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We consider the noncanonical Hamiltonian dynamics of a gyrostat in the three-body
problem. By means of geometric-mechanics methods we study the approximate Poisson
dynamics that arises when we develop the potential in series of Legendre and truncate
this in an arbitrary order k. Working in the reduced problem, the existence and number
of equilibria, that we denominate of Euler type in analogy with classic results on the topic,
are considered. Necessary and sufficient conditions for their existence in an approximate
dynamics of order k are obtained and we give explicit expressions of these equilibria, use-
ful for the later study of the stability of the same ones. A complete study of the number
of Eulerian equilibria is made in approximate dynamics of orders zero and one. We ob-
tain the main result of this work, the number of Eulerian equilibria in an approximate
dynamics of order k for k ≥ 1 is independent of the order of truncation of the potential
if the gyrostat S0 is close to the sphere. The instability of Eulerian equilibria is proven for
any approximate dynamics if the gyrostat is close to the sphere. In this way, we generalize
the classical results on equilibria of the three-body problem and many of those obtained
by other authors using more classic techniques for the case of rigid bodies.

Copyright © 2006 J. A. Vera and A. Vigueras. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the study of configurations of relative equilibria by differential geometry methods or
by more classical ones, we will mention here the papers of Wang et al. [8], about the
problem of a rigid body in a central Newtonian field; Maciejewski [3], about the problem
of two rigid bodies in mutual Newtonian attraction. These papers have been generalized
to the case of a gyrostat by Mondejar and Vigueras [4] to the case of two gyrostats in
mutual Newtonian attraction.
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2 Eulerian equilibria for a gyrostat in the three-body problem

For the problem of three rigid bodies we would like to mention that Vidyakin [7] and
Dubochine [1] proved the existence of Euler and Lagrange configurations of equilibria
when the bodies possess symmetries; Zhuravlev and Petrutskii [9] made a review of the
results up to 1990.

In Vera [5] and a recent paper of Vera and Vigueras [6] we study the noncanonical
Hamiltonian dynamics of n + 1 bodies in Newtonian attraction, where n of them are
rigid bodies with spherical distribution of mass or material points and the other one is a
triaxial gyrostat.

Let us remember that a gyrostat is a mechanical system S, composed of a rigid body
S′, and other bodies S′′ (deformable or rigid) connected to it, in such a way that their
relative motion with respect to its rigid part do not change the distribution of mass of the
total system S, (see Leimanis [2] for details).

In this paper, we take n= 2 and as a first approach to the qualitative study of this sys-
tem, we describe the approximate dynamics that arises in a natural way when we take the
Legendre development of the potential function and truncate this until an arbitrary or-
der. We give global conditions on the existence of relative equilibria and in analogy with
classic results on the topic, we study the existence of relative equilibria that we will de-
nominate of Euler type in the case in which S1, S2 are spherical or punctual bodies and S0

is a gyrostat. Necessary and sufficient conditions for their existence in a approximate dy-
namics of order k are obtained and we give explicit expressions of these equilibria, useful
for the later study of the stability of the same ones. A complete study of the number of
Eulerian equilibria is made in approximate dynamics of orders zero and one. The num-
ber of Eulerian equilibria in an approximate dynamics of order k for k > 1 is independent
of the order of truncation of the potential if the gyrostat S0 is close to the sphere. The
instability of Eulerian equilibria is proven for any approximate dynamics if the gyrostat
is close to the sphere. The analysis is done in vectorial form avoiding the use of canonical
variables and the tedious expressions associated with them.

We should notice that the studied system has potential interest both in astrodynamics
(dealing with spacecraft) as well as in the understanding of the evolution of planetary
systems recently found (and more to appear), where some of the planets may be modeled
like a gyrostat rather than a rigid body. In fact, the equilibria reported might be well
compared with the ones taken for the “parking areas” of the space missions (GENESIS,
SOHO, DARWIN, etc.) around the Eulerian points of the Sun-Earth and the Earth-Moon
systems.

To finish this introduction, we describe the structure of the article. The paper is orga-
nized in five sections, two appendices, and the bibliography. In these sections we study
the equations of motion, Casimir function and integrals of the system, the relative equi-
libria and the existence of Eulerian equilibria in an approximate dynamics of order k, in
particular the study of the bifurcations of Eulerian equilibria in an approximate dynamics
of orders zero and one.

2. Equations of motion

Following the line of Vera and Vigueras [6] let S0 be a gyrostat of mass m0 and S1, S2 two
spherical rigid bodies of masses m1 and m2. We use the following notation.
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Figure 2.1. Gyrostat in the three-body problem.

For u,v ∈ R3, u · v is the dot product, |u| is the Euclidean norm of the vector u, and
u× v is the cross-product. IR3 is the identity matrix and 0 is the zero matrix of order three.
Let z= (Π,λ,pλ,μ,pμ)∈R15 be a generic element of the twice reduced problem obtained
using the symmetries of the system, where Π = IΩ + lr is the total rotational angular
momentum vector of the gyrostat, I = diag(A,B,C) is the diagonal tensor of inertia of
the gyrostat, and Ω is the angular velocity of S0 in the body frame, J, which is attached
to its rigid part and whose axes have the direction of the principal axes of inertia of S0.
The vector lr is the gyrostatic momentum that we suppose constant and is given by lr =
(0,0, l). The elements λ, μ, pλ, and pμ are, respectively, the barycentric coordinates and
the linear momenta expressed in the body frame J (see Figure 2.1).

The twice reduced Hamiltonian of the system, obtained by the action of the group
SE(3), has the following expression:

�(z)=
∣
∣pλ

∣
∣

2

2g1
+

∣
∣pμ

∣
∣

2

2g2
+

1
2
ΠI−1Π− lr · I−1Π+ � (2.1)

with

M2 =m1 +m2, M1 =m1 +m2 +m0,

g1 = m1m2

M2
, g2 = m0M2

M1
,

(2.2)

with � being the potential function of the system given by the formula

�(λ,μ)=−
(

Gm1m2

|λ| +
∫

S0

Gm1dm(Q)
∣
∣Q +μ+

(

m2
/

M2
)

λ
∣
∣

+
∫

S0

Gm2dm(Q)
∣
∣Q +μ− (m1

/

M2
)

λ
∣
∣

)

. (2.3)

Let M=R15, and we consider the manifold (M,{·,·},�), with Poisson brackets {·,·}
defined by means of the Poisson tensor

B(z)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Π̂ λ̂ p̂λ μ̂ p̂μ

λ̂ 0 IR3 0 0
p̂λ −IR3 0 0 0
μ̂ 0 0 0 IR3

p̂μ 0 0 −IR3 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.4)
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In B(z), v̂ is considered to be the image of the vector v ∈R3 by the standard isomor-
phism between the Lie Algebras R3 and so(3), that is,

v̂ =
⎛

⎜
⎝

0 −v3 v2

v3 0 −v1

−v2 v1 0

⎞

⎟
⎠ . (2.5)

The equations of the motion are given by the following expression:

dz
dt
= {z,�(z)

}

(z)= B(z)∇z�(z), (2.6)

where∇z f is the gradient of f ∈ C∞(M) with respect to an arbitrary vector z.
Developing {z,�(z)}, we obtain the following group of vectorial equations of the mo-

tion:

dΠ

dt
=Π×Ω+ λ×∇λ� +μ×∇μ�,

dλ

dt
= pλ

g1
+ λ×Ω,

dpλ

dt
= pλ×Ω−∇λ�,

dμ

dt
= pμ

g2
+μ×Ω,

dpμ

dt
= pμ×Ω−∇μ�.

(2.7)

Important elements of B(z) are the associate Casimir functions. We consider the total
angular momentum L given by

L=Π+ λ×pλ +μ×pμ. (2.8)

Then the following result is verified (see Vera and Vigueras [6] for details).

Proposition 2.1. If ϕ is a real smooth function not constant, then ϕ(|L|2/2) is a Casimir
function of the Poisson tensor B(z). Moreover KerB(z)= 〈∇zϕ〉. Also, dL/dt = 0, that is to
say the total angular momentum vector remains constant.

2.1. Approximate Poisson dynamics. To simplify the problem we assume that the gyro-
stat S0 is symmetrical around the third axis of inertia OZ and with respect to the plane
OXY being OX , OY , OZ are the coordinated axes of the body frame J. If the mutual
distances are bigger than the individual dimensions of the bodies, then we can develop
the potential in fast convergent series. Under these hypotheses, we will be able to carry
out a study of equilibria in different approximate dynamics.

Applying the Legendre development of the potential, we have

�(λ,μ)=−
(

Gm1m2

|λ| +
∞
∑

i=0

Gm1A2i
∣
∣μ+

(

m2
/

M2
)

λ
∣
∣

2i+1 +
∞
∑

i=0

Gm2A2i
∣
∣μ− (m1

/

M2
)

λ
∣
∣

2i+1

)

, (2.9)

where A0 =m0, A2 = (C−A)/2 and A2i are certain coefficients related to the geometry of
the gyrostat, see Vera and Vigueras [6] for details.
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Definition 2.2. We call approximate potential of order k to the following expression:

�k(λ,μ)=−
(

Gm1m2

|λ| +
k
∑

i=0

Gm1A2i
∣
∣μ+

(

m2
/

M2
)

λ
∣
∣

2i+1 +
k
∑

i=0

Gm2A2i
∣
∣μ− (m1

/

M2
)

λ
∣
∣

2i+1

)

. (2.10)

It is easy to demonstrate the following lemmas.

Lemma 2.3. Given the approximate potential of order k,

∇λ�k = Gm1m2λ

|λ|3 +
Gm1m2

M2

k
∑

i=0

(

μ+
(

m2
/

M2
)

λ
)

(2i+ 1)A2i
∣
∣μ+

(

m2
/

M2
)

λ
∣
∣

2i+3

− Gm1m2

M2

k
∑

i=0

(

μ− (m1
/

M2
)

λ
)

(2i+ 1)A2i
∣
∣μ− (m1

/

M2
)

λ
∣
∣

2i+3 ,

∇μ�k =Gm1

k
∑

i=0

(

μ+
(

m2
/

M2
)

λ
)

(2i+ 1)A2i
∣
∣μ+

(

m2
/

M2
)

λ
∣
∣

2i+3 +Gm2

k
∑

i=0

(

μ− (m1
/

M2
)

λ
)

(2i+ 1)A2i
∣
∣μ− (m1

/

M2
)

λ
∣
∣

2i+3 .

(2.11)

The following identities are verified

∇λ�k = Ã11λ+ Ã12μ, ∇μ�k = Ã21λ+ Ã22μ (2.12)

being

Ã11(λ,μ)= Gm1m2

|λ|3 +
Gm1m

2
2

M2
2

( k
∑

i=0

βi
∣
∣μ+

(

m2
/

M2
)

λ
∣
∣

2i+3

)

+
Gm2

1m2

M2
2

( k
∑

i=0

βi
∣
∣μ− (m1

/

M2
)

λ
∣
∣

2i+3

)

,

Ã12(λ,μ)= Gm1m2

M2

( k
∑

i=0

βi
∣
∣μ+

(

m2
/

M2
)

λ
∣
∣

2i+3 −
k
∑

i=0

βi
∣
∣μ− (m1

/

M2
)

λ
∣
∣

2i+3

)

,

Ã22(λ,μ)=Gm1

( k
∑

i=0

βi
∣
∣μ+

(

m2
/

M2
)

λ
∣
∣

2i+3

)

+Gm2

( k
∑

i=0

βi
∣
∣μ− (m1

/

M2
)

λ
∣
∣

2i+3

)

,

Ã21(λ,μ)= Ã12(λ,μ)

(2.13)

with coefficients β0 =m0, β1 = 3/2(C−A), βi = (2i+ 1)A2i for i� 1.
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Definition 2.4. Let M=R15 and the manifold (M,{·,·},�k), with Poisson brackets {·,·},
defined by means of the Poisson tensor (2.4). We call approximate dynamics of order k to
the differential equations of motion given by the following expression:

dz
dt
= {z,�k(z)

}

, (z)= B(z)∇z�k(z) (2.14)

being

�k(z)= |pλ|2
2g1

+
|pμ|2
2g2

+
1
2
ΠI−1Π− lr · I−1Π+ �k(λ,μ). (2.15)

2.1.1. Integrals of the system. On the other hand, it is easy to verify that

∇z
(|Π|2)B(z)∇z�0(z)= 0 (2.16)

and similarly when the gyrostat is of revolution

∇z
(

Π3
)

B(z)∇z�k(z)= 0, (2.17)

where π3 is the third component of the rotational angular momentum of the gyrostat. It
is verified the following result.

Theorem 2.5. In the approximate dynamics of order 0, |Π|2 is an integral of motion and
also when the gyrostat is of revolution π3 is another integral of motion.

2.2. Relative equilibria. The relative equilibria are the equilibria of the twice reduced
problem whose Hamiltonian function is obtained in Vera and Vigueras [6] for the case
n= 2. If we denote by ze = (Πe,λ

e,pe
λ,μe,pe

μ) a generic relative equilibrium of an approx-
imate dynamics of order k, then this verifies the equations

Πe×Ωe + λe× (∇λ�k
)

e +μe× (∇μ�k
)

e = 0,

pe
λ

g1
+ λe×Ωe = 0, pe

λ×Ωe =
(∇λ�k

)

e,

pe
μ

g2
+μe×Ωe = 0, pe

μ×Ωe =
(∇μ�k

)

e.

(2.18)

Also by virtue of the relationships obtained in Vera and Vigueras [6], we have the
following result.

Lemma 2.6. If ze = (Πe,λ
e,pe

λ,μe,pe
μ) is a relative equilibrium of an approximate dynamics

of order k, the following relationships are verified:

∣
∣Ωe

∣
∣

2∣
∣λe

∣
∣

2− (λe ·Ωe
)2 = 1

g1

(

λe · (∇λ�k
)

e

)

,

∣
∣Ωe

∣
∣

2∣
∣μe

∣
∣

2− (μe ·Ωe
)2 = 1

g2

(

μe · (∇μ�k
)

e

)

.

(2.19)
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The last two previous identities will be used to obtain necessary conditions for the
existence of relative equilibria in this approximate dynamics.

We will study certain relative equilibria in the approximate dynamics supposing that
the vectors Ωe, λ

e, μe satisfy special geometric properties.

Definition 2.7. ze is an Eulerian relative equilibrium in an approximate dynamics of order
k when λe and μe are proportional and Ωe is perpendicular to the straight line that they
generate.

Remark 2.8. The previous hypotheses simplify the conditions of Lemma 2.6. In a next
paper we will study the possible “inclined” relative equilibria, in which Ωe form an angle
α 	= 0 and π/2 with the vector λe.

From the equations of motion, the following property is deduced.

Proposition 2.9. In a Eulerian relative equilibrium for any approximate dynamics of ar-
bitrary order, moments are not exercised on the gyrostat.

Next we obtain necessary and sufficient conditions for the existence of Eulerian relative
equilibria.

3. Relative equilibria of Euler type

According to the relative position of the gyrostat S0 with respect to S1 and S2, there are
three possible equilibrium configurations (see Figure 3.1): (a) S0S2S1, (b) S2S0S1, and (c)
S2S1S0.

3.1. Necessary condition of existence

Lemma 3.1. If ze = (Πe,λ
e,pe

λ,μe,pe
μ) is a relative equilibrium of Euler type, then for the

configuration S0S2S1,

∣
∣
∣
∣μ

e +
m1

M2
λe
∣
∣
∣
∣=

∣
∣λe

∣
∣+

∣
∣
∣
∣μ

e− m2

M2
λe
∣
∣
∣
∣. (3.1)

In a similar way, for the configuration S2S0S1,

∣
∣λe

∣
∣=

∣
∣
∣
∣μ

e− m1

M2
λe
∣
∣
∣
∣+

∣
∣
∣
∣μ

e +
m2

M2
λe
∣
∣
∣
∣. (3.2)

Finally, for the configuration S2S1S0,

∣
∣
∣
∣μ

e− m2

M2
λe
∣
∣
∣
∣=

∣
∣
∣
∣μ

e +
m1

M2
λe
∣
∣
∣
∣+

∣
∣λe

∣
∣. (3.3)

Next we study necessary and sufficient conditions for the existence of relative equilib-
ria of Euler type for the configuration S0S2S1; the other configurations are studied in a
similar way. If ze is a relative equilibrium of Euler type, in the configuration S0S2S1 in an
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S0 S2 S1

λe

G1

μe

(a)

S2 S0 S1

λe

G1

μe

(b)

S2 S1 S0

λe

G1

μe

(c)

Figure 3.1. Eulerian configurations.

approximate dynamics of order k, we have

g1
∣
∣Ωe

∣
∣

2∣
∣λe

∣
∣

2 = λe · (∇λ�k
)

e, g2
∣
∣Ωe

∣
∣

2∣
∣μe

∣
∣

2 = μe · (∇μ�k
)

e,

μe− m1

M2
λe = ρλe, μe +

m2

M2
λe = (1 + ρ)λe, μe =

(

(1 + ρ)m1 + ρm2
)

M2
λe,

(3.4)

where ρ ∈ (0,+∞) in the case (a), ρ ∈ (−1,0) in the case (b), and ρ ∈ (−∞,−1) in the
case (c). And it is possible to obtain the following expressions:

(∇λ�k
)

e = f1(ρ)λe,
(∇μ�k)e = f2(ρ)λe, (3.5)

where

f1(ρ)= Gm1m2
∣
∣λe

∣
∣

3 +
Gm1m2

M2

( k
∑

i=0

βi
∣
∣λe

∣
∣

2i+3

(
1 + ρ

|1 + ρ|2i+3
− ρ

|ρ|2i+3

))

,

f2(ρ)=
k
∑

i=0

Gβi
∣
∣λe

∣
∣

2i+3

(
m1(1 + ρ)
|1 + ρ|2i+3

+
m2ρ

|ρ|2i+3

)

.

(3.6)



J. A. Vera and A. Vigueras 9

Restricting us to the case (a) we have

f1(ρ)= Gm1m2
∣
∣λe

∣
∣

3 +
Gm1m2

M2

( k
∑

i=0

βi
∣
∣λe

∣
∣

2i+3

(
1

(1 + ρ)2i+2
− 1
ρ2i+2

))

,

f2(ρ)=
k
∑

i=0

Gβi
∣
∣λe

∣
∣

2i+3

(
m1

(1 + ρ)2i+2
+

m2

ρ2i+2

)

.

(3.7)

Now, from the identities

λe · (∇λ�k)e =
∣
∣λe

∣
∣

2
f1(ρ), μe · (∇μ�k

)

e =
(

(1 + ρ)m1 + ρm2
)

M2

∣
∣λe

∣
∣

2
f2(ρ) (3.8)

we deduce the following equations:

∣
∣Ωe

∣
∣

2 = f1(ρ)
g1

,
∣
∣Ωe

∣
∣

2 = M2 f2(ρ)
g2
(

(1 + ρ)m1 + ρm2
) . (3.9)

Then for a relative equilibrium of Euler type ρ must be a positive real root of the following
equation:

m0
(

m1 +m2
)(

(1 + ρ)m1 + ρm2
)

f1(ρ)=m1m2
(

m0 +m1 +m2
)

f2(ρ). (3.10)

We summarize all these results in the following proposition.

Proposition 3.2. If ze = (Πe,λ
e,pe

λ,μe,pe
μ) is an Eulerian relative equilibrium in the con-

figuration S0S2S1, (3.10) has, at least, a positive real root; where the functions f1(ρ) and
f2(ρ) are given by (3.7) and the modulus of the angular velocity of the gyrostat is

∣
∣Ωe

∣
∣

2 = f1(ρ)
g1

. (3.11)

Remark 3.3. If a solution of relative equilibrium of Euler type exists, in an approximate
dynamics of order k, fixing |λe|, (3.10) has positive real solutions. The number of real
roots of (3.10) will depend, obviously, on the numerous parameters that exist in our
system. Similar results would be obtained for the other two cases.

3.2. Sufficient condition of existence. The following proposition indicates how to find
solutions of (2.18).

Proposition 3.4. Fixing |λe|, let ρ be a solution of (3.10) where the functions f1(ρ) and
f2(ρ) are given for the case (a) as (3.7) then ze = (Πe,λ

e,pe
λ,μe,pe

μ), given by

λe = (λe,0,0
)

, μe = (μe,0,0
)

, Ωe =
(

0,0,ωe
)

,

pe
λ =

(

0,g1ωeλ
e,0
)

, pe
μ =

(

0,g2ωeμ
e,0
)

, Πe =
(

0,0,Cωe + l
)

,
(3.12)
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where

μe =
(

(1 + ρ)m1 + ρm2
)

M2
λe, ω2

e =
f1(ρ)
g1

, (3.13)

is a solution of relative equilibrium of Euler type, in an approximate dynamics of order k in
the configuration S0S2S1. The total angular momentum of the system is given by

L= (0,0,Cωe + l+ g1ωeλ
e + g2ωeμ

e
)

, (3.14)

where l is the gyrostatic momentum.

Let us see the existence and number of solutions for the approximate dynamics of or-
ders zero and one, respectively. For superior order it is possible to use a similar technical.

4. Eulerian equilibria in an approximate dynamics of orders zero and one

For the configuration S0S2S1, in an approximate dynamics of order zero, we have

f1(ρ)= Gm1m2
∣
∣λe

∣
∣

3

(

1 +
m0

M2

(
1

(1 + ρ)2
− 1
ρ2

))

,

f2(ρ)= Gm0
∣
∣λe

∣
∣

3

(
m1

(1 + ρ)2
+
m2

ρ2

)

.

(4.1)

Equation (3.10) is equivalent to the following polynomial equation:

(

m1 +m2
)

ρ5 +
(

3m1 + 2m2
)

ρ4 +
(

3m1 +m2
)

ρ3

− (3m0 +m2
)

ρ2− (3m0 + 2m2
)

ρ− (m0 +m2
)= 0.

(4.2)

This equation has an unique positive real solution, then in this case for the approxi-
mate dynamics of order zero, there exists a unique relative equilibrium of Euler type.

On the other hand, one has

∣
∣Ωe

∣
∣

2 = G
(

m1 +m2
)

∣
∣λe

∣
∣

3

(

1 +
m0

m1 +m2

(
1

(1 + ρ)2
− 1
ρ2

))

, (4.3)

ρ being the only one positive solution of (4.2).
The following proposition gathers the results about relative equilibria of Euler type in

an approximate dynamics of order zero in any of the previously mentioned cases (a), (b),
or (c).

Proposition 4.1. (1) If ρ is the unique positive root of (4.2) with |Ωe|2 being expressed as
(4.3), then ze = (Πe,λ

e,pe
λ,μe,pe

μ), given by

λe = (λe,0,0
)

, μe = (μe,0,0
)

, Ωe =
(

0,0,ωe
)

,

pe
λ =

(

0,g1ωeλ
e,0
)

, pe
μ =

(

0,g2ωeμ
e,0
)

, Πe =
(

0,0,Cωe + l
)

,
(4.4)

is the unique solution of relative equilibrium of Euler type in the configuration S0S2S1.
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(2) If ρ ∈ (−1,0) is the unique root of the equation

(

m1 +m2
)

ρ5 +
(

3m1 + 2m2
)

ρ4 +
(

3m1 +m2
)

ρ3

+
(

3m0 + 2m1 +m2
)

ρ2 +
(

3m0 + 2m2
)

ρ+
(

m0 +m2
)= 0

(4.5)

with

∣
∣Ωe

∣
∣

2 = G
(

m1 +m2
)

∣
∣λe

∣
∣

3

(

1 +
m0

m1 +m2

(
1
ρ2
− 1

(1 + ρ)2

))

, (4.6)

then ze = (Πe,λ
e,pe

λ,μe,pe
μ), given by

λe = (λe,0,0
)

, μe = (μe,0,0
)

, Ωe =
(

0,0,ωe
)

,

pe
λ =

(

0,g1ωeλ
e,0
)

, pe
μ =

(

0,g2ωeμ
e,0
)

, Πe =
(

0,0,Cωe + l
)

,
(4.7)

is the unique solution of relative equilibrium of Euler type in the configuration S2S0S1.
(3) If ρ ∈ (−∞,−1) is the unique root of the equation

(

m1 +m2
)

ρ5 +
(

3m1 + 2m2
)

ρ4 +
(

2m0 + 3m1 +m2
)

ρ3

+
(

3m0 +m2
)

ρ2 +
(

3m0 + 2m2
)

ρ+
(

m0 +m2
)= 0

(4.8)

with

∣
∣Ωe

∣
∣

2 = G
(

m1 +m2
)

∣
∣λe

∣
∣

3

(

1 +
m0

m1 +m2

(
1
ρ2

+
1

(1 + ρ)2

))

, (4.9)

then ze = (Πe,λ
e,pe

λ,μe,pe
μ), given by

λe = (λe,0,0
)

, μe = (μe,0,0
)

, Ωe =
(

0,0,ωe
)

,

pe
λ =

(

0,g1ωeλ
e,0
)

, pe
μ =

(

0,g2ωeμ
e,0
)

, Πe =
(

0,0,Cωe + l
)

,
(4.10)

is the unique solution of relative equilibrium of Euler type in the configuration S2S1S0.

Remark 4.2. If m0 → 0, then |Ωe|2 =G(m1 +m2)/|λe|3 and the equations that determine
the Eulerian equilibria are the same ones of the restricted three-body problem.

4.1. Number of Eulerian equilibria in an approximate dynamics of order one. For the
approximate dynamics of order one, after carrying out the appropriate calculations,
(3.10) corresponding to the configuration S0S2S1 is reduced to the study of the positive
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Figure 4.1. Function R1(ρ).

real roots of the polynomial

p1(ρ)=m0a
2(m1 +m2

)

ρ9 +m0a
2(5m1 + 4m2

)

ρ8 +m0a
2(10m1 + 6m2

)

ρ7

+ 3m0a
2(3m1 +m2−m0

)

ρ6 + 3m0a
2(m1−m2− 3m0

)

ρ5

− (6m0m2a
2 + 10m2

0a
2 +β1

(

m1 +m2 + 5m0
))

ρ4

− (4m0m2a
2 + 5m2

0a
2 +β1

(

10m0 + 4m2
))

ρ3

− (m0m2a
2 +m2

0a
2 +β1

(

6m2 + 10m0
))

ρ2

−β1
(

5m0 + 4m2
)

ρ−β1
(

m0 +m2
)

,

(4.11)

where a = |λe| and β1 = 3(C−A)/2, C and A being the principal moments of inertia of
the gyrostat.

To study the positive real roots of this equation, after a detailed analysis of the same
one, it can be expressed in the following way:

β1 = R1(ρ)= m0a2ρ2(ρ+ 1)2p0(ρ)
q0(ρ)

, (4.12)

Where β1= 3(C−A)/2, p0 is the polynomial of grade five that determines the relative
equilibria in the approximate dynamics of order 0, that is given by formula (4.2), and the
polynomial q0 comes determined by the following expression:

q0(ρ)= (m1 +m2 + 5m0
)

ρ4 +
(

4m2 + 10m0
)

ρ3

+
(

6m2 + 10m0
)

ρ2 +
(

4m2 + 5m0
)

ρ+
(

m0 +m2
)

.
(4.13)

The rational function R1(ρ), for any value of m0, m1, m2, always presents a minimum
ξ1 located among 0 and ρ0, with this last value being the only one positive zero of the
polynomial p0(ρ).

By virtue of these statements, the following result is obtained (see Figure 4.1).
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Proposition 4.3. In the approximate dynamics of order one, if the gyrostat S0 is prolate
(β1 < 0), the following hold:

(1) β1 < R1(ξ1), then relative equilibria of Euler type do not exist.
(2) β1 = R1(ξ1), then there exists an only relative equilibrium of Euler type.
(3) R1(ξ1) < β1 < 0, then two 1-parametric families of relative equilibria of Euler type

exist.
If S0 is oblate (β1 > 0), then there exists a unique 1-parametric family of relative equilibria

of Euler type.

Similarly for the configuration S2S0S1 we obtain the following result (see Figures A.1
and A.2).

Proposition 4.4. In the approximate dynamics of order one, if m1 	=m2 and the gyrostat
S0 is oblate, then there exists an unique 1-parametric family of relative equilibria of Euler
type; on the other hand, if the gyrostat S0 is prolate and we have:

(1) β1 < R1(ξ1), then there exists an unique 1-parametric family of relative equilibria of
Euler type.

(2) β1 = R1(ξ1), then two relative equilibria of Euler type exist.
(3) R1(ξ1) < β1 < 0, then three 1-parametric families of relative equilibria of Euler type

exist. If m1 =m2 and S0 is oblate, then relative equilibria of Euler type do not exist;
but if S0 is prolate we have:

(4) R1(−1/2) < β1 < 0, then two 1-parametric families of relative equilibria of Euler
type exist.

(5) β1 = R1(−1/2), there exists an only equilibrium of Euler type.
(6) β1 < R1(−1/2), then relative equilibria of Euler type do not exist.

The results for the configuration S2S1S0 are similar to that of the configuration S0S2S1.

4.1.1. Number of Eulerian equilibria in an approximate dynamics of order k. In the approx-
imate dynamics of order k, the polynomial pk(ρ), that determines the Eulerian equilibria
has degree 5 + 4k. Similar results to the previous ones show

pk(ρ)=m0a
2ρ2(ρ+ 1)2pk−1(ρ) +βkqk−1(ρ) (4.14)

with qk−1(ρ) being a positive polynomial. In general, for usual celestial bodies, βk ≈ 0
for k > 1. Using a recurrent reasoning and applying the implicit function theorem, the
number of Eulerian equilibria in the approximate dynamics of order k is the same as
that of the approximate dynamics of order one. If βk is not close to zero, for certain k , a
particular analysis of the equation pk(ρ) should be made.

4.2. Stability of Eulerian relative equilibria. The tangent flow of (2.7) in the equilibrium
ze comes given by

dδz
dt

= U
(

ze
)

δz (4.15)

with δz= z− ze and U(ze) is the Jacobian matrix of (2.7) in ze.
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The characteristic polynomial U(ze) has the following expression:

p = λ
(

λ2 +Φ2)(λ4 +mλ2 +n
)(

λ8 + pλ6 + qλ4 + rλ2 + s
)

(4.16)

with Φ= ((C−A)ωe + l)/A, where the coefficients that intervene in the previous polyno-
mial are functions of the parameters of the problem and ρ being ρ the root of (3.10).

4.2.1. Order-zero approximate dynamics. The characteristic polynomial (4.16) of U(ze)
simplifies to

p = λ3(λ2 +Φ2)(λ2 +ω2
e

)2(
λ2 + p

)(

λ4 + qλ2 + r
)

(4.17)

with coefficients expressed in Appendix B.
If p ≥ 0, q ≥ 0, r ≥ 0, q2− 4r ≥ 0, then ze is spectrally stable. These conditions are not

verified since r < 0.

Proposition 4.5. If ze is the only relative equilibrium in the configuration S0S2S1 of the
zero-order approximate dynamics, then this is unstable.

4.2.2. Order-one approximate dynamics. We will analyze the case in which the gyrostat is
close to sphere. In this case C−A≈ 0, then applying the implicit function theorem, ze is
unstable.

If C−A is not close to zero, the coefficients of the polynomial (4.16) have very com-
plicated expressions. Numeric calculations prove that there exist, for certain values of the
parameter C−A, linear stable Eulerian relative equilibria (see Vera [5] for details).

These results are equally valid for the configurations S2S0S1 and S2S1S0.

5. Conclusions and future works

The approximate Poisson dynamics of a gyrostat (or rigid body) in Newtonian interac-
tion with two spherical or punctual rigid bodies is considered. We give global conditions
on the existence of Eulerian equilibria and in analogy with classic results on the topic, we
study the existence of equilibria that we denominate of Euler type in the case in which
S1, S2 are spherical or punctual bodies and S0 is a gyrostat. Necessary and sufficient con-
ditions for their existence in a approximate dynamics of order k are obtained and we
give explicit expressions of these equilibria, useful for the later study of the stability of the
same ones. A complete study of the number of Eulerian equilibria is made in approximate
dynamics of orders zero and one. The number of Eulerian equilibria in an approximate
dynamics of order k for k > 1 is independent of the order of truncation of the potential
if the gyrostat S0 is close to the sphere. The instability of Eulerian equilibria is proven for
any approximate dynamics if the gyrostat is close to the sphere

The methods employed in this work are susceptible of being used in similar problems.
Numerous problems are open, and among them it is necessary to consider the study of the
possible existence of the “inclined” relative equilibria, in which Ωe form an angle α 	= 0
and π/2 with the vector λe.
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Figure A.1. Function R1(ρ) for m1 	=m2.
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Figure A.2. Function R1(ρ) for m1 =m2.

Appendices

A. The function R1(ρ) in approximate dynamics of order one for
the configuration S2S0S1

B. Coefficients of the characteristic polynomial in Eulerian relative equilibria

The coefficients of the characteristic polynomial (4.17) are

ω2
e =

G
((

m2 +m1
)

ρ4 +
(

2m1 + 2m2
)

ρ3 +
(

m2 +m1
)

ρ2− 2m0ρ−m0
)

λ3
e(1 + ρ)2ρ2

,

p = G
((

m2 + 4m0 +m1
)

ρ3 +
(

3m2 + 6m0
)

ρ2 +
(

4m0 + 3m2
)

ρ+m0 +m2
)

(1 + ρ)3ρ3λ3
e

,

q =G
((− 2m1ρ

4m2 +
(− 2m0m1 +m2

1 +m2
2− 2m1m2− 2m0m2

)

ρ3

+
(

3m2
2 +m1m2− 6m0m1

)

ρ2 +
(−m1m2 + 3m2

2 + 2m0m2− 4m0m1
)

ρ

+m2
2−m0m1 +m0m2−m1m2

))/(

(1 + ρ)3ρ3λ3
e

)

,

r = G2
(

a1ρ4 + a2ρ4 + a3ρ2 + a4ρ+ a5
)

(

(1 + ρ)8ρ8λ9
e

) .

(B.1)
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B.1. Coefficients ai (i= 1, . . . ,5)

a1 =−42m7
2m1− 48m7

2m0− 147m6
2m

2
1− 336m6

2m1m0− 129m6
2m

2
0

− 207m5
2m

3
1− 782m5

2m
2
1m0− 673m5

2m1m
2
0− 81m5

2m
3
0− 150m4

2m
4
1

− 869m4
2m

3
1m0− 1325m4

2m
2
1m

2
0− 378m4

2m1m
4
0− 64m3

2m
5
1

− 513m3
2m

4
1m0− 1270m3

2m
3
1m

2
0− 702m3

2m
2
1m

3
0− 14m2

2m
6
1

− 165m2
2m

5
1m0− 610m2

2m
4
1m

2
0− 648m2

2m
3
1m

3
0− 24m2m

6
1m0

− 119m2m
5
1m

2
0− 297m2m

4
1m

3
0 + 2m6

1m
2
0− 54m5

1m
3
0.

a2 =−60m7
2m1− 54m7

2m0− 243m6
2m

2
1− 474m6

2m1m0− 173m6
2m

2
0

− 399m5
2m

3
1− 1345m5

2m
2
1m0− 999m5

2m1m
2
0− 135m5

2m
3
0− 329m4

2m
4
1

− 1846m4
2m

3
1m0− 2223m4

2m
2
1m

2
0− 648m4

2m1m
3
0 − 138m3

2m
5
1

− 1364m3
2m

4
1m0− 2506m3

2m
3
1m

2
0− 1242m3

2m
2
1m

3
0− 24m2

2m
6
1

− 536m2
2m

5
1m0− 1530m2

2m
4
1m

2
0− 1188m2

2m
3
1m

3
0− 90m2m

6
1m0

− 477m2m
5
1m

2
0− 567m2m

4
1m

3
0− 56m6

1m
2
0− 108m5

1m
3
0.

a3 =−42m7
2m1− 36m7

2m0− 183m6
2m

2
1− 342m6

2m1m0− 93m6
2m

2
0

− 349m5
2m

3
1− 1097m5

2m
2
1m0− 630m5

2m1m
2
0− 81m5

2m
3
0− 358m4

2m
4
1

− 1776m4
2m

3
1m0− 166m4

2m
2
1m

2
0− 405m4

2m1m
3
0− 189m3

2m
5
1

− 1614m3
2m

4
1m0− 2256m3

2m
3
1m

2
0− 810m3

2m
2
1m

3
0− 31m2

2m
6
1

− 827m2
2m

5
1m0− 1683m2

2m
4
1m

2
0− 810m2

2m
3
1m

3
0− 6m2m

7
1

− 228m2m
6
1m0− 666m2m

5
1m

2
0− 405m2m

4
1m

3
0− 30m7

1m0

− 81m5
1m

3
0− 111m6

1m
2
0.

a4 =−12m7
2m1− 12m7

2m0− 56m6
2m

2
1− 114m6

2m1m0− 24m6
2m

2
0

− 130m5
2m

3
1− 387m5

2m
2
1m0− 162m5

2m1m
2
0− 179m4

2m
4
1

− 687m4
2m

3
1m0− 432m4

2m
2
1m

2
0− 140m3

2m
5
1− 693m3

2m
4
1m0

− 588m3
2m

3
1m

2
0− 52m2

2m
6
1− 387m2

2m
5
1m0− 432m2

2m
4
1m

2
0− 6m2m

7
1

− 108m2m
6
1m0− 162m2m

5
1m

2
0− 12m7

1m0− 24m6
1m

2
0.

a5 =−
(

m0 +m2
)(

18m0m
6
2 + 12m1m

6
2 + 94m5

2m0m1 + 36m2
1m

5
2

+ 81m4
2m

2
0m1 + 168m4

2m0m
2
1 + 42m4

2m
3
1 + 128m3

2m0m
3
1

+ 27m3
2m

4
1 + 15m2

2m
5
1 + 31m2

2m0m
4
1 + 126m2

2m
2
0m

3
1 + 18m2

0m
5
2

+ 54m2m
2
0m

4
1 + 12m2m0m

5
1 + 5m2m

6
1 + 7m6

1m0 + 9m2
0m

5
1

+ 144m3
2m

2
0m

2
1).

(B.2)
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MC/3/00074/FS/02).

References

[1] G. N. Doubochine, On the problem of three rigid bodies, Celestial Mechanics & Dynamical As-
tronomy 33 (1984), no. 1, 31–47.

[2] E. Leimanis, The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point,
Springer, Berlin, 1965.

[3] A. J. Maciejewski, Reduction, relative equilibria and potential in the two rigid bodies problem,
Celestial Mechanics & Dynamical Astronomy 63 (1995), no. 1, 1–28.

[4] F. Mondejar and A. Vigueras, The Hamiltonian dynamics of the two gyrostats problem, Celestial
Mechanics & Dynamical Astronomy 73 (1999), no. 1–4, 303–312.

[5] J. A. Vera, Reducciones, equilibrios y estabilidad en dinámica de sólidos ŕıgidos y giróstatos, Ph.D.
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