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We investigate the concepts of quasi-H-closed modulo an ideal which generalizes quasi-
H-closedness and C-compactness modulo an ideal which simultaneously generalizes C-
compactness and compactness modulo an ideal. We obtain a characterization of maxi-
mal C-compactness modulo an ideal. Preservation of C-compactness modulo an ideal by
functions is also investigated.
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1. Introduction

In the present paper, we consider a topological space equipped with an ideal, a theme that
has been treated by Vaidyanathaswamy [15] and Kuratowski [6] in their classical texts. An
ideal � on a set X is a nonempty subset of P(X), the power set of X , which is closed for
subsets and finite unions. An ideal is also called a dual filter. {φ} and P(X) are trivial
examples of ideals. Some useful ideals are (i) � f , the ideal of all finite subsets of X , (ii)
�c, the ideal of all countable subsets of X , (iii) �n , the ideal of all nowhere dense subsets
in a topological space (X ,τ), and (iv) �s, the set of all scattered sets in (X ,τ). For an ideal
� on X and A⊂ X , we denote the ideal {I ∩A : I ∈�} by �A.

A topological space (X ,τ) with an ideal � on X is denoted by (X ,τ,�). For a subset
A⊆ X , A∗(�,τ) (called the adherence of A modulo an ideal �) or A∗(�) or just A∗ is the
set {x ∈ X : A∩U /∈ � for every open neighborhood U of x}. A∗(�,τ) has been called
the local function of A with respect to � in [6]. It is easy to see that (i) for the ideal {φ},
A∗ is the closure of A, (ii) for the ideal P(X), A∗ is φ, and (iii) for ideal � f , A∗ is the set
of all ω-accumulation points of A. For general properties of the operator ∗, we refer the
readers to [5, 14].

Observe that the operator cl∗ : P(X)→P(X) defined by cl∗(A)=A∪A∗ is a Kuratowski
closure operator on X and hence generates a topology τ∗(�) or just τ∗ on X finer than
τ. As has already been observed, τ∗({φ}) = τ and τ∗(P(X)) = the discrete topology. A
description of open sets in τ∗(�) as given in Vaidyanathaswamy [15] is given in the
following.
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2 C-compactness modulo an ideal

Theorem 1.1. If τ is a topology and � is an ideal, both defined on X , then

β = β(τ,�)= {V − I : V ∈ τ, I ∈�} is a base for the topology τ∗(�) on X. (1.1)

Ideals have been used frequently in the fields closely related to topology, such as real
analysis, measure theory, and lattice theory. Some interesting illustrations of τ∗(�) are as
follows [5].

(1) If τ is the topology generated by the partition {{2n− 1,2n} : n∈N} on the setN
of natural numbers, then τ∗(� f ) is the discrete topology.

(2) If τ is the indiscrete topology on a set X , then τ∗(� f ) is the cofinite topology on
X , and τ∗(�c) is the co-countable topology on X . If for a fixed point p ∈ X , �
denotes the ideal {A ⊂ X : p /∈ A}, then τ∗(�) is the particular point topology
on X .

(3) For any topological space (X ,τ), τ∗(�n) is the τα topology of Njȧstad [10].
(4) If τ is the usual topology on the real line R and � is the ideal of all subsets of

Lebesgue measure zero, then τ∗-Borel sets are precisely the Lebesgue measurable
sets of R.

2. Quasi-H-closed modulo an ideal space

The concept of compactness modulo an ideal was introduced by Newcomb [9] and has
been studied among others by Rancin [11], and Hamlett and Janković [3]. A space (X ,τ)
is defined to be compact modulo an ideal � on X or just (�) compact space if for every
open cover � of X , there is a finite subfamily {U1,U2, . . . ,Un} such that X −⋃n

i=1Ui ∈
�. In this section, we define quasi-H-closedness modulo an ideal and study some of its
properties. In the process, we get some interesting characterizations of quasi-H-closed
spaces.

Definition 2.1. Let (X ,τ) be a topological space and � an ideal on X . X is quasi-H-closed
modulo � or just (�)QHC if for every open cover � of X , there is a finite subfamily
{U1,U2, . . . ,Un} of � such that X −⋃n

i=1 cl(Ui)∈ �. Such a subfamily is said to be proxi-
mate subcover modulo � or just (�) proximate subcover.

A subset A of a topological space (X ,τ) is said to be preopen [8] if A⊂ int(cl(A)). The
collection of all preopen sets of a space (X ,τ) is denoted by PO(X). An ideal � of subsets
of a topological space (X ,τ) is said to be codense [1] if the complement of each of its
members is dense. Note that an ideal � is codense if and only if �∩ τ = {φ}. Codense
ideals are called τ-boundary ideals in [9]. An ideal � of subsets of a topological space
(X ,τ) is said to be completely codense [1] if �∩PO(X)= {φ}. Obviously, every completely
codense ideal is codense. Note that if (R,τ) is the set R of real numbers equipped with
the usual topology τ, then �c is codense but not completely codense ideal. It is proved in
[1] that an ideal � is completely codense if and only if �⊂�n.

From the discussion of Section 1, the proof of the following theorem is immediate.

Theorem 2.2. For a space (X ,τ), the following are equivalent:
(a) (X ,τ) is quasi-H-closed;
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(b) (X ,τ) is ({φ})QHC;
(c) (X ,τ) is (� f )QHC;
(d) (X ,τ) is (�n)QHC;
(e) (X ,τ) is (�)QHC for every codense ideal �.

The significance of condition in (e) may be seen by considering the set R of real num-
bers equipped with the usual topology τ. If A is a finite subset of R and � is the ideal of
all subsets of R−A, then (R,τ) is (�)QHC, but not quasi-H-closed.

A family � of subsets of X is said to have the finite-intersection property modulo an ideal
� on X or just (�)FIP if the intersection of no finite subfamily of � is a member of � .
Recall that a subset in a space is called regular open if it is the interior of its own closure.
The complement of a regular open set is called regular closed. It is proved in [12] that for
completely codense ideal � on a space (X ,τ), the collections of regular open sets of (X ,τ)
and (X ,τ∗) are same. The following theorem contains a number of characterizations of
(�)QHC spaces. Since the proof is similar to that of a theorem in the next section, we
omit it.

Theorem 2.3. For a space (X ,τ) and an ideal � on X , the following are equivalent:
(a) (X ,τ) is (�)QHC;
(b) for each family � of closed sets having empty intersection, there is a finite subfamily

{F1,F2,F3, . . . ,Fn} such that
⋂n

i=1 int(Fi)∈�;
(c) for each family � of closed sets such that {int(F) : F ∈�} has (�)FIP, one has∩{F :

F ∈�} 	= φ;
(d) every regular open cover has a finite (�) proximate subcover;
(e) for each family � of nonempty regular closed sets having empty intersection, there is

a finite subfamily {F1,F2,F3, . . . ,Fn} such that
⋂n

i=1 int(Fi)∈�;
(f) for each collection � of nonempty regular closed sets such that {int(F) : F ∈�} has

(�)FIP, one has
⋂{F : F ∈�} 	= φ;

(g) for each open filter base � on P (X)−�,
⋂{cl(B) : B ∈�} 	= φ;

(h) every open ultrafilter on P(X)−� converges.

It follows from a result in [13] that τ and τ∗(�) have the same regular open sets, where
� is a completely codense ideal on (X ,τ). In particular, if U ∈ τ∗, then cl(U) = cl∗(U).
Using this observation along with the previous theorem, we have the following.

Theorem 2.4. Let � be a completely codense ideal on a space (X ,τ). Then (X ,τ) is (�)QHC
if and only if (X ,τ∗) is (�)QHC.

Combining this result with Theorem 2.2, we have the following.

Corollary 2.5. Let (X ,τ) be a space and � a completely codense ideal on X . Then the
following are equivalent:

(a) (X ,τ) is quasi-H-closed;
(b) (X ,τ∗) is quasi-H-closed;
(c) (X ,τα) is quasi-H-closed.

The last equivalence follows because τα = τ∗(�n), where �n is the ideal of nowhere
dense sets in X .
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3. C-compact modulo an ideal space

In this section, we generalize the concepts of C-compactness of Viglino [16] and com-
pactness modulo an ideal due to Newcomb [9] and Rancin [11]. A space (X ,τ) is said
to be C-compact if for each closed set A and each τ-open covering � of A, there exists a
finite subfamily {U1,U2,U3, . . . ,Un} such that A⊂⋃n

i=1 cl(Ui).

Definition 3.1. Let (X ,τ) be a topological space and � an ideal on X . (X ,τ) is said to be C-
compact modulo � or just C(�)-compact if for every closed set A and every τ-open cover
� of A, there is a finite subcollection {U1,U2,U3, . . . ,Un} such that A−⋃n

i=1 cl(Ui)∈�.

It follows from the definition that

compact (�) compact

C-compact C(�)-compact

quasi-H-closed (�)QHC

(3.1)

Also from the definition in Section 1, we have the following.

Theorem 3.2. For a space (X ,τ), the following are equivalent:
(a) (X ,τ) is C-compact;
(b) (X ,τ) is C({φ})-compact;
(c) (X ,τ) is C(� f )-compact.

Example 3.3. For n and m in the set N of positive integers, let Y denote the subset of the
plane consisting of all points of the form (1/n,1/m) and the points of the form (1/n,0).
Let X = Y ∪{∞}. Topologize X as follows: let each point of the form (1/n,1/m) be open.
Partition N into infinitely many infinite-equivalence classes, {Zi}∞i=1. Let a neighborhood
system for the point (1/i,0) be composed of all sets of the form G∪F, where

G=
{(

1
i

,0
)}

∪
{(

1
i

,
1
m

)

: m≥ k
}

,

F =
{(

1
n

,
1
m

)

: m∈ Zi, n≥ k
} (3.2)

for some k ∈ N . Let a neighborhood system for the point ∞ be composed of sets of the
form X\T , where

T =
{(

1
n

,0
)

: n∈N
}

∪
k⋃

i=1

{(
1
i

,
1
m

)

: m∈N
}

∪
{(

1
n

,
1
m

)

: m∈ Zi, n∈N
}

(3.3)

for some k ∈N . It is shown in [16] that X is a C-compact space which is not compact. In
view of Theorem 3.2, such a space is C(� f )-compact, but not (� f ) compact.
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Example 3.4. Let X = R+∪{a}∪{b}, where R+ denotes the set of nonnegative real num-
bers and a, b are two distinct points not in R+. Let W(a)= {V ⊂ X : V = {a}∪⋃∞r=m(2r,
2r + 1)}, where m is a nonnegative integer, be a neighborhood system for the point a.
Let W(b)= {V ⊂ X : V = {b}∪⋃∞r=m(2r − 1,2r)}, where m is a nonnegative integer, be
a neighborhood system for the point b. Let R+, with the usual topology, be imbedded in
X . Viglino [16] has shown that the space X is not C-compact. If A is a finite subset of X ,
then (X ,τ) is C(�)-compact, where � is the ideal of all subsets of X −A.

In view of Examples 3.3 and 3.4, it is clear that the implications shown after Definition
3.1 are, in general, irreversible.

It is proved in [3] that if (X ,τ) is quasi-H-closed and � is an ideal such that �n ⊂ �,
then (X ,τ) is (�) compact (and hence C(�)-compact).

Next, if {U1,U2, . . . ,Un} is a finite collection of open subsets such thatX −⋃n
i=1 cl(Ui)∈

�n, then X −⋃n
i=1 cl(Ui)= φ because τ ∩�n = {φ}. But then int(cl(X −⋃n

i=1Ui))= X −
⋃n

i=1 cl(Ui)= φ implies that X −⋃n
i=1Ui ∈ �n. Therefore, a space (X ,τ) is (�n) compact

if and only if it is C(�n)-compact. In view of this discussion, we have the following.

Theorem 3.5. For a space (X ,τ), the following are equivalent:
(a) (X ,τ) is quasi-H-closed;
(b) (X ,τ) is (�n)QHC;
(c) (X ,τ) is C(�n)-compact;
(d) (X ,τ) is (�n) compact.

A space (X ,τ) is said to be Baire if the intersection of every countable family of open
sets in (X ,τ) is dense. It is noted in [5] that a space (X ,τ) is Baire if and only if τ ∩�m =
{φ}, where �m is the ideal of meager (first category) subsets of (X ,τ). Thus, in view of the
above theorem, a Baire space (X ,τ) is C(�m)-compact if and only if it is quasi-H-closed.

We now give some characterizations of C(�)-compact spaces.

Theorem 3.6. Let (X ,τ) be a space and let � be an ideal on X . Then the following are
equivalent:

(a) (X ,τ) is C(�)-compact;
(b) for each closed subset A of X and each family � of closed subsets of X such that

⋂{F⋂A : F ∈ �} = φ, there exists a finite subfamily {F1,F2,F3, . . . ,Fn} such that
⋂

(int(Fi))∩A∈�;
(c) for each closed set A and each family � of closed sets such that {int(F)∩A : F ∈�}

has (�)FIP, one has ∩{F ∩A : F ∈�} 	= φ;
(d) for each closed set A and each regular open cover � of A, there exists a finite subcol-

lection {U1,U2,U3, . . . ,Un} such that A−⋃n
i=1 cl(Ui)∈�;

(e) for each closed set A and each family � of regular closed sets such that
⋂{F ∩A : F ∈

�} = φ, there is a finite subfamily {F1,F2,F3, . . . ,Fn} such that
⋂n

i=1(int(Fi))∩A∈
�;

(f) for each closed set A and each family � of regular closed sets such that {int(F)∩A :
F ∈�} has (�)FIP, one has

⋂{F ∩A : F ∈�} 	= φ;
(g) for each closed set A, each open cover � of X −A and each open neighborhood V

of A, there exists a finite subfamily {U1,U2,U3, . . . ,Un} of � such that X − (V ∪
(
⋃n

i=1 cl(Ui)))∈�;
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(h) for each closed set A and each open filter base � on X such that {B∩A : B ∈�} ⊂
P(X)−�, one has

⋂{cl(B) : B ∈�}∩A 	= φ.

Proof. (a)⇒(b). Let (X ,τ) be C(�)-compact, A a closed subset, and � a family of closed
subsets with ∩{F ∩A : F ∈ �} = φ. Then {X − F : F ∈ �} is an open cover of A and
hence admits a finite subfamily {X −Fi : i= 1,2, . . . ,n} such that A−⋃n

i=1 cl(X −Fi)∈�.
This set in � is easily seen to be

⋂n
i=1{int(Fi)∩A}.

(b)⇒(c). This is easy to be established.
(c)⇒(a). Let A be a closed subset, let � be an open cover of A with the property

that for no finite subfamily {U1,U2,U3, . . . ,Un} of �, one has A−⋃n
i=1 cl(Ui)∈ �. Then

{X −U : U ∈�} is a family of closed sets. Since

n⋂

i=1

{
X − cl

(
Ui
)}∩A=

n⋂

i=1

{
A− cl

(
Ui
)}= A−

n⋃

i=1

cl
(
Ui
)
, (3.4)

the family {int(X −U)∩A : U ∈�} has (�)FIP. By the hypothesis
⋂{(X −U)∩A : U ∈

�} 	= φ. But then A−∪{U : U ∈�} 	= φ, that is, � is not a cover of A, a contradiction.
(d)⇒(a). Let A be a closed subset of X and � an open cover of A. Then {int(cl(U)) :

U ∈ �} is a regular open cover of A. Let {int(cl(Ui)) : i = 1,2, . . . ,n} be a finite sub-
family such that A−⋃n

i=1 cl(int(cl(Ui))) ∈ �. Since Ui is open and for each open set
U , cl(int(cl(U))) = cl(U), we have A−⋃n

i=1 cl(Ui) ∈ �, which shows that X is C(�)-
compact.

(a)⇒(d). This is obvious.
The proofs for (d)⇒(e)⇒(f)⇒(d) are parallel to (a)⇒(b)⇒(c)⇒(a), respectively.
(a)⇒(g). Let A be a closed set, V an open neighborhood of A, and � an open cover of

X −A. Since X −V ⊂ X −A, � is also an open cover of the closed set X −V .
Let {U1,U2,U3, . . . ,Un} be a finite subcollection of � such that (X −V)−⋃n

i=1 cl(Ui)∈
�. However, the last set is X − (V ∪{⋃n

i=1 cl(Ui)}).
(g)⇒(a). Let A be a closed subset of X and � an open covering of A. If H denotes the

union of members of �, then F = X −H is a closed set and X −A is an open neighbor-
hood of F. Also � is an open cover of X −F. By hypothesis, there is a finite subcollection
{U1,U2,U3, . . . ,Un} of � such that

X

(

(X −A)∪
{ n⋃

i=1

cl
(
Ui
)
})

∈�. (3.5)

However, this set in � is nothing but A−⋃n
i=1 cl(Ui).

(a)⇒(h). Suppose A is a closed set and � is any open filter base on X with {B∩A :
B ∈�} ⊂ P(X)−�. Suppose, if possible,

⋂{cl(B) : B ∈�}∩A = φ. Then {X − cl(B) :
B ∈ �} is an open cover of A. By the hypothesis, there exists a finite subfamily {X −
cl(Bi) : i= 1,2,3, . . . ,n} such that A−⋃n

i=1 cl(X − cl(Bi)) is in �. However, this set is A∩
(
⋂n

i=1 int(cl(Bi))) and A∩ (
⋂n

i=1Bi) is a subset of it. Therefore, A∩ (
⋂n

i=1Bi) ∈ �. Since
� is a filter base, we have a B ∈ � such that B ⊂ ⋂n

i=1Bi. But then A∩ B ∈ � which
contradicts the fact that {B∩A : B ∈�} ⊂ P(X)−�.

(h)⇒(a). Suppose that (X ,τ) is not C(�)-compact. Then there exist a closed subset
A of X and an open cover � of A such that for any finite subfamily {U1,U2,U3, . . . ,Un}
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of �, we have A−⋃n
i=1 cl(Ui) /∈ �. We may assume that � is closed under finite unions.

Then the family �= {X − cl(U) : U ∈�} is an open filter base on X such that {B∩A :
B ∈�} ⊂ P(A)−�. So, by the hypothesis,

⋂{cl(X − cl(U)) : U ∈�}∩A 	= φ. Let x be
a point in the intersection. Then x ∈ A and x ∈ cl(X − cl(U))= X − int(cl(U))⊂ X −U
for each U ∈�. But this contradicts the fact that � is a cover of A. Hence (X ,τ) is C(�)-
compact. �

Next we characterize C(�)-compact spaces using some weaker forms of filter base con-
vergence.

Definition 3.7. A filter base � is said to be (�) adherent convergent if for every neighbor-
hood G of the adherent set of �, there exists an element B ∈� such that (X −G)∩B ∈�.
Clearly, every adherent convergent filter base is (�) adherent convergent and a filter base
is adherent convergent if and only if it is ({φ}) adherent convergent.

Theorem 3.8. A space (X ,τ) is C(�)-compact if and only if every open filter base on P(X)−
� is (�) adherent convergent.

Proof. Let (X ,τ) be C(�)-compact and let � be an open filter base on P(X)−� with
A as its adherent set. Let G be an open neighborhood of A. Then A = ⋂{cl(B) : B ∈
�}, A ⊂ G, and X −G is closed. Now {X − cl(B) : B ∈ �} is an open cover of X −G
and so by the hypothesis, it admits a finite subfamily {X − cl(Bi) : i = 1,2,3, . . . ,n} such
that (X −G)−⋃n

i=1 cl(X − cl(Bi))∈ �. But this implies (X −G)∩ (
⋂n

i=1 int(cl(Bi)))∈ �.
However, Bi ⊂ int(cl(Bi)) implies (X −G)∩ (

⋂n
i=1Bi) ∈ �. Since � is a filter base and

Bi ∈�, there is a B ∈� such that B ⊂⋂n
i=1Bi. But then (X −G)∩B ∈� is required.

Conversely, let (X ,τ) be not C(�)-compact, and let A be a closed set, and � an open
cover of A such that for no finite subfamily {U1,U2,U3, . . . ,Un} of �, one has A−⋃n

i=1

cl(Ui)∈ �. Without loss of generality, we may assume that � is closed for finite unions.
Therefore, � = {X − cl(U) : U ∈�} becomes an open filter base on P(X)−�. If x is
an adherent point of �, that is, if x ∈ ⋂{cl(X − cl(U)) : U ∈�} = X −⋃{int(cl(U)) :
U ∈�}, then x /∈ A, because � is an open cover of A and for U ∈�, U ⊂ int(cl(U)).
Therefore, the adherent set of � is contained in X −A, which is an open set. By the
hypothesis, there exists an element B ∈� such that (X − (X −A))∩B ∈ �, that is, A∩
B ∈�, that is, A∩ (X − cl(U))∈�, that is, A− cl(U)∈� for some U ∈�. This however
contradicts our assumption. This completes the proof. �

Herrington and Long [4] characterized C-compact spaces using r-convergence of fil-
ters and nets. We obtain similar results for C(�)-compact spaces in the next definition.

Definition 3.9. Let X be a space, φ 	= A ⊂ X , and let � be a filter base on A. � is said
to r-converge to a ∈ A if for each open set V in X containing a, there is B ∈ � with
B ⊂ cl(V). The filter base � is said to r-accumulate to a, if for each open set V containing
a, cl(V)∩B 	= φ for each B ∈�.

Similarly, a net ϕ : D → A ⊂ X is said to r-converge to a ∈ A if for each open set V
containing a, there is a b ∈D such that ϕ(c)∈ cl(V) for all c ≥ b. ϕ is said to r-accumulate
to a if for each open set V containing a and each b ∈ D, there is c ∈ D with c ≥ b and
ϕ(c)∈ cl(V).
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It is known [4] that convergence (accumulation) for filter bases and nets implies r-
convergence (r-accumulation), but the converse is not true.

Theorem 3.10. For a space (X ,τ) and an ideal � on X , the following are equivalent:
(a) (X ,τ) is C(�)-compact;
(b) for each closed set A, each filter base � on P(A)−� r-accumulates to some a∈A;
(c) for each closed set A, each maximal filter base � on P(A)−� r-converges to some

a∈ A;
(d) for each closed set A, each net ϕ on P(A)−� r-accumulates to some a∈ A.

Proof. (a)⇒(b). Suppose there exist a closed set A and a filter base � on P(A)−� which
does not r-accumulate to any a∈ A. Then for each a∈ A, there exists an open set U(a)
containing a and a B(a) ∈� such that B(a)∩ cl(U(a)) = φ. Then {U(a) : a ∈ A} is an
open cover of the closed set A. By (a), there exists a finite subcollection {U(ai) : i =
1,2,3, . . . ,n} such that A−⋃n

i=1 cl(U(ai))∈ �. If B ∈� is such that B ⊂⋂n
i=1B(ai), then

B∩ (A−⋃n
i=1 cl(U(ai)))∈�, that is, B−⋃n

i=1 cl(U(ai))∈�. But the later set is just B, be-
cause B ⊂ B(ai) and B(ai)∩ cl(U(ai))= φ for each i. However, B ∈ � is a contradiction,
because B ∈� and �⊂ P(A)−�.

(b)⇔(c). This follows in view of parts (a), (b), and (c) of [4, Theorem 1].
(b)⇒(a). If possible, let X be not C(�)-compact. Then by Theorem 3.6(f), there exist

a closed set A and a collection � of regular closed sets with the property that for every
finite subcollection {F1,F2,F3, . . . ,Fn},

⋂n
i=1 int(Fi)∩A /∈ �, but

⋂{F : F ∈�} ∩A = φ.
Now the collection of sets of the form

⋂n
i=1 int(Fi)∩A for all possible finite subfami-

lies {F1,F2,F3, . . . ,Fn} of � forms a filter base on P(A)−�. By (b), this filter base r-
accumulates to some a ∈ A, that is, for each open set U(a) containing a and for each
F ∈�, cl(U(a))∩ (int(F)∩A) 	= φ. However, a∈ A and A∩{F : F ∈�} = φ imply that
there is some F = F(a)∈� such that a /∈ F(a). Then X −F(a) is an open set containing
a such that cl(X −F(a))∩ (int(F(a))∩A)= φ. This is a contradiction.

(b)⇔(d). This follows using standard arguments about nets and filters. �

If in the above theorem, A is replaced by the whole space X , we get the characteriza-
tions of (�)QHC spaces. If in addition we consider completely codense ideal �, we get
the characterizations of quasi-H-closed spaces.

4. C(�)-compact spaces and functions

A function f : (X ,τ)− (Y ,σ) is said to be θ-continuous [2] at a point x ∈ X if for ev-
ery open set V of Y containing f (x), there exists an open set U of X containing x such
that f (cl(U)) ⊆ cl(V). A function f : (X ,τ)− (Y ,σ) is said to be θ-continuous if f is θ-
continuous for every x ∈ X . The concept of θ-continuity is weaker than that of conti-
nuity. An important property of C-compact spaces is that a continuous function from
a C-compact space to a Hausdorff space is closed. We prove the following more general
results.

Theorem 4.1. Let f : (X ,τ,�)− (Y ,σ,ϑ) be a θ-continuous function, (X ,τ,�) C(�)-com-
pact, (Y ,σ) Hausdorff, and f (�) ⊆ ϑ. Then f (A) is σ∗(ϑ)-closed for each closed set A of
X .
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Proof. Let A be any closed set in X and a /∈ f (A). For each x ∈ A, there exists a σ-open
set Vy containing y = f (x) such that a /∈ cl(Vy). Now because f is θ-continuous, there
exists an open set Ux containing x such that f (cl(Ux)) ⊆ cl(Vy). The family {Ux : x ∈
A} is an open cover of A. Therefore, there exists a finite subfamily {Uxi : i = 1,2, . . . ,n}
such that A−⋃n

i=1 cl(Uxi)∈ �. But then f (A−⋃n
i=1 cl(Uxi))∈ f (�)⊆ ϑ, that is, f (A)−

f (
⋃n

i=1 cl(Uxi))∈ f (�)⊆ ϑ because f (�) is also an ideal. Hence f (A)− (
⋃n

i=1 cl(Vyi))∈
f (�) ⊆ ϑ. Now a /∈ cl(Vyi) for any i implies that a ∈ Y −⋃n

i=1 cl(Vyi) which is open in
(Y ,σ) and (Y−⋃n

i=1 cl(Vyi))∩ f (A)= f (A)−⋃n
i=1 cl(Vyi)∈ f (�)⊆ ϑ. Hence a /∈ ( f (A))∗

(σ ,ϑ). Thus ( f (A))∗(σ ,ϑ)⊂ f (A) and so f (A) is σ∗(ϑ)-closed. �

Corollary 4.2. Let f : (X ,τ,�)− (Y ,σ,ϑ) be a continuous function, (X ,τ,�) C(�)-com-
pact, (Y ,σ) Hausdorff, and f (�)⊆ϑ. Then f (A) is σ∗(ϑ)-closed for each closed set A of
X .

Theorem 4.3. Let f : (X ,τ,�)− (Y ,σ,ϑ) be a continuous surjection, (X ,τ,�) C(�)-com-
pact, and f (�)⊆ ϑ. Then (Y ,σ,ϑ) is C(ϑ)-compact.

Proof. Let A be any closed subset of (Y ,σ) and {Vα : α∈Λ} any open cover of A by open
sets in Y . Then { f −1(Vα) : α∈Λ} is an open cover of f −1(A) which is closed in X . Hence,
by the hypothesis, there exists a finite subcollection { f −1(Vαi) : i = 1,2, . . . ,n} such that
f −1(A)−⋃n

i=1 cl( f −1(Vαi))∈�. Since f is continuous, cl( f −1(B))⊂ f −1(cl(B)) for every
subset B of Y . Hence we have f −1(A)−⋃n

i=1 f
−1(cl(Vαi)) = f −1(A−⋃n

i=1 cl(Vαi)) ∈ �.
Since f is surjective, A−⋃n

i=1 cl(Vαi)∈ f (�)⊂ ϑ. Hence Y is C(ϑ)-compact. �

Theorem 4.4. If the product space ΠXα of nonempty family of topological spaces (Xα,τα) is
C(�)-compact, then each (Xα,τα) is C(pα(�))-compact, where pα is the projection map and
� is an ideal on ΠXα.

Proof. This follows from Theorem 4.3. �

5. C(�)-compact spaces and subspaces

In this section, we introduce three types of C(�)-compact subsets and use them to obtain
new characterizations of C(�)-compact spaces and a characterization of maximal C(�)-
compact spaces.

Definition 5.1. Let (X ,τ) be a space and � an ideal on X . A subset Y of X is said to be
C(�)-compact if the subspace (Y ,τY ) is C(�)-compact.

Some useful results about such subspaces are contained in the following theorem. The
proofs are easy to establish.

Theorem 5.2. Let (X ,τ) be a space and � an ideal on X . Then
(a) a subspace Y is C(�)-compact if and only if it is C(�Y )-compact;
(b) a clopen subspace of a C(�)-compact space is C(�)-compact;
(c) if Y is a regular closed subset of a C(�)-compact space (X ,τ,�) and � is codense,

then (Y ,τY ) is quasi-H-closed;
(d) a finite union of C(�)-compact subspaces of X is C(�)-compact.



10 C-compactness modulo an ideal

Definition 5.3. A subset Y of (X ,τ) is said to be C(�)-compact relative to τ if every τ-open
cover of every relatively closed subset A of Y has a finite subfamily whose τ-closures cover
A except a set in �.

Some useful properties of such spaces are contained in the following.

Theorem 5.4. Let (X ,τ) be a space and � an ideal on X . Then the following hold.
(a) A closed subspace of a C(�)-compact relative to τ subspace of (X ,τ) is C(�)-compact

relative to τ.
(b) If (X ,τ) is Hausdorff and Y is C(�)-compact relative to τ, then Y is τ∗(�)-closed.
(c) If Y is a C(�)-compact relative to τ subspace of (X ,τ) and f : (X ,τ)− (Z,σ) is a

continuous bijection, then f (Y) is C( f (�))-compact relative to σ.
(d) C(�)-compactness relative to τ is contractive.

The following characterization of C(�)-compact spaces is obtained using C(�)-com-
pact relative to τ subspaces. The proof is easy.

Theorem 5.5. A space (X ,τ) with an ideal � is C(�)-compact if and only if every proper
closed subset of X is C(�)-compact relative to τ.

Definition 5.6. A subset Y of a space (X ,τ) is said to be closure C(�)-compact if for every
τY -closed subset K of Y and every τ-open cover � of cl(K), there is a finite subcollection
{U1,U2,U3, . . . ,Un} of � such that K −⋃n

i=1 clY (Ui∩Y)∈�.

It is easy to see that closure C(�)-compactness is contractive.

Example 5.7. Since closed subsets of C(�)-compact spaces are not necessarily (�)QHC,
a space (X ,τ) which is C(�)-compact relative to τ may fail to be closure C(�)-compact.
Moreover, ]0, 1] as a subspace of [0, 1] is closure C(�)-compact with � = {φ}, but not
C(�)-compact relative to the usual topology. Thus the concepts of C(�)-compact relative
to τ and closure C(�)-compact are independent concepts.

We now have the following characterization of C(�)-compact spaces.

Theorem 5.8. A space (X ,τ) is C(�)-compact for an ideal � on X if and only if every open
subset of X is closure C(�)-compact.

Proof. Let (X ,τ) be C(�)-compact and Y an open subset of X . Let K be a τY -closed
subset of Y , and let � be a τ-open cover of cl(K). Then there exists a finite subcollec-
tion {U1,U2,U3, . . . ,Un} of � such that clK −⋃n

i=1 cl(Ui)∈�. Since Y is open, therefore,
clY (U ∩Y) = cl(U)∩Y and so, by hereditary property of �, K −⋃n

i=1 clY (Ui ∩Y) ∈ �.
Thus Y is closure C(�)-compact.

Conversely, let all open subsets of X be closure C(�)-compact. Let K be a closed and
� an open cover of K . Choose a U0 ∈�. Then Y = X − cl(U0) is an open subset of X and
K ∩Y is a τY -closed subset of Y . Moreover, �−{U0} is an open cover of cl(K ∩Y). By
the hypothesis, there exists a finite subcollection {U1,U2,U3, . . . ,Un} of �− {U0} such
that K ∩Y −⋃n

i=1 clY (Ui ∩Y) ∈ �. But then K ∩Y −⋃n
i=1 cl(Ui) ∈ � as clY (Ui ∩Y) =

cl(Ui)∩ Y and � is hereditary. Therefore, K −⋃n
i=0 cl(Ui) ∈ �. Hence (X ,τ) is C(�)-

compact.
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Finally, we obtain a characterization of a maximal C(�)-compact space. Recall that a
space (X ,τ) with property P is said to be maximal P if there is no topology σ on X which
has property P and is strictly finer than τ. For a topological space (X ,τ) and a subset A
of X , τ(A)= {U ∪ (V ∩A) : U ,V ∈ τ} is a topology called simple extension [7] of τ by A.
τ(A) is strictly finer than τ if and only if A /∈ τ. �

Theorem 5.9. A topological space (X ,τ) is maximal C(�)-compact if and only if for every
subset A of X such that A is closure C(�)-compact and X −A is C(�)-compact relative to τ,
one has A∈ τ.

Proof. First we assume that (X ,τ) is maximal C(�)-compact and that A is a subset of X
satisfying the given conditions. First, we show that (X ,τ(A)) is C(�)-compact. Let K be
a τ(A)-closed subset of X . Then K = K1∪ (K2∩ (X −A)), where K1 and K2 are τ-closed
sets. Let

�= {Uα∪
(
Vα∩A

)
: Uα,Vα ∈ τ, α∈ Δ

}
(5.1)

be a τ(A)-open cover of K . Then ν = {Uα : α ∈ Δ} is a τ-open cover of K ∩ (X −A) =
(K1∪K2)∩ (X −A). Since, by assumption,X −A isC(�)-compact relative to τ, we have a
finite subcollection {Uα1 ,Uα2 ,Uα3 , . . . ,Uαn} of ν such that K ∩ (X −A)−⋃n

i=1 cl(Uαi)∈�.
Since τ(A) is finer than τ, this subcollection is τ(A)-open and K ∩ (X − A) −
⋃n

i=1 clτ(A)(Uαi) ∈ �. Next, � = {Uα ∪ Vα : α ∈ Δ} is a τ-open cover of cl(K ∩ A) =
cl(K1 ∩A) = clτ(A)(K1 ∩A) and therefore by assumption on A, there exists a finite sub-
collection {Uβi ∪Vβi : i= 1,2, . . . ,k} of � such that

K1∩A−
k⋃

i=1

clτA
[(
Uβi ∪Vβi

)∩A
]∈�. (5.2)

However, τA, the restriction of τ to A, is nothing but τ(A) | A, the restriction of τ(A) to
A. Therefore,

K1∩A−
k⋃

i=1

clτ(A)|A
[(
Uβi ∪Vβi

)∩A
]∈�. (5.3)

Now {Uαi ∪ (Vαi ∩A) : i = 1,2, . . . ,n} ∪ {Uβi ∪ (Vβi ∩A) : i = 1,2, . . . ,k} is a finite τ(A)
(�) proximate cover of K which is a subcover of �. Thus the topology τ(A) on X is also
C(�)-compact. However, by the maximality of τ, we have τ(A) = τ. But then A ∈ τ as
desired.

Conversely, let (X ,τ) be not maximal C(�)-compact. Then there is a C(�)-compact
topology σ on X which is strictly finer than τ. Let A∈ σ − τ. Then A is σ-closure C(�)-
compact by Theorem 5.8. Since the property of closure C(�)-compact is carried over to
coarser topologies, A is τ-closure C(�)-compact. Also X −A is C(�)-compact relative to
σ and hence C(�)-compact relative to τ. By the hypothesis, then A∈ τ, a contradiction.

�

Remark 5.10. The readers can generalize the above concepts in bitopological spaces to
unify various types of compactness.
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