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The main purpose of this note is to establish an identity which states that the function
sinx/x is a power series of (772 — 4x?) with positive coefficients for all x # 0. This enable
us to obtain a much stronger Jordan’s inequality than that obtained before.
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1. Introduction

The well-known Jordan’s inequality states that
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with equality holds if and only if x = 7/2 (see [5]). It plays an important role in many
areas of pure and applied mathematics. The inequality (1.1) is first extended to the fol-
lowing:
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and then, it is further extended to the following:
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with equality holds if and only if x = /2 (see [2, 4, 6]). The inequality (1.3) is slightly
stronger than the inequality (1.2) and is sharp in the sense that 1/7° cannot be replaced
by a larger constant. More recently, the monotone form of UHopital’s rule (see [1, Lemma
5.1]) has been successfully used by Zhu [9, 10], Wu and Debnath [7, 8] in the sharpening
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Jordan’s inequality. For example, it has been shown that if 0 < x < 7/2, then
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hold with equality if and only if x = 77/2. Furthermore, the constants 1/7° and (7 — 2)/7°
in (1.4) as well as the constants (12 — 7?)/(167°) and (7 — 3)/7° in (1.5) are the best.
Also, in the process of sharpening Jordan’s inequality, one can use the same method as
did in [7] to introduce a parameter 0 (0 < 8 < 7) to replace the value /2. Unfortunately,
the preceding method will become cumbersome to execute in the further generalization
of Jordan’s inequality.

In this note we establish an identity which states that the function sinx/x is a power
series of (2 — 4x?) with positive coefficients for all x # 0. This enables us to obtain a
much better inequality than (1.4) or (1.5) if 0 < x < 7/2.

2. Main result
The main result relating to Jordan’s inequality is contained in the following.

THEOREM 2.1. For any x >0, the following identity
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holds, where
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satisfying (—1)*Rg >0 (k = 1,2,3,...).

Proof. Let x = +/n2 —t/2 and t = n* — 4x2. It follows from the Taylor expansion for sinx
that
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we see that
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which yields (2.1) with Ri given by (2.2).
Let R = >, (= 1)"c, with
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Then for each given k (k = 1,2,3,...),
Cnjk > Cnirkr  (n=k), lim ¢, = 0. (2.7)
n—oo
Hence the alternating series >, (—1)"c,x converges, and its sum
Ri = (=1 X (=1 cxejk (2.8)

satisfies (—1)¥Ry >0 and |Rk| < cxx for each given k (k = 1,2,3,...). This completes the
proof of the theorem. O

Next we give a formula of calculating Ry. Let

[

Z 2n+1)' n— k)'

di(x) = x*n, (2.9)

Then

’ ’ ’ ’ (2'10)

with kth derivative, and

dis1(x) = —kdy(x) + gd,;(x) (k=1,2,3,...). (2.11)
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Hence Ry = di(n/2) with
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Also the above established identity (2.1) gives
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for all x > 0. Since (—1)*R; >0 (k = 1,2,3,...), we have the following corollary.

CorOLLARY 2.2. If0 < x < 71/2, then
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holds with equality if and only if x = 7t/2. Furthermore, the constants 1/7°, (12—n?)/(167°),
(10 — 2)/(1677), and (m* — 18072 + 1680)/(30727°) in (2.14) are the best.

The above established inequality (2.14) is much stronger than the left-hand side of
inequality (1.5). Also one can add more positive terms to the right-hand side of inequality
(2.14) to get higher accuracy.

Finally, it should be pointed out that, in order to give the right-hand side of inequality
(1.4) or (1.5), the following Taylor expansion for x/sinx will play an important role as
the above established identity (2.1) or (2.13).

Taylor expansion of x/sinx.

- 22 -2
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where By, are the Bernoulli numbers satisfying (—1)"*1By, >0 (n = 1,2,3,...).
Recall that the Bernoulli numbers B, and the functions B, (x) are defined by
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It is familiar that they have the following properties (see [3, Section I-13]):

-1 1 1 ]
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from which, we have

Bz,,_1<l> =0, 22"32,,6) =(2-2")By, (n=1). (2.18)

Therefore, for |x| < m,
(o]
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From (2.15), we have the following type of strengthened right-hand Jordan’s inequal-
ity:

sinx 1 7 31 !
L 1+72+74+76) . 2.20
x <( 6 T300* T i) (*<m (220
Also one can add more positive terms to the right-hand side of inequality (2.20) to get
higher accuracy.
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