 1

2α+ 3

)
x3 + 2x, C1(x)= (2α+ 2)x3− 2λ(2α+ 3)x,

C2n+2(x)= 2(2n+α+ 2)x3 +
4λ(2α+ 3)Γ(n+ 3/2)Γ(n+α+ 3/2)√

πdn(λ)
x,

C2n+3(x)= 2(2n+α+ 3)x3− 4λ(2α+ 3)Γ(n+ 5/2)Γ(n+α+ 5/2)√
πdn+1(λ)

x,

D0(x)=
(

2α+ 1− λ−1 2α+ 1
2α+ 3

)
x2 + 1− (2α+ 3)λ,

D2n+1(x)= (4n+ 2α+ 3)x2,

D2n+2(x)

= (4n+ 2α+ 5)

×
(
x2− (2α+3)λ

(
1−(2α+3)λ

)
Γ(α+3/2)Γ(n+3/2)Γ(n+1)Γ(n+α+1)Γ(n+α+3/2)

2
√
πΓ(α+1)dn(λ)dn+1(λ)

)
.

(3.71)
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(3) Let v be the associated linear form of the first order of �(α,−α). Here [8, 11]

δ2n+1 = (2n+α+ 2)(2n−α+ 2)
(4n+ 3)(4n+ 5)

,

δ2n+2 = (2n+α+ 3)(2n−α+ 3)
(4n+ 5)(4n+ 7)

, n≥ 0,

(3.72)

Φ̃(x)= x2− 1, Ψ̃(x)=−4x, B̃(x)= 1−α2

3
,

C̃n(x)= 2(n+ 1)x, D̃n(x)= 2n+ 3, n≥ 0.
(3.73)

We assume (1−α2) �= 0, then v is a Laguerre-Hahn linear form of class s̃= 0.
From (2.17) and (3.72), we have

P̃n(0)= (−1)n
π
√

2Γ(n+ 1 +α/2)Γ(n+ 1−α/2)
4n+1Γ(n+ 9/4)Γ(n+ 7/4)Γ(1 +α/2)Γ(1−α/2)

, n≥ 0. (3.74)

From (3.72), we have (with
∑−1

n=0 = 0)

�n =
n∑

k=0

k∏

v=0

δ2v

δ2v+1
= 15

(2 +α)(2−α)
+

12Γ(2 +α/2)Γ(2−α/2)
(2 +α)(2−α)Γ(3/2 +α/2)Γ(3/2−α/2)

×
n−1∑

k=0

(4k+ 9)Γ(k+ 5/2 +α/2)Γ(k+ 5/2−α/2)
4Γ(k+ 3 +α/2)Γ(k+ 3−α/2)

, n≥ 0.

(3.75)

Or,

(4k+ 9)Γ(k+ 5/2 +α/2)Γ(k+ 5/2−α/2)
4Γ(k+ 3 +α/2)Γ(k+ 3−α/2)

= τk+1− τk (3.76)

with

τk = Γ(k+ 5/2 +α/2)Γ(k+ 5/2−α/2)
Γ(k+ 2 +α/2)Γ(k+ 2−α/2)

, k ≥ 0, (3.77)

then

�n =−3 + 3
Γ(1 +α/2)Γ(1−α/2)Γ(n+ 5/2 +α/2)Γ(n+ 5/2−α/2)
Γ(3/2 +α/2)Γ(3/2−α/2)Γ(n+ 2 +α/2)Γ(n+ 2−α/2)

, n≥ 0. (3.78)

Therefore, from (3.7), (3.74), and the above result, we obtain

P̃(1)
n (0)= (−1)n+13π

√
2

4n+1

(
Γ(n+ 2 +α/2)Γ(n+ 2−α/2)

Γ(n+ 9/4)Γ(n+ 7/4)Γ(1 +α/2)Γ(1−α/2)

− Γ(n+ 5/2 +α/2)Γ(n+ 5/2−α/2)
Γ(3/2 +α/2)Γ(3/2−α/2)

)

.

(3.79)
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From (2.12) and (3.74)–(3.79), we obtain

P̃n(0,λ)= (−1)nπ
√

2
4n+1Γ(n+ 5/4)Γ(n+ 3/4)

dn(λ), n≥ 0, (3.80)

where

dn(λ)= (1− 3λ)
Γ(n+ 1 +α/2)Γ(n+ 1−α/2)

Γ(1 +α/2)Γ(1−α/2)

+
3λΓ(n+ 3/2 +α/2)Γ(n+ 3/2−α/2)

Γ(3/2 +α/2)Γ(3/2−α/2)
, n≥ 0.

(3.81)

Then, u is regular for every λ �= 0 such that

λ−1 �= 3− Γ(n+ 3/2 +α/2)Γ(n+ 3/2−α/2)Γ(1 +α/2)Γ(1−α/2)
Γ(n+ 1 +α/2)Γ(n+ 1−α/2)Γ(3/2 +α/2)Γ(3/2−α/2)

, n≥ 0. (3.82)

From (3.12) and (3.80)-(3.81), we obtain

ãn = 4dn+1(λ)
(4n+ 3)(4n+ 5)dn(λ)

, n≥ 0. (3.83)

Using (3.72), (3.83), and (3.16), we get

γ1 =−λ,

γ2n+2 = 4dn+1(λ)
(4n+ 3)(4n+ 5)dn(λ)

, n≥ 0,

γ2n+3 =
(
(2n+ 2)2−α2

)(
(2n+ 3)2−α2

)
dn(λ)

4(4n+ 5)(4n+ 7)dn+1(λ)
, n≥ 0.

(3.84)

According to Proposition 3.13, the linear form u is also Laguerre-Hahn. It satisfies
(3.24) and (3.27) with

Φ(x)= x2(x2− 1
)
, B(x)=−λ−1 1−α2

3
x4, Ψ(x)=−2

(
2− λ−1 1−α2

3

)
x3,

C0(x)=−2λ−1 1−α2

3
x3 + 2x, D0(x)=

(
1− λ−1 1−α2

3

)
x2 + 1− 3λ.

(3.85)

From (3.73), we have −Φ̃(0)− λD̃0(0)= 1− 3λ and Φ(0)=−1.
Now it is enough to use Proposition 3.15 to obtain the following.

(i) If λ satisfies (3.82) and λ−1 �= 3, then the class of u is s= 2.
(ii) If λ−1 = 3, then the class of u is s= 1.
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Again, from Proposition 3.16, we have for n≥ 0,

C0(x)=−2λ−1 1−α2

3
x3 + 2x, C1(x)= 2x3− 6λx,

C2n+2(x)= 4(n+ 1)x3 +
6λΓ(n+ 3/2 +α/2)Γ(n+ 3/2−α/2)

dn(λ)
x,

C2n+3(x)= 2(2n+ 3)x3− 6λΓ(n+ 5/2 +α/2)Γ(n+ 5/2−α/2)
dn+1(λ)

x,

D0(x)=
(

1− 1−α2

3λ

)
x2 + 1− 3λ,

D2n+1(x)= (4n+ 3)x2,

D2n+2(x)

= (4n+ 5)

×
(
x2− 3λ(1− 3λ)Γ(n+ 1 +α/2)Γ(n+ 1−α/2)Γ(n+ 3/2 +α/2)Γ(n+ 3/2−α/2)

Γ(1 +α/2)Γ(1−α/2)dn(λ)dn+1(λ)

)

.

(3.86)

(4) Let v be the associated linear form of the first order of Bessel with parameter value of
α= 1. We have [8, 11]

δ2n+1 = −1
(4n+ 3)(4n+ 5)

, δ2n+2 = −1
(4n+ 5)(4n+ 7)

, n≥ 0, (3.87)

Φ̃(x)= x2, Ψ̃(x)= 4x, B̃(x)=−1
3

,

C̃n(x)= 2(n+ 1)x, D̃n(x)= 2n+ 3, n≥ 0.
(3.88)

In this case, the linear form v is a Laguerre-Hahn linear form of class s̃= 0.
By applying the same process as we did to obtain (3.57) and using the above results,

we can get for n≥ 0,

P̃n(0,λ)=
√
π

22n+1Γ(2n+ 3/2)

(
1− 3λn(2n+ 3)

)
, n≥ 0, (3.89)

then u is regular for every λ �= 0 such that

λ−1 �= 3n(2n+ 3), n≥ 0. (3.90)

From (3.12) and (3.89), we obtain

ãn =− 1− 3λ(n+ 1)(2n+ 5)
(4n+ 3)(4n+ 5)

(
1− 3λn(2n+ 3)

) , n≥ 0. (3.91)
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Using (3.87), (3.91), and (3.16), we get

γ1 =−λ,

γ2n+2 =− 1− 3λ(n+ 1)(2n+ 5)
(4n+ 3)(4n+ 5)

(
1− 3λn(2n+ 3)

) , n≥ 0,

γ2n+3 =− 1− 3λn(2n+ 3)
(4n+ 5)(4n+ 7)

(
1− 3λ(n+ 1)(2n+ 5)

) , n≥ 0.

(3.92)

By virtue of Proposition 3.13, the linear form u is also Laguerre-Hahn. It satisfies
(3.24) and (3.27) with

Φ(x)= x4, B(x)= λ−1

3
x4, Ψ(x)=−2

(
2− λ−1

3

)
x3,

C0(x)= 2λ−1

3
x3, D0(x)=

(
1 +

λ−1

3

)
x2− 3λ.

(3.93)

According to Proposition 3.15, the class of u is s= 2.
Finally, from Proposition 3.16, we have for n≥ 0,

C0(x)= 2λ−1

3
x3, C1(x)= 2x3− 6λx,

C2n+2(x)= 4(n+ 1)x3− 6λ
1− 3λn(2n+ 3)

x,

C2n+3(x)= 2(2n+ 3)x3 +
6λ

1− 3λ(n+ 1)(2n+ 5)
x,

D0(x)=
(

1 +
λ−1

3

)
x2− 3λ,

D2n+1(x)= (4n+ 3)x2,

D2n+2(x)= (4n+ 5)
(
x2− 9λ2

(
1− 3λ(n+ 1)(2n+ 5)

)(
1− 3λn(2n+ 3)

)
)
.

(3.94)
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Matematica Pura ed Applicata (1990), no. 6, 19–53.
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