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For a finite group G= 〈X〉 (X �= G), the least positive integer MLX(G) is called the max-
imum length of G with respect to the generating set X if every element of G may be
represented as a product of at most MLX(G) elements of X . The maximum length of G,
denoted by ML(G), is defined to be the minimum of {MLX(G) | G = 〈X〉, X �= G, X �=
G−{1G}}. The well-known commutator length of a group G, denoted by c(G), satisfies
the inequality c(G) ≤ML(G′), where G′ is the derived subgroup of G. In this paper we
study the properties of ML(G) and by using this inequality we give upper bounds for the
commutator lengths of certain classes of finite groups. In some cases these upper bounds
involve the interesting sequences of Fibonacci and Lucas numbers.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

For an abstract group G the commutator length c(G) is defined to be c(G)= Sup{λ(g) |
g ∈ G′}, where λ(g) is the minimal number of commutators of which g is the product.
This notion has been studied by many authors during the years and the results of the
combinatorial methods estimate or calculate the commutator lengths of abstract groups
which are mainly infinite (one may see [2, 6–10], e.g.). For a finite group G = 〈X〉 we
examine the effect of the generating set on the evaluation of this number by considering
the following definitions, this gives us a method to calculate upper bounds for c(G). Let
G= 〈X〉 (X �=G) be a finite group. Then the following hold.

Definition 1.1. MLX(G), the maximum length of G relative to the generating set X , is
defined to be max{λ(g) | g ∈G}, where λ(g) is the minimum number of the elements of
X of which g is the product.

Definition 1.2. The maximum length of a group G, denoted by ML(G), is defined to be
the minimum of all numbers MLX(G), for all generating sets X (X �=G) of G.

Our notations are fairly standard, we use [x] for the integer part of the real number
x, [a,b]= a−1b−1ab is defined to be the commutator of the elements a and b of a group,
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2 On the commutator lengths of certain classes of groups

the usual notation N ×ϕ H is used for the semidirect product of the group N by H , where
ϕ : H → Aut(N) is a homomorphism such that hϕ= ϕh and ϕh : N →N is an element of
Aut(N), and the Reidemeister-Schreier algorithm in the form given in [1] will be used to
find presentations of subgroups. In the following sections we study certain classes of finite
groups for their maximal lengths and find upper bounds for the commutator lengths. The
groups studied here are the dihedral groups D2n = 〈a,b | a2 = bn = (ab)2 = 1〉, n≥ 3, the
quaternion groups Q2n = 〈a,b | a2n−1 = 1, b2 = a2n−2

, b−1ab = a−1〉, n≥ 3, the semidirect
products D2n ×ϕ Z2m, and Q2n ×ϕ Z2m, (n,m ≥ 3) (where if Z2m = 〈c〉, then ϕ : Z2m →
Aut(D2n) is such that cϕ = ϕc; and ϕc : D2n → D2n is defined by aϕc = a and bϕc = b−1,
a similar ϕ exists for Q2n ×ϕ Z2m), the direct products D2n×Z2m and Q2n ×Z2m, and the
following classes of groups:

G1 =
〈
a,b | a2 = bn = abab−1ab2ab−1ab−2ab = 1

〉
, n≥ 3,

G2 =
〈
a,b | a2 = bn,

(
ab2)2(

ab−1)2 = b2n〉, n �= 0,

G3 =
〈
a,b | a2 = bn = 1, abab−2ab3ab−2ab−1ab = 1

〉
, n≥ 3,

G4 =
〈
a,b | a2 = b5 = 1, [a,b]k

[
a,b3]= 1

〉
, k ≥ 1.

(1.1)

The groups Gi (i = 1,2,3,4) are soluble and have been studied for their structures and
orders in [3–5]. These groups are generalizations of the well-known Coxeter groups.

We will use the Fibonacci and Lucas numbers:

f0 = f1 = 1, fn = fn−1 + fn−2, n≥ 2,

g0 = 2, g1 = 1, gn = gn−1 + gn−2, n≥ 2,
(1.2)

which are related to each other via the relation gn = fn−2 + fn. In Section 2 we study the
notion of the maximum length for the mentioned direct and semidirect products, and by
using the inequality c(G)≤ML(G′) which holds for every nonabelian finite group G, we
give upper bounds for the commutator lengths of the groups Gi (i= 1,2,3,4), in Sections
3 and 4.

2. The groups D2n, Q2n , D2n×Z2m, Q2n ×Z2m, D2n×ϕ Z2m, Q2n ×ϕ Z2m

Let m,n≥ 3 be integers. By the definitions of the direct and semidirect products, we get
the following presentations:

D2n×Z2m =
〈
a,b,c | a2 = bn = (ab)2 = c2m = [a,c]= [b,c]= 1

〉
,

Q2n ×Z2m =
〈
a,b,c | a2n−1 = 1, b2 = a2n−2

, b−1aba= c2m = [a,c]= [b,c]= 1
〉

,

D2n×ϕ Z2m =
〈
a,b,c | a2 = bn = (ab)2 = c2m = 1, c−1aca= 1, c−1bcb = 1

〉
,

Q2n ×ϕ Z2m =
〈
a,b,c | a2n−1 = 1, b2 = a2n−2

, b−1aba= c2m = 1, c−1aca= 1, c−1bcb = 1
〉

,
(2.1)

where ϕ is the homomorphism defined in the last section.
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As an immediate result of the definitions we have the following.

Lemma 2.1. For every finite groups G1 = 〈X | R〉 and G2 = 〈Y | S〉,

ML{X ,Y}
(
G1×G2

)≤MLX
(
G1
)

+ MLY
(
G2
)
. (2.2)

Proof. Obviously, G1×G2 = 〈X ,Y | R,S, [X ,Y]〉, where [X ,Y]= {[x, y] | x ∈ X , y ∈ Y}.
There exists an element g ∈ G1 × G2 such that ML{X ,Y}(G1 × G2) = λ(g), and g =
(x1x2 ···xm)(y1y2 ··· yn), where xi ∈ X and yi ∈ Y (for [xi, yj]= 1 holds for every i and
j). Let g1 = x1x2 ···xm and g2 = y1y2 ··· yn. The definition of λ(g) then yields

ML{X ,Y}
(
G1×G2

)= λ(g)=m+n≤ λ
(
g1
)

+ λ
(
g2
)≤MLX

(
G1
)

+ MLY
(
G2
)
. (2.3)

�

Proposition 2.2. m,n≥ 3 are integers, then
(i) for a nonabelian metacyclic group G, c(G)≤ |G′|− 1;

(ii) for a metabelian group G, where |G′| = pα1
1 pα2

2 ··· pαkk (here p1, p2, . . . are different
primes) c(G)≤ (pα1

1 + ···+ pαkk )− k;
(iii) ML(D2n)≤ [n/2] + 1 and ML(Q2n)≤ 2n−3 + 3;
(iv) ML(D2n×Z2m)≤ [n/2] + 2m and ML(Q2n ×Z2m)≤ 2n−3 + 2m+ 2;
(v) ML(D2n×ϕ Z2m)≤ [n/2] + 2m;

(vi) ML(Q2n ×ϕ Z2m)≤ 2n−3 + 2m.

Proof. For a nonabelian metacyclic group G, the derived subgroup G′ is a cyclic group, so
ML(G′)= |G′|− 1 and (i) follows at once.

For a metabelian group G, where |G′| = pα1
1 pα2

2 ··· pαkk , we may use the direct decom-
position of G′ to get (ii).

We give proof of the first part of (iii), the second part is similar. The elements of D2n

are of the form aib j , where i = 0,1 and j = 0,1, . . . ,n− 1. Consider two cases for n and
for every g ∈ D2n compute λ(g), the minimum number of the elements of X = 〈a,b〉 of
which g is the product. We see that the relations (ab)2 = a2 = bn = 1 of D2n yield the
relations bn−k = b−k = abka, for every integer k.

Case 1. n is even. It is easy to see that

λ
(
bn−k

)=

⎧
⎪⎪⎨

⎪⎪⎩

k+ 2 if 1≤ k ≤ n

2
− 1,

n− k if
n

2
≤ k ≤ n− 1.

(2.4)

Also,

λ
(
abk
)=

⎧
⎪⎪⎨

⎪⎪⎩

k+ 1 if 1≤ k ≤ n

2
,

n− k+ 1 if
n

2
+ 1≤ k ≤ n− 1.

(2.5)

So, in this case MLX(D2n)=max{λ(g) | g ∈D2n} = n/2 + 1.
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Case 2. n is odd. In this case similar classification of the elements gives us

λ
(
bn−k

)=

⎧
⎪⎪⎨

⎪⎪⎩

k+ 2 if 1≤ k ≤ n− 3
2

,

n− k if
n− 1

2
≤ k ≤ n− 1.

(2.6)

Also,

λ
(
abk
)=

⎧
⎪⎪⎨

⎪⎪⎩

k+ 1 if 1≤ k ≤ n− 1
2

,

n− k+ 1 if
n+ 1

2
≤ k ≤ n− 1,

(2.7)

and in this case MLX(D2n) =max{λ(g) | g ∈ D2n} = (n+ 1)/2. Consequently, for every
n ≥ 3, ML(D2n) ≤ MLX(D2n) = [n/2] + 1. A similar proof for Q2n yields MLX(Q2n) =
2n−3 + 3, where X = 〈a,b〉 is the generating set of Q2n , and ML(Q2n)≤MLX(Q2n)= 2n−3 +
3.

The inequalities of (iv) are the results of Lemma 2.1 and the calculations of part (iii),
where we know that ML{a,b}(D2n)= [n/2] + 1, ML{a,b}(Q2n)= 2n−3 + 3, and ML{c}(Z2m)=
2m− 1.

To prove (v) we see that up to the relations ca = ac, cb = b−1c, and ba = ab−1 of the
group D2n×ϕ Z2m the 4mn elements of this group may be considered as the union of the
following sets:

S1 =
{
ci | 1≤ i≤ 2m− 1

}
,

S2 =
{
aib j | 0≤ i≤ 1, 0≤ j ≤ n− 1

}
,

S3 =
{
aci | 1≤ i≤ 2m− 1

}
,

S4 =
{
bic j | 1≤ i≤ n− 1, 1≤ j ≤ 2m− 1

}
,

S5 =
{
abic j | 1≤ i≤ n− 1, 1≤ j ≤ 2m− 1

}
.

(2.8)

Since the relations bn−k = abka, bn−k = cbkc, and ck = acka hold in the group, for every
integer k, then the minimum length λ(g) is definitely acceptable for every g ∈D2n×ϕ Z2m,
in the similar way as in (iii) and we get

max
{
λ(g) | g ∈ S1

}= 2m− 1,

max
{
λ(g) | g ∈ S2

}= 1 +
[
n

2

]
,

max
{
λ(g) | g ∈ S3

}= 2m,

max
{
λ(g) | g ∈ S4

}=
[
n

2

]
+ 2m− 1,

max
{
λ(g) | g ∈ S5

}=
[
n

2

]
+ 2m.

(2.9)

Consequently, ML(D2n×ϕ Z2m)≤ML{a,b,c}(D2n×ϕ Z2m)= [n/2] + 2m.
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The proof of (vi) is similar to the above proof and one may get the result by considering
the m2n+1 elements of the group Q2n ×ϕ Z2m as the union of the following sets:

S1 =
{
aib j | 0≤ i≤ 2n−1− 1, 0≤ j ≤ 1

}
,

S2 =
{
aic j | 0≤ i≤ 2n−1− 1, 1≤ j ≤ 2m− 1

}
,

S3 =
{
bci | 1≤ i≤ 2m− 1

}
,

S4 =
{
aibc j | 1≤ i≤ 2n−1− 1, 1≤ j ≤ 2m− 1

}
.

(2.10)

And this completes the proof. �

3. The groups G1 and G2

The groups G1 and G2 are finite and nonmetabelian soluble groups for many values of n
(see [4, 5]). The following propositions are our main results on the commutator lengths
of these groups.

Proposition 3.1. For every n≥ 3, where g.c.d (n,3) �= 1,

c
(
G1
)≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gn if n≡±3(mod12),

4 fn/2−1 if n≡ 0(mod12),

2gn/2 if n≡ 6(mod12).

(3.1)

Proposition 3.2. For every n≥ 4,

c
(
G2
)≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2n− 1 if n≡±1(mod3),

n+ 7
2

if n≡ 3(mod6),

n+ 8
2

if n≡ 0(mod6).

(3.2)

Proof of Proposition 3.1. Let n ≡ ±3(mod12). Using the results of [5] gives us here the
following presentation for G′1:

G′1 =
〈
x, y | (xy)2 = (yx)2,

[
x2, y

]= [y2,x
]= 1, xy = y− fn−2x fn−3 , x1+ fn−2 = y fn−1

〉
.

(3.3)

First we show that the relations ygn = xgn = 1 hold in G′1.
The relation xy = y− fn−2x fn−3 gives us

xy fn−1x−1 = y− fn−2 fn−3x(−1+ fn−3) fn−1 . (3.4)

For fn−3 is odd, then [y− fn−2 ,x−1+ fn−3 ]= 1. This relation together with the last relation of
G′1 yields

y fn−1 = y− fn−2 fn−3x(−1+ fn−3) fn−1 . (3.5)



6 On the commutator lengths of certain classes of groups

And substituting for y fn−1 yields

x(1+ fn−2)2− fn−1(−1+ fn−3) = 1. (3.6)

By an inductive method we may show that gn = (1 + fn−2)2 − fn−1(−1 + fn−3) and then
xgn = 1. A similar proof exists for ygn = 1 and since G′1 is of order 2gn (see [5]), gn is the
order of y.

Now consider the relations [x2, y] = [y2,x] = 1 and conclude that the words xy−1+gn

(or y−1+gnx) are the words of largest length; that is, c(G1)≤ML(G′1)≤ML{x,y}(G′1)= gn.
Let n≡ 6(mod12). In this case G′1 may be presented as

〈
x, y | (xy)2 = (yx)2,

[
x2, y

]= [y2,x
]= 1, x1+ fn−3 y−1+ fn−2 , x−1+ fn−2 = y fn−1

〉
. (3.7)

This group is of order 2(−2 + gn) (see [5]). First we show that the relations xgn/2 = ygn/2 =
1 hold in G′1. Combining the last two relations of G′1 yields x fn−4− f2 = y fn−3+ f1 . Again
combining this relation with x1+ fn−3 = y−1+ fn−2 gives us x fn−5+ f3 = y fn−4− f2 . We repeat this
method and get the relations

x fn−2−i−(−1)i fi = y fn−1−i+(−1)i fi−1 , i= 2,3, . . . . (3.8)

For i = (n− 4)/2 and i = (n− 6)/2 we get xt = yt and xt = y2t, respectively, where t =
fn/2 + f(n−4)/2. Consequently, yt = 1 holds in G′1. Now it is easy to see that t = gn/2. The
word yx−1+gn/2 y−1+gn/2x is one of the words of maximum length. So c(G1) ≤ML(G′1) ≤
ML{x,y}(G′1)= 2gn/2 as required in this case.

The remained case is n≡ 0(mod12). In this case G′1 has the previous case’s presenta-
tion. We first show that the relations

x fn/2−1 = y3 fn/2−1 , y5 fn/2−1 = 1 (3.9)

hold in G′1. As well as in the last case we get the relations

x fn−2−i−(−1)i fi = y fn−1−i+(−1)i fi−1 , i= 2,3, . . . . (3.10)

If we let i=−2 +n/2 then, after a simplification we get

x fn/2−1 = y3 fn/2−1 . (3.11)

Raising both sides to the power 3 yields x3 fn/2−1 = y9 fn/2−1 . Also for the value i=−3 + n/2
we get x3 fn/2−1 = y4 fn/2−1 . Consequently, y5 fn/2−1 = 1, and these relations together with the
relations [x2, y]= [y2,x]= 1 show that the word

y−1+5 fn/2−1x−1+ fn/2−1 yx (3.12)
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is of the largest length in G′1. However, by considering the relation x fn/2−1 = y3 fn/2−1 , this
word will be reduced to

y−1+2 fn/2−1x−1+2 fn/2−1 yx, (3.13)

then c(G1) ≤ ML(G′1) ≤ ML{x,y}(G′1) = 4 fn/2−1, as required. This completes the proof.
�

Proof of Proposition 3.2. For every n≡±1(mod3), G2 is a metabelian group and as a re-
sult of the computations of [4], G′2 is a cyclic group of order 2n. So c(G2)≤ 2n− 1 comes
from the results of Section 2.

Let n ≡ 3(mod6). Using the Todd-Coxeter coset enumeration algorithm gives us the
presentation

G′2 =
〈
x, y | (xy)2 = yn, (yx)2 = xn, x3y3 = 1

〉
. (3.14)

It is easy to show the validity of the relations xn= yn and x2n= y2n=1 in G′2. Let n=6k+ 3.
We claim that the words w1 = x2y3k+1xy2 and w2 = y2x3k+1yx2 in G′1 are of the largest
length 3k + 5. Indeed, the relations x3y3 = 1, xyx = yn−1, and yxy = xn−1 show that any
word with maximal length could not contain the subwords x2y2 and y2x2. The remained
words which have to be examined are indeed w3 = y3k+1xy2x and w4 = x3k+1yx2y. These
words are of length 3k+ 4, for we have

w3 = y3k(yxy)yx = y3kx6k+2yx = x3k+2yx. (3.15)

Similarly, w4 is of length 3k + 4. To complete the proof we now show that w1 and w2 are
of length 3k+ 5. By using the relations we get

w1 = x2y3k(yxy)y = x2y3kx6k+2y = x2(y3kx3k)x3k+2y = x3k+4y, (3.16)

and in a similar way, w2 will be reduced to y3k+4x. So c(G2) ≤ML(G′2) ≤ML{x,y}(G′2) =
3k+ 5.

Let n ≡ 0(mod6). We use the Todd-Coxeter coset enumeration algorithm to find a
presentation for G′2. In two different cases, n≡ 0(mod12) and n≡ 6(mod12), we get the
following presentations:

G′2 =
〈
x, y | [x2, y

]= [x, y3]= x4 = yn = R1 = R2 = 1, (xy)n/2 = x2
〉

,

G′2 =
〈
x, y | [x2, y

]= [x, y3]= x4 = yn = R1 = R2 = 1, (xy)n/2 = yn/2
〉

,
(3.17)

respectively, where R1 = y2+n/2x3y−1xy−1x3 and R2 = yxy−1xyx3y−1x. The largest power
of x in every word of G′2 is equal to 3, however, the largest power of y is n/2 + 1, for R1 = 1
yields

y2+n/2 = xyx3yx. (3.18)

This relation also gives us the relation (xy)2= y2+n/2x. The relation R2=1 yields yxyn−1xy
= x3yx and hereby we deduce that the only words of maximum length must be among
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the following words:

w1 = x3y1+n/2, w2 = y1+n/2x3, w3 = x3y1+n/2xy, w4 = xyx3y1+n/2. (3.19)

Obviously the words w1 and w2 are of length 4 +n/2, however w4 is of length 5, for we see
that

w4 =
(
xyx3y

)
yn/2 = (y2+n/2x−1)yn/2 = y2+n/2x3yn/2 = yn+2x3 = y2x3. (3.20)

Finally w3 is also of length 4 +n/2, for

w3 = yn/2
(
x3yx

)
y = yn/2

(
yxyn−1xy

)
y = yn

(
yxy−1+n/2xy2)= yxy−1+n/2xy2. (3.21)

Consequently, c(G2)≤ML(G′2)≤ML{x,y}(G′2)= 4 +n/2. This completes the proof. �

4. The groups G3 and G4

These groups are examples of metacyclic groups and we have the following result.

Proposition 4.1. For every n ≥ 3, the groups G3, and for every k ≥ 1, the groups G4 are
finite. Moreover, c(G3)≤ (2n− 3− (−1)n)/3 and c(G4)≤ k(k3 + 2k2 + 4k+ 3).

Proof. The subgroup H = 〈xi = [a−1,b−1]b
−i

: 0 ≤ i ≤ n− 1〉 of G3 is indeed the derived
subgroup of G3 (one may easily check that |G3 : H| = |G3 : G′3| = 2n and H ⊆ G′3). A
presentation for H may be given as

H =
〈
x0, . . . ,xn−1 | xix2

i+1 = 1, xn−1x
2
0 = 1, 0≤ i≤ n− 2

〉
. (4.1)

Obviously this group is finite and cyclic of order (2n−(−1)n)/3, and c(G3)≤ML{x,y}(G′3)=
|G′3|− 1= (2n− 3− (−1)n)/3 is a result of Section 2. In a similar way we consider the sub-
group

K =
〈[
a−1,b

]
,
[
b−1,a

]b−i
: 0≤ i≤ 3

〉
(4.2)

of G4. K is the derived subgroup of G4 and may be presented by

K = 〈a1, . . . ,a5 | a1a2a3a4a5 = 1, aki = ai+1ai+2, 1≤ i≤ 5
〉

, (4.3)

(where indices are reduced modulo 5). An almost easy simplification of the relations
shows that K is a cyclic group of order k4 + 2k3 + 4k2 + 3k+ 1, and c(G4)≤ML{x,y}(G′4)=
|G′4|− 1= k(k3 + 2k2 + 4k+ 3) is a result of Section 2. This completes the proof. �
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