C-COMPACTNESS MODULO AN IDEAL

M. K. GUPTA AND T. NOIRI

Received 24 January 2006; Revised 30 March 2006; Accepted 4 April 2006

We investigate the concepts of quasi-*H*-closed modulo an ideal which generalizes quasi-*H*-closedness and *C*-compactness modulo an ideal which simultaneously generalizes *C*-compactness and compactness modulo an ideal. We obtain a characterization of maximal *C*-compactness modulo an ideal. Preservation of *C*-compactness modulo an ideal by functions is also investigated.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In the present paper, we consider a topological space equipped with an ideal, a theme that has been treated by Vaidyanathaswamy [15] and Kuratowski [6] in their classical texts. An *ideal* \mathcal{I} on a set X is a nonempty subset of P(X), the power set of X, which is closed for subsets and finite unions. An ideal is also called a *dual filter*. { ϕ } and P(X) are trivial examples of ideals. Some useful ideals are (i) \mathcal{I}_f , the ideal of all finite subsets of X, (ii) \mathcal{I}_c , the ideal of all countable subsets of X, (iii) \mathcal{I}_n , the ideal of all nowhere dense subsets in a topological space (X, τ) , and (iv) \mathcal{I}_s , the set of all scattered sets in (X, τ) . For an ideal \mathcal{I} on X and $A \subset X$, we denote the ideal { $I \cap A : I \in \mathcal{I}$ } by \mathcal{I}_A .

A topological space (X, τ) with an ideal \mathscr{I} on X is denoted by (X, τ, \mathscr{I}) . For a subset $A \subseteq X, A^*(\mathscr{I}, \tau)$ (called the adherence of A modulo an ideal \mathscr{I}) or $A^*(\mathscr{I})$ or just A^* is the set $\{x \in X : A \cap U \notin \mathscr{I} \text{ for every open neighborhood } U \text{ of } x\}$. $A^*(\mathscr{I}, \tau)$ has been called the *local function* of A with respect to \mathscr{I} in [6]. It is easy to see that (i) for the ideal $\{\phi\}$, A^* is the closure of A, (ii) for the ideal $P(X), A^*$ is ϕ , and (iii) for ideal \mathscr{I}_f, A^* is the set of all ω -accumulation points of A. For general properties of the operator *, we refer the readers to [5, 14].

Observe that the operator $\operatorname{cl}^* : P(X) \to P(X)$ defined by $\operatorname{cl}^*(A) = A \cup A^*$ is a Kuratowski closure operator on X and hence generates a topology $\tau^*(\mathcal{G})$ or just τ^* on X finer than τ . As has already been observed, $\tau^*(\{\phi\}) = \tau$ and $\tau^*(P(X)) =$ the discrete topology. A description of open sets in $\tau^*(\mathcal{G})$ as given in Vaidyanathaswamy [15] is given in the following.

THEOREM 1.1. If τ is a topology and \mathcal{I} is an ideal, both defined on X, then

$$\beta = \beta(\tau, \mathcal{I}) = \{ V - I : V \in \tau, I \in \mathcal{I} \} \text{ is a base for the topology } \tau^*(\mathcal{I}) \text{ on } X.$$
(1.1)

Ideals have been used frequently in the fields closely related to topology, such as real analysis, measure theory, and lattice theory. Some interesting illustrations of $\tau^*(\mathcal{I})$ are as follows [5].

- (1) If τ is the topology generated by the partition $\{\{2n-1,2n\}: n \in \mathbb{N}\}$ on the set \mathbb{N} of natural numbers, then $\tau^*(\mathcal{G}_f)$ is the discrete topology.
- (2) If τ is the indiscrete topology on a set X, then τ*(𝔅_f) is the cofinite topology on X, and τ*(𝔅_c) is the co-countable topology on X. If for a fixed point p ∈ X, 𝔅 denotes the ideal {A ⊂ X : p ∉ A}, then τ*(𝔅) is the particular point topology on X.
- (3) For any topological space $(X, \tau), \tau^*(\mathcal{I}_n)$ is the τ^{α} topology of Njästad [10].
- (4) If τ is the usual topology on the real line R and I is the ideal of all subsets of Lebesgue measure zero, then τ*-Borel sets are precisely the Lebesgue measurable sets of R.

2. Quasi-H-closed modulo an ideal space

The concept of compactness modulo an ideal was introduced by Newcomb [9] and has been studied among others by Rancin [11], and Hamlett and Janković [3]. A space (X, τ) is defined to be *compact modulo an ideal* \mathcal{I} on X or just (\mathcal{I}) compact space if for every open cover \mathcal{U} of X, there is a finite subfamily $\{U_1, U_2, \ldots, U_n\}$ such that $X - \bigcup_{i=1}^n U_i \in \mathcal{I}$. In this section, we define *quasi-H-closedness* modulo an ideal and study some of its properties. In the process, we get some interesting characterizations of *quasi-H-closed* spaces.

Definition 2.1. Let (X, τ) be a topological space and \mathscr{I} an ideal on X. X is quasi-H-closed modulo \mathscr{I} or just (\mathscr{I}) QHC if for every open cover \mathscr{U} of X, there is a finite subfamily $\{U_1, U_2, \ldots, U_n\}$ of \mathscr{U} such that $X - \bigcup_{i=1}^n \operatorname{cl}(U_i) \in \mathscr{I}$. Such a subfamily is said to be proximate subcover modulo \mathscr{I} or just (\mathscr{I}) proximate subcover.

A subset *A* of a topological space (X, τ) is said to be *preopen* [8] if $A \subset int(cl(A))$. The collection of all preopen sets of a space (X, τ) is denoted by PO(*X*). An ideal \mathcal{I} of subsets of a topological space (X, τ) is said to be *codense* [1] if the complement of each of its members is dense. Note that an ideal \mathcal{I} is codense if and only if $\mathcal{I} \cap \tau = \{\phi\}$. Codense ideals are called τ -boundary ideals in [9]. An ideal \mathcal{I} of subsets of a topological space (X, τ) is said to be *completely codense* [1] if $\mathcal{I} \cap PO(X) = \{\phi\}$. Obviously, every completely codense ideal is codense. Note that if (\mathbb{R}, τ) is the set \mathbb{R} of real numbers equipped with the usual topology τ , then \mathcal{I}_c is codense but not completely codense ideal. It is proved in [1] that an ideal \mathcal{I} is completely codense if and only if $\mathcal{I} \subset \mathcal{I}_n$.

From the discussion of Section 1, the proof of the following theorem is immediate.

THEOREM 2.2. For a space (X, τ) , the following are equivalent: (a) (X, τ) is quasi-H-closed;

- (b) (X, τ) *is* $(\{\phi\})$ QHC;
- (c) (X, τ) is (\mathcal{I}_f) QHC;
- (d) (X, τ) is (\mathcal{I}_n) QHC;
- (e) (X, τ) is (\mathcal{I}) QHC for every codense ideal \mathcal{I} .

The significance of condition in (e) may be seen by considering the set \mathbb{R} of real numbers equipped with the usual topology τ . If *A* is a finite subset of \mathbb{R} and \mathcal{I} is the ideal of all subsets of $\mathbb{R} - A$, then (\mathbb{R}, τ) is (\mathcal{I}) QHC, but not quasi-*H*-closed.

A family \mathcal{F} of subsets of X is said to have the *finite-intersection property modulo an ideal* \mathcal{I} on X or just (\mathcal{I}) FIP if the intersection of no finite subfamily of \mathcal{F} is a member of \mathcal{I} . Recall that a subset in a space is called *regular open* if it is the interior of its own closure. The complement of a regular open set is called *regular closed*. It is proved in [12] that for completely codense ideal \mathcal{I} on a space (X, τ) , the collections of regular open sets of (X, τ) and (X, τ^*) are same. The following theorem contains a number of characterizations of (\mathcal{I}) QHC spaces. Since the proof is similar to that of a theorem in the next section, we omit it.

THEOREM 2.3. For a space (X, τ) and an ideal \mathcal{P} on X, the following are equivalent:

- (a) (X, τ) is (\mathcal{I}) QHC;
- (b) for each family \mathcal{F} of closed sets having empty intersection, there is a finite subfamily $\{F_1, F_2, F_3, \dots, F_n\}$ such that $\bigcap_{i=1}^n \operatorname{int}(F_i) \in \mathcal{I}$;
- (c) for each family \mathcal{F} of closed sets such that $\{int(F) : F \in \mathcal{F}\}$ has (\mathcal{I}) FIP, one has $\cap \{F : F \in \mathcal{F}\} \neq \phi$;
- (d) every regular open cover has a finite (\mathcal{P}) proximate subcover;
- (e) for each family ℱ of nonempty regular closed sets having empty intersection, there is a finite subfamily {F₁, F₂, F₃,..., F_n} such that ∩ⁿ_{i=1} int(F_i) ∈ 𝔅;
- (f) for each collection \mathcal{F} of nonempty regular closed sets such that $\{int(F) : F \in \mathcal{F}\}$ has (\mathcal{I}) FIP, one has $\bigcap \{F : F \in \mathcal{F}\} \neq \phi$;
- (g) for each open filter base \mathfrak{B} on $P(X) \mathfrak{I}$, $\bigcap \{ cl(B) : B \in \mathfrak{B} \} \neq \phi$;
- (h) every open ultrafilter on $P(X) \mathcal{I}$ converges.

It follows from a result in [13] that τ and $\tau^*(\mathcal{I})$ have the same regular open sets, where \mathcal{I} is a completely codense ideal on (X, τ) . In particular, if $U \in \tau^*$, then $cl(U) = cl^*(U)$. Using this observation along with the previous theorem, we have the following.

THEOREM 2.4. Let \mathscr{G} be a completely codense ideal on a space (X, τ) . Then (X, τ) is (\mathscr{G}) QHC if and only if (X, τ^*) is (\mathscr{G}) QHC.

Combining this result with Theorem 2.2, we have the following.

COROLLARY 2.5. Let (X, τ) be a space and \mathcal{I} a completely codense ideal on X. Then the following are equivalent:

- (a) (X, τ) is quasi-H-closed;
- (b) (X, τ^*) is quasi-H-closed;
- (c) (X, τ^{α}) is quasi-H-closed.

The last equivalence follows because $\tau^{\alpha} = \tau^*(\mathcal{I}_n)$, where \mathcal{I}_n is the ideal of nowhere dense sets in *X*.

3. C-compact modulo an ideal space

In this section, we generalize the concepts of *C*-compactness of Viglino [16] and compactness modulo an ideal due to Newcomb [9] and Rancin [11]. A space (X, τ) is said to be *C*-compact if for each closed set *A* and each τ -open covering \mathfrak{U} of *A*, there exists a finite subfamily $\{U_1, U_2, U_3, \dots, U_n\}$ such that $A \subset \bigcup_{i=1}^n \operatorname{cl}(U_i)$.

Definition 3.1. Let (X, τ) be a topological space and \mathscr{I} an ideal on X. (X, τ) is said to be *C*compact modulo \mathscr{I} or just $C(\mathscr{I})$ -compact if for every closed set A and every τ -open cover \mathscr{U} of A, there is a finite subcollection $\{U_1, U_2, U_3, \dots, U_n\}$ such that $A - \bigcup_{i=1}^n \operatorname{cl}(U_i) \in \mathscr{I}$.

It follows from the definition that

Also from the definition in Section 1, we have the following.

THEOREM 3.2. For a space (X, τ) , the following are equivalent:

- (a) (X, τ) is C-compact;
- (b) (X, τ) is $C(\{\phi\})$ -compact;
- (c) (X, τ) is $C(\mathcal{I}_f)$ -compact.

Example 3.3. For *n* and *m* in the set *N* of positive integers, let *Y* denote the subset of the plane consisting of all points of the form (1/n, 1/m) and the points of the form (1/n, 0). Let $X = Y \cup \{\infty\}$. Topologize *X* as follows: let each point of the form (1/n, 1/m) be open. Partition *N* into infinitely many infinite-equivalence classes, $\{Z_i\}_{i=1}^{\infty}$. Let a neighborhood system for the point (1/i, 0) be composed of all sets of the form $G \cup F$, where

$$G = \left\{ \left(\frac{1}{i}, 0\right) \right\} \cup \left\{ \left(\frac{1}{i}, \frac{1}{m}\right) : m \ge k \right\},$$

$$F = \left\{ \left(\frac{1}{n}, \frac{1}{m}\right) : m \in Z_i, \ n \ge k \right\}$$
(3.2)

for some $k \in N$. Let a neighborhood system for the point ∞ be composed of sets of the form $X \setminus T$, where

$$T = \left\{ \left(\frac{1}{n}, 0\right) : n \in N \right\} \cup \bigcup_{i=1}^{k} \left\{ \left(\frac{1}{i}, \frac{1}{m}\right) : m \in N \right\} \cup \left\{ \left(\frac{1}{n}, \frac{1}{m}\right) : m \in Z_i, n \in N \right\}$$
(3.3)

for some $k \in N$. It is shown in [16] that X is a C-compact space which is not compact. In view of Theorem 3.2, such a space is $C(\mathcal{G}_f)$ -compact, but not (\mathcal{G}_f) compact.

Example 3.4. Let $X = R^+ \cup \{a\} \cup \{b\}$, where R^+ denotes the set of nonnegative real numbers and *a*, *b* are two distinct points not in R^+ . Let $W(a) = \{V \subset X : V = \{a\} \cup \bigcup_{r=m}^{\infty} (2r, 2r+1)\}$, where *m* is a nonnegative integer, be a neighborhood system for the point *a*. Let $W(b) = \{V \subset X : V = \{b\} \cup \bigcup_{r=m}^{\infty} (2r-1,2r)\}$, where *m* is a nonnegative integer, be a neighborhood system for the point *b*. Let R^+ , with the usual topology, be imbedded in *X*. Viglino [16] has shown that the space *X* is not *C*-compact. If *A* is a finite subset of *X*, then (X, τ) is $C(\mathcal{I})$ -compact, where \mathcal{I} is the ideal of all subsets of X - A.

In view of Examples 3.3 and 3.4, it is clear that the implications shown after Definition 3.1 are, in general, irreversible.

It is proved in [3] that if (X, τ) is quasi-*H*-closed and \mathscr{I} is an ideal such that $\mathscr{I}_n \subset \mathscr{I}$, then (X, τ) is (\mathscr{I}) compact (and hence $C(\mathscr{I})$ -compact).

Next, if $\{U_1, U_2, ..., U_n\}$ is a finite collection of open subsets such that $X - \bigcup_{i=1}^n \operatorname{cl}(U_i) \in \mathcal{G}_n$, then $X - \bigcup_{i=1}^n \operatorname{cl}(U_i) = \phi$ because $\tau \cap \mathcal{G}_n = \{\phi\}$. But then $\operatorname{int}(\operatorname{cl}(X - \bigcup_{i=1}^n U_i)) = X - \bigcup_{i=1}^n \operatorname{cl}(U_i) = \phi$ implies that $X - \bigcup_{i=1}^n U_i \in \mathcal{G}_n$. Therefore, a space (X, τ) is (\mathcal{G}_n) compact if and only if it is $C(\mathcal{G}_n)$ -compact. In view of this discussion, we have the following.

THEOREM 3.5. For a space (X, τ) , the following are equivalent:

- (a) (X, τ) is quasi-H-closed;
- (b) (X, τ) is (\mathcal{I}_n) QHC;
- (c) (X, τ) is $C(\mathcal{I}_n)$ -compact;
- (d) (X,τ) is (\mathcal{I}_n) compact.

A space (X, τ) is said to be *Baire* if the intersection of every countable family of open sets in (X, τ) is dense. It is noted in [5] that a space (X, τ) is Baire if and only if $\tau \cap \mathcal{G}_m = \{\phi\}$, where \mathcal{G}_m is the ideal of meager (first category) subsets of (X, τ) . Thus, in view of the above theorem, a Baire space (X, τ) is $C(\mathcal{G}_m)$ -compact if and only if it is quasi-*H*-closed.

We now give some characterizations of $C(\mathcal{I})$ -compact spaces.

THEOREM 3.6. Let (X, τ) be a space and let \mathcal{I} be an ideal on X. Then the following are equivalent:

- (a) (X, τ) is $C(\mathcal{P})$ -compact;
- (b) for each closed subset A of X and each family \mathcal{F} of closed subsets of X such that $\bigcap \{F \cap A : F \in \mathcal{F}\} = \phi$, there exists a finite subfamily $\{F_1, F_2, F_3, \dots, F_n\}$ such that $\bigcap (\operatorname{int}(F_i)) \cap A \in \mathcal{G};$
- (c) for each closed set A and each family \mathcal{F} of closed sets such that $\{int(F) \cap A : F \in \mathcal{F}\}$ has (\mathcal{I}) FIP, one has $\cap \{F \cap A : F \in \mathcal{F}\} \neq \phi$;
- (d) for each closed set A and each regular open cover \mathfrak{A} of A, there exists a finite subcollection $\{U_1, U_2, U_3, \dots, U_n\}$ such that $A \bigcup_{i=1}^n \operatorname{cl}(U_i) \in \mathfrak{I}$;
- (e) for each closed set A and each family \mathcal{F} of regular closed sets such that $\bigcap \{F \cap A : F \in \mathcal{F}\} = \phi$, there is a finite subfamily $\{F_1, F_2, F_3, \dots, F_n\}$ such that $\bigcap_{i=1}^n (\operatorname{int}(F_i)) \cap A \in \mathcal{Y};$
- (f) for each closed set A and each family \mathcal{F} of regular closed sets such that $\{int(F) \cap A : F \in \mathcal{F}\}\ has (\mathcal{I})$ FIP, one has $\bigcap \{F \cap A : F \in \mathcal{F}\} \neq \phi$;
- (g) for each closed set A, each open cover \mathfrak{A} of X A and each open neighborhood V of A, there exists a finite subfamily $\{U_1, U_2, U_3, \dots, U_n\}$ of \mathfrak{A} such that $X - (V \cup (\bigcup_{i=1}^n \operatorname{cl}(U_i))) \in \mathfrak{I}$;

(h) for each closed set A and each open filter base \mathfrak{B} on X such that $\{B \cap A : B \in \mathfrak{B}\} \subset P(X) - \mathfrak{I}$, one has $\bigcap \{ cl(B) : B \in \mathfrak{B} \} \cap A \neq \phi$.

Proof. (a) \Rightarrow (b). Let (X, τ) be $C(\mathcal{I})$ -compact, A a closed subset, and \mathcal{F} a family of closed subsets with $\cap \{F \cap A : F \in \mathcal{F}\} = \phi$. Then $\{X - F : F \in \mathcal{F}\}$ is an open cover of A and hence admits a finite subfamily $\{X - F_i : i = 1, 2, ..., n\}$ such that $A - \bigcup_{i=1}^n \operatorname{cl}(X - F_i) \in \mathcal{I}$. This set in \mathcal{I} is easily seen to be $\bigcap_{i=1}^n \{\operatorname{int}(F_i) \cap A\}$.

 $(b) \Rightarrow (c)$. This is easy to be established.

(c)⇒(a). Let *A* be a closed subset, let \mathcal{U} be an open cover of *A* with the property that for no finite subfamily { $U_1, U_2, U_3, ..., U_n$ } of \mathcal{U} , one has $A - \bigcup_{i=1}^n \operatorname{cl}(U_i) \in \mathcal{I}$. Then { $X - U : U \in \mathcal{U}$ } is a family of closed sets. Since

$$\bigcap_{i=1}^{n} \{ X - cl(U_i) \} \cap A = \bigcap_{i=1}^{n} \{ A - cl(U_i) \} = A - \bigcup_{i=1}^{n} cl(U_i),$$
(3.4)

the family $\{int(X - U) \cap A : U \in \mathcal{U}\}$ has (\mathcal{I}) FIP. By the hypothesis $\bigcap \{(X - U) \cap A : U \in \mathcal{U}\} \neq \phi$. But then $A - \bigcup \{U : U \in \mathcal{U}\} \neq \phi$, that is, \mathcal{U} is not a cover of A, a contradiction.

 $(d) \Rightarrow (a)$. Let A be a closed subset of X and \mathcal{U} an open cover of A. Then $\{int(cl(U)) : U \in \mathcal{U}\}\)$ is a regular open cover of A. Let $\{int(cl(U_i)) : i = 1, 2, ..., n\}\)$ be a finite subfamily such that $A - \bigcup_{i=1}^{n} cl(int(cl(U_i))) \in \mathcal{I}$. Since U_i is open and for each open set U, cl(int(cl(U))) = cl(U), we have $A - \bigcup_{i=1}^{n} cl(U_i) \in \mathcal{I}$, which shows that X is $C(\mathcal{I})$ -compact.

(a)⇒(d). This is obvious.

The proofs for $(d) \Rightarrow (e) \Rightarrow (d)$ are parallel to $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$, respectively.

(a)⇒(g). Let *A* be a closed set, *V* an open neighborhood of *A*, and \mathfrak{U} an open cover of *X* − *A*. Since *X* − *V* ⊂ *X* − *A*, \mathfrak{U} is also an open cover of the closed set *X* − *V*.

Let $\{U_1, U_2, U_3, \dots, U_n\}$ be a finite subcollection of \mathfrak{A} such that $(X - V) - \bigcup_{i=1}^n \operatorname{cl}(U_i) \in \mathfrak{I}$. However, the last set is $X - (V \cup \{\bigcup_{i=1}^n \operatorname{cl}(U_i)\})$.

(g)⇒(a). Let *A* be a closed subset of *X* and \mathcal{U} an open covering of *A*. If *H* denotes the union of members of \mathcal{U} , then F = X - H is a closed set and X - A is an open neighborhood of *F*. Also \mathcal{U} is an open cover of X - F. By hypothesis, there is a finite subcollection $\{U_1, U_2, U_3, \dots, U_n\}$ of \mathcal{U} such that

$$X\left((X-A)\cup\left\{\bigcup_{i=1}^{n}\operatorname{cl}\left(U_{i}\right)\right\}\right)\in\mathscr{I}.$$
(3.5)

However, this set in \mathcal{I} is nothing but $A - \bigcup_{i=1}^{n} \operatorname{cl}(U_i)$.

(a)⇒(h). Suppose *A* is a closed set and \mathfrak{B} is any open filter base on *X* with {*B* ∩ *A* : *B* ∈ \mathfrak{B} } ⊂ *P*(*X*) − \mathfrak{I} . Suppose, if possible, $\bigcap \{ cl(B) : B \in \mathfrak{B} \} \cap A = \phi$. Then {*X* − *cl*(*B*) : *B* ∈ \mathfrak{B} } is an open cover of *A*. By the hypothesis, there exists a finite subfamily {*X* − *cl*(*B_i*) : *i* = 1,2,3,...,*n*} such that $A - \bigcup_{i=1}^{n} cl(X - cl(B_i))$ is in \mathfrak{I} . However, this set is $A \cap (\bigcap_{i=1}^{n} B_i)$ is a subset of it. Therefore, $A \cap (\bigcap_{i=1}^{n} B_i) \in \mathfrak{I}$. Since \mathfrak{B} is a filter base, we have a $B \in \mathfrak{B}$ such that $B \subset \bigcap_{i=1}^{n} B_i$. But then $A \cap B \in \mathfrak{I}$ which contradicts the fact that { $B \cap A : B \in \mathfrak{B}$ } ⊂ *P*(*X*) − \mathfrak{I} .

(h) \Rightarrow (a). Suppose that (X,τ) is not $C(\mathcal{I})$ -compact. Then there exist a closed subset A of X and an open cover \mathcal{U} of A such that for any finite subfamily $\{U_1, U_2, U_3, \dots, U_n\}$

of \mathcal{U} , we have $A - \bigcup_{i=1}^{n} \operatorname{cl}(U_i) \notin \mathcal{I}$. We may assume that \mathcal{U} is closed under finite unions. Then the family $\mathfrak{B} = \{X - \operatorname{cl}(U) : U \in \mathfrak{U}\}$ is an open filter base on X such that $\{B \cap A : B \in \mathfrak{B}\} \subset P(A) - \mathcal{I}$. So, by the hypothesis, $\bigcap \{\operatorname{cl}(X - \operatorname{cl}(U)) : U \in \mathfrak{U}\} \cap A \neq \phi$. Let x be a point in the intersection. Then $x \in A$ and $x \in \operatorname{cl}(X - \operatorname{cl}(U)) = X - \operatorname{int}(\operatorname{cl}(U)) \subset X - U$ for each $U \in \mathfrak{U}$. But this contradicts the fact that \mathfrak{U} is a cover of A. Hence (X, τ) is $C(\mathcal{I})$ -compact.

Next we characterize $C(\mathcal{I})$ -compact spaces using some weaker forms of filter base convergence.

Definition 3.7. A filter base \mathfrak{B} is said to be (\mathfrak{F}) adherent convergent if for every neighborhood *G* of the adherent set of \mathfrak{B} , there exists an element $B \in \mathfrak{B}$ such that $(X - G) \cap B \in \mathfrak{I}$. Clearly, every adherent convergent filter base is (\mathfrak{I}) adherent convergent and a filter base is adherent convergent if and only if it is $(\{\phi\})$ adherent convergent.

THEOREM 3.8. A space (X, τ) is $C(\mathcal{I})$ -compact if and only if every open filter base on $P(X) - \mathcal{I}$ is (\mathcal{I}) adherent convergent.

Proof. Let (X, τ) be $C(\mathcal{F})$ -compact and let \mathfrak{B} be an open filter base on $P(X) - \mathfrak{F}$ with A as its adherent set. Let G be an open neighborhood of A. Then $A = \bigcap \{ cl(B) : B \in \mathfrak{B} \}$, $A \subset G$, and X - G is closed. Now $\{X - cl(B) : B \in \mathfrak{B}\}$ is an open cover of X - G and so by the hypothesis, it admits a finite subfamily $\{X - cl(B_i) : i = 1, 2, 3, ..., n\}$ such that $(X - G) - \bigcup_{i=1}^{n} cl(X - cl(B_i)) \in \mathfrak{F}$. But this implies $(X - G) \cap (\bigcap_{i=1}^{n} int(cl(B_i))) \in \mathfrak{F}$. However, $B_i \subset int(cl(B_i))$ implies $(X - G) \cap (\bigcap_{i=1}^{n} B_i) \in \mathfrak{F}$. Since \mathfrak{B} is a filter base and $B_i \in \mathfrak{B}$, there is a $B \in \mathfrak{B}$ such that $B \subset \bigcap_{i=1}^{n} B_i$. But then $(X - G) \cap B \in \mathfrak{F}$ is required.

Conversely, let (X, τ) be not $C(\mathcal{I})$ -compact, and let A be a closed set, and \mathcal{U} an open cover of A such that for no finite subfamily $\{U_1, U_2, U_3, \ldots, U_n\}$ of \mathcal{U} , one has $A - \bigcup_{i=1}^n \operatorname{cl}(U_i) \in \mathcal{I}$. Without loss of generality, we may assume that \mathcal{U} is closed for finite unions. Therefore, $\mathfrak{B} = \{X - \operatorname{cl}(U) : U \in \mathcal{U}\}$ becomes an open filter base on $P(X) - \mathcal{I}$. If x is an adherent point of \mathfrak{B} , that is, if $x \in \bigcap \{\operatorname{cl}(X - \operatorname{cl}(U)) : U \in \mathcal{U}\} = X - \bigcup \{\operatorname{int}(\operatorname{cl}(U)) : U \in \mathcal{U}\}$, then $x \notin A$, because \mathcal{U} is an open cover of A and for $U \in \mathcal{U}$, $U \subset \operatorname{int}(\operatorname{cl}(U))$. Therefore, the adherent set of \mathfrak{B} is contained in X - A, which is an open set. By the hypothesis, there exists an element $B \in \mathfrak{B}$ such that $(X - (X - A)) \cap B \in \mathcal{I}$, that is, $A \cap B \in \mathcal{I}$, that is, $A \cap (X - \operatorname{cl}(U)) \in \mathcal{I}$, that is, $A - \operatorname{cl}(U) \in \mathcal{I}$ for some $U \in \mathcal{U}$. This however contradicts our assumption. This completes the proof.

Herrington and Long [4] characterized *C*-compact spaces using *r*-convergence of filters and nets. We obtain similar results for $C(\mathcal{I})$ -compact spaces in the next definition.

Definition 3.9. Let X be a space, $\phi \neq A \subset X$, and let \mathcal{B} be a filter base on A. \mathcal{B} is said to *r*-converge to $a \in A$ if for each open set V in X containing *a*, there is $B \in \mathcal{B}$ with $B \subset cl(V)$. The filter base \mathcal{B} is said to *r*-accumulate to *a*, if for each open set V containing *a*, $cl(V) \cap B \neq \phi$ for each $B \in \mathcal{B}$.

Similarly, a net $\varphi : D \to A \subset X$ is said to *r*-converge to $a \in A$ if for each open set *V* containing *a*, there is a $b \in D$ such that $\varphi(c) \in cl(V)$ for all $c \ge b$. φ is said to *r*-accumulate to *a* if for each open set *V* containing *a* and each $b \in D$, there is $c \in D$ with $c \ge b$ and $\varphi(c) \in cl(V)$.

It is known [4] that convergence (accumulation) for filter bases and nets implies r-convergence (r-accumulation), but the converse is not true.

THEOREM 3.10. For a space (X, τ) and an ideal \mathcal{I} on X, the following are equivalent:

- (a) (X, τ) is $C(\mathcal{I})$ -compact;
- (b) for each closed set A, each filter base \mathfrak{B} on $P(A) \mathfrak{P}$ *r*-accumulates to some $a \in A$;
- (c) for each closed set A, each maximal filter base \mathcal{M} on $P(A) \mathcal{I}$ r-converges to some $a \in A$;
- (d) for each closed set A, each net φ on $P(A) \mathcal{I}$ r-accumulates to some $a \in A$.

Proof. (a) \Rightarrow (b). Suppose there exist a closed set *A* and a filter base \mathfrak{B} on $P(A) - \mathfrak{I}$ which does not *r*-accumulate to any $a \in A$. Then for each $a \in A$, there exists an open set U(a) containing *a* and a $B(a) \in \mathfrak{B}$ such that $B(a) \cap \operatorname{cl}(U(a)) = \phi$. Then $\{U(a) : a \in A\}$ is an open cover of the closed set *A*. By (*a*), there exists a finite subcollection $\{U(a_i) : i = 1, 2, 3, ..., n\}$ such that $A - \bigcup_{i=1}^{n} \operatorname{cl}(U(a_i)) \in \mathfrak{I}$. If $B \in \mathfrak{B}$ is such that $B \subset \bigcap_{i=1}^{n} B(a_i)$, then $B \cap (A - \bigcup_{i=1}^{n} \operatorname{cl}(U(a_i))) \in \mathfrak{I}$, that is, $B - \bigcup_{i=1}^{n} \operatorname{cl}(U(a_i)) \in \mathfrak{I}$. But the later set is just *B*, because $B \subset B(a_i)$ and $B(a_i) \cap \operatorname{cl}(U(a_i)) = \phi$ for each *i*. However, $B \in \mathfrak{I}$ is a contradiction, because $B \in \mathfrak{B}$ and $\mathfrak{B} \subset P(A) - \mathfrak{I}$.

(b)⇔(c). This follows in view of parts (a), (b), and (c) of [4, Theorem 1].

(b) \Rightarrow (a). If possible, let *X* be not *C*(\mathscr{P})-compact. Then by Theorem 3.6(f), there exist a closed set *A* and a collection \mathscr{F} of regular closed sets with the property that for every finite subcollection $\{F_1, F_2, F_3, \dots, F_n\}$, $\bigcap_{i=1}^n \operatorname{int}(F_i) \cap A \notin \mathscr{I}$, but $\bigcap \{F : F \in \mathscr{F}\} \cap A = \phi$. Now the collection of sets of the form $\bigcap_{i=1}^n \operatorname{int}(F_i) \cap A$ for all possible finite subfamilies $\{F_1, F_2, F_3, \dots, F_n\}$ of \mathscr{F} forms a filter base on $P(A) - \mathscr{I}$. By (b), this filter base *r*accumulates to some $a \in A$, that is, for each open set U(a) containing *a* and for each $F \in \mathscr{F}$, $\operatorname{cl}(U(a)) \cap (\operatorname{int}(F) \cap A) \neq \phi$. However, $a \in A$ and $A \cap \{F : F \in \mathscr{F}\} = \phi$ imply that there is some $F = F(a) \in \mathscr{F}$ such that $a \notin F(a)$. Then X - F(a) is an open set containing *a* such that $\operatorname{cl}(X - F(a)) \cap (\operatorname{int}(F(a)) \cap A) = \phi$. This is a contradiction.

 $(b) \Leftrightarrow (d)$. This follows using standard arguments about nets and filters.

 \square

If in the above theorem, A is replaced by the whole space X, we get the characterizations of (\mathcal{I}) QHC spaces. If in addition we consider completely codense ideal \mathcal{I} , we get the characterizations of quasi-*H*-closed spaces.

4. $C(\mathcal{I})$ -compact spaces and functions

A function $f : (X, \tau) - (Y, \varsigma)$ is said to be θ -continuous [2] at a point $x \in X$ if for every open set V of Y containing f(x), there exists an open set U of X containing x such that $f(cl(U)) \subseteq cl(V)$. A function $f : (X, \tau) - (Y, \varsigma)$ is said to be θ -continuous if f is θ -continuous for every $x \in X$. The concept of θ -continuity is weaker than that of continuity. An important property of C-compact spaces is that a continuous function from a C-compact space to a Hausdorff space is closed. We prove the following more general results.

THEOREM 4.1. Let $f : (X, \tau, \mathfrak{F}) - (Y, \varsigma, \vartheta)$ be a θ -continuous function, $(X, \tau, \mathfrak{F}) C(\mathfrak{F})$ -compact, (Y, ς) Hausdorff, and $f(\mathfrak{F}) \subseteq \vartheta$. Then f(A) is $\varsigma^*(\vartheta)$ -closed for each closed set A of X.

Proof. Let *A* be any closed set in *X* and $a \notin f(A)$. For each $x \in A$, there exists a ς -open set V_y containing y = f(x) such that $a \notin cl(V_y)$. Now because *f* is θ -continuous, there exists an open set U_x containing *x* such that $f(cl(U_x)) \subseteq cl(V_y)$. The family $\{U_x : x \in A\}$ is an open cover of *A*. Therefore, there exists a finite subfamily $\{U_{x_i} : i = 1, 2, ..., n\}$ such that $A - \bigcup_{i=1}^n cl(U_{x_i}) \in \mathcal{I}$. But then $f(A - \bigcup_{i=1}^n cl(U_{x_i})) \in f(\mathcal{I}) \subseteq \vartheta$, that is, $f(A) - f(\bigcup_{i=1}^n cl(U_{x_i})) \in f(\mathcal{I}) \subseteq \vartheta$ because $f(\mathcal{I})$ is also an ideal. Hence $f(A) - (\bigcup_{i=1}^n cl(V_{y_i})) \in f(\mathcal{I}) \subseteq \vartheta$. Now $a \notin cl(V_{y_i})$ for any *i* implies that $a \in Y - \bigcup_{i=1}^n cl(V_{y_i})$ which is open in (Y,ς) and $(Y - \bigcup_{i=1}^n cl(V_{y_i})) \cap f(A) = f(A) - \bigcup_{i=1}^n cl(V_{y_i}) \in \mathcal{I}$. Hence $a \notin (f(A))^*$ $(\sigma, \vartheta) \subset f(A)$ and so f(A) is $\varsigma^*(\vartheta)$ -closed.

COROLLARY 4.2. Let $f : (X, \tau, \mathfrak{F}) - (Y, \varsigma, \vartheta)$ be a continuous function, $(X, \tau, \mathfrak{F}) C(\mathfrak{F})$ -compact, (Y,ς) Hausdorff, and $f(\mathfrak{F}) \subseteq \vartheta$. Then f(A) is $\varsigma^*(\vartheta)$ -closed for each closed set A of X.

THEOREM 4.3. Let $f : (X, \tau, \mathfrak{F}) - (Y, \varsigma, \vartheta)$ be a continuous surjection, $(X, \tau, \mathfrak{F}) C(\mathfrak{F})$ -compact, and $f(\mathfrak{F}) \subseteq \vartheta$. Then $(Y, \varsigma, \vartheta)$ is $C(\vartheta)$ -compact.

Proof. Let *A* be any closed subset of (Y, ς) and $\{V_{\alpha} : \alpha \in \Lambda\}$ any open cover of *A* by open sets in *Y*. Then $\{f^{-1}(V_{\alpha}) : \alpha \in \Lambda\}$ is an open cover of $f^{-1}(A)$ which is closed in *X*. Hence, by the hypothesis, there exists a finite subcollection $\{f^{-1}(V_{\alpha_i}) : i = 1, 2, ..., n\}$ such that $f^{-1}(A) - \bigcup_{i=1}^{n} \operatorname{cl}(f^{-1}(V_{\alpha_i})) \in \mathcal{I}$. Since *f* is continuous, $\operatorname{cl}(f^{-1}(B)) \subset f^{-1}(\operatorname{cl}(B))$ for every subset *B* of *Y*. Hence we have $f^{-1}(A) - \bigcup_{i=1}^{n} f^{-1}(\operatorname{cl}(V_{\alpha_i})) = f^{-1}(A - \bigcup_{i=1}^{n} \operatorname{cl}(V_{\alpha_i})) \in \mathcal{I}$. Since *f* is surjective, $A - \bigcup_{i=1}^{n} \operatorname{cl}(V_{\alpha_i}) \in \mathcal{I}(\mathcal{I}) \subset \mathcal{I}$. Hence *Y* is *C*(ϑ)-compact.

THEOREM 4.4. If the product space ΠX_{α} of nonempty family of topological spaces $(X_{\alpha}, \tau_{\alpha})$ is $C(\mathcal{I})$ -compact, then each $(X_{\alpha}, \tau_{\alpha})$ is $C(p_{\alpha}(\mathcal{I}))$ -compact, where p_{α} is the projection map and \mathcal{I} is an ideal on ΠX_{α} .

Proof. This follows from Theorem 4.3.

5. $C(\mathcal{I})$ -compact spaces and subspaces

In this section, we introduce three types of $C(\mathcal{I})$ -compact subsets and use them to obtain new characterizations of $C(\mathcal{I})$ -compact spaces and a characterization of maximal $C(\mathcal{I})$ compact spaces.

Definition 5.1. Let (X,τ) be a space and \mathscr{I} an ideal on X. A subset Y of X is said to be $C(\mathscr{I})$ -compact if the subspace (Y,τ_Y) is $C(\mathscr{I})$ -compact.

Some useful results about such subspaces are contained in the following theorem. The proofs are easy to establish.

THEOREM 5.2. Let (X, τ) be a space and \mathcal{P} an ideal on X. Then

- (a) a subspace Y is $C(\mathcal{I})$ -compact if and only if it is $C(\mathcal{I}_Y)$ -compact;
- (b) a clopen subspace of a $C(\mathcal{I})$ -compact space is $C(\mathcal{I})$ -compact;
- (c) if Y is a regular closed subset of a $C(\mathcal{I})$ -compact space (X, τ, \mathcal{I}) and \mathcal{I} is codense, then (Y, τ_Y) is quasi-H-closed;
- (d) a finite union of $C(\mathcal{I})$ -compact subspaces of X is $C(\mathcal{I})$ -compact.

Definition 5.3. A subset Y of (X, τ) is said to be $C(\mathcal{I})$ -compact relative to τ if every τ -open cover of every relatively closed subset A of Y has a finite subfamily whose τ -closures cover A except a set in \mathcal{I} .

Some useful properties of such spaces are contained in the following.

THEOREM 5.4. Let (X, τ) be a space and \mathcal{I} an ideal on X. Then the following hold.

- (a) A closed subspace of a $C(\mathcal{G})$ -compact relative to τ subspace of (X, τ) is $C(\mathcal{G})$ -compact relative to τ .
- (b) If (X, τ) is Hausdorff and Y is $C(\mathcal{I})$ -compact relative to τ , then Y is $\tau^*(\mathcal{I})$ -closed.
- (c) If Y is a $C(\mathcal{I})$ -compact relative to τ subspace of (X, τ) and $f : (X, \tau) (Z, \varsigma)$ is a continuous bijection, then f(Y) is $C(f(\mathcal{I}))$ -compact relative to ς .
- (d) $C(\mathcal{I})$ -compactness relative to τ is contractive.

The following characterization of $C(\mathcal{I})$ -compact spaces is obtained using $C(\mathcal{I})$ -compact relative to τ subspaces. The proof is easy.

THEOREM 5.5. A space (X, τ) with an ideal \mathcal{P} is $C(\mathcal{P})$ -compact if and only if every proper closed subset of X is $C(\mathcal{P})$ -compact relative to τ .

Definition 5.6. A subset Y of a space (X, τ) is said to be *closure* $C(\mathcal{F})$ -compact if for every τ_Y -closed subset K of Y and every τ -open cover \mathcal{U} of cl(K), there is a finite subcollection $\{U_1, U_2, U_3, \ldots, U_n\}$ of \mathcal{U} such that $K - \bigcup_{i=1}^n cl_Y(U_i \cap Y) \in \mathcal{F}$.

It is easy to see that closure $C(\mathcal{I})$ -compactness is contractive.

Example 5.7. Since closed subsets of $C(\mathcal{F})$ -compact spaces are not necessarily (\mathcal{F}) QHC, a space (X, τ) which is $C(\mathcal{F})$ -compact relative to τ may fail to be closure $C(\mathcal{F})$ -compact. Moreover,]0, 1] as a subspace of [0, 1] is closure $C(\mathcal{F})$ -compact with $\mathcal{F} = \{\phi\}$, but not $C(\mathcal{F})$ -compact relative to the usual topology. Thus the concepts of $C(\mathcal{F})$ -compact relative to τ and closure $C(\mathcal{F})$ -compact are independent concepts.

We now have the following characterization of $C(\mathcal{I})$ -compact spaces.

THEOREM 5.8. A space (X, τ) is $C(\mathcal{I})$ -compact for an ideal \mathcal{I} on X if and only if every open subset of X is closure $C(\mathcal{I})$ -compact.

Proof. Let (X, τ) be $C(\mathcal{I})$ -compact and Y an open subset of X. Let K be a τ_Y -closed subset of Y, and let \mathcal{U} be a τ -open cover of cl(K). Then there exists a finite subcollection $\{U_1, U_2, U_3, \ldots, U_n\}$ of \mathcal{U} such that $cl K - \bigcup_{i=1}^n cl(U_i) \in \mathcal{I}$. Since Y is open, therefore, $cl_Y(U \cap Y) = cl(U) \cap Y$ and so, by hereditary property of $\mathcal{I}, K - \bigcup_{i=1}^n cl_Y(U_i \cap Y) \in \mathcal{I}$. Thus Y is closure $C(\mathcal{I})$ -compact.

Conversely, let all open subsets of X be closure $C(\mathcal{I})$ -compact. Let K be a closed and \mathcal{U} an open cover of K. Choose a $U_0 \in \mathcal{U}$. Then $Y = X - \operatorname{cl}(U_0)$ is an open subset of X and $K \cap Y$ is a τ_Y -closed subset of Y. Moreover, $\mathcal{U} - \{U_0\}$ is an open cover of $\operatorname{cl}(K \cap Y)$. By the hypothesis, there exists a finite subcollection $\{U_1, U_2, U_3, \ldots, U_n\}$ of $\mathcal{U} - \{U_0\}$ such that $K \cap Y - \bigcup_{i=1}^n \operatorname{cl}_Y(U_i \cap Y) \in \mathcal{I}$. But then $K \cap Y - \bigcup_{i=1}^n \operatorname{cl}(U_i) \in \mathcal{I}$ as $\operatorname{cl}_Y(U_i \cap Y) = \operatorname{cl}(U_i) \cap Y$ and \mathcal{I} is hereditary. Therefore, $K - \bigcup_{i=0}^n \operatorname{cl}(U_i) \in \mathcal{I}$. Hence (X, τ) is $C(\mathcal{I})$ -compact.

Finally, we obtain a characterization of a maximal $C(\mathcal{I})$ -compact space. Recall that a space (X, τ) with property *P* is said to be *maximal P* if there is no topology σ on *X* which has property *P* and is strictly finer than τ . For a topological space (X, τ) and a subset *A* of *X*, $\tau(A) = \{U \cup (V \cap A) : U, V \in \tau\}$ is a topology called *simple extension* [7] of τ by *A*. $\tau(A)$ is strictly finer than τ if and only if $A \notin \tau$.

THEOREM 5.9. A topological space (X, τ) is maximal $C(\mathcal{F})$ -compact if and only if for every subset A of X such that A is closure $C(\mathcal{F})$ -compact and X - A is $C(\mathcal{F})$ -compact relative to τ , one has $A \in \tau$.

Proof. First we assume that (X, τ) is maximal $C(\mathcal{I})$ -compact and that A is a subset of X satisfying the given conditions. First, we show that $(X, \tau(A))$ is $C(\mathcal{I})$ -compact. Let K be a $\tau(A)$ -closed subset of X. Then $K = K_1 \cup (K_2 \cap (X - A))$, where K_1 and K_2 are τ -closed sets. Let

$$\mathfrak{U} = \{ U_{\alpha} \cup (V_{\alpha} \cap A) : U_{\alpha}, V_{\alpha} \in \tau, \ \alpha \in \Delta \}$$

$$(5.1)$$

be a $\tau(A)$ -open cover of K. Then $\nu = \{U_{\alpha} : \alpha \in \Delta\}$ is a τ -open cover of $K \cap (X - A) = (K_1 \cup K_2) \cap (X - A)$. Since, by assumption, X - A is $C(\mathcal{I})$ -compact relative to τ , we have a finite subcollection $\{U_{\alpha_1}, U_{\alpha_2}, U_{\alpha_3}, \dots, U_{\alpha_n}\}$ of ν such that $K \cap (X - A) - \bigcup_{i=1}^n \operatorname{cl}(U_{\alpha_i}) \in \mathcal{I}$. Since $\tau(A)$ is finer than τ , this subcollection is $\tau(A)$ -open and $K \cap (X - A) - \bigcup_{i=1}^n \operatorname{cl}_{\tau(A)}(U_{\alpha_i}) \in \mathcal{I}$. Next, $\mathcal{W} = \{U_{\alpha} \cup V_{\alpha} : \alpha \in \Delta\}$ is a τ -open cover of $\operatorname{cl}(K \cap A) = \operatorname{cl}(K_1 \cap A) = \operatorname{cl}_{\tau(A)}(K_1 \cap A)$ and therefore by assumption on A, there exists a finite subcollection $\{U_{\beta_i} \cup V_{\beta_i} : i = 1, 2, \dots, k\}$ of \mathcal{W} such that

$$K_1 \cap A - \bigcup_{i=1}^k \operatorname{cl}_{\tau_A} \left[\left(U_{\beta_i} \cup V_{\beta_i} \right) \cap A \right] \in \mathscr{I}.$$
(5.2)

However, τ_A , the restriction of τ to A, is nothing but $\tau(A) \mid A$, the restriction of $\tau(A)$ to A. Therefore,

$$K_1 \cap A - \bigcup_{i=1}^k \operatorname{cl}_{\tau(A)|A} \left[\left(U_{\beta_i} \cup V_{\beta_i} \right) \cap A \right] \in \mathcal{I}.$$
(5.3)

Now $\{U_{\alpha_i} \cup (V_{\alpha_i} \cap A) : i = 1, 2, ..., n\} \cup \{U_{\beta_i} \cup (V_{\beta_i} \cap A) : i = 1, 2, ..., k\}$ is a finite $\tau(A)$ (\mathscr{I}) proximate cover of K which is a subcover of \mathscr{U} . Thus the topology $\tau(A)$ on X is also $C(\mathscr{I})$ -compact. However, by the maximality of τ , we have $\tau(A) = \tau$. But then $A \in \tau$ as desired.

Conversely, let (X, τ) be not maximal $C(\mathcal{I})$ -compact. Then there is a $C(\mathcal{I})$ -compact topology σ on X which is strictly finer than τ . Let $A \in \sigma - \tau$. Then A is σ -closure $C(\mathcal{I})$ -compact by Theorem 5.8. Since the property of closure $C(\mathcal{I})$ -compact is carried over to coarser topologies, A is τ -closure $C(\mathcal{I})$ -compact. Also X - A is $C(\mathcal{I})$ -compact relative to σ and hence $C(\mathcal{I})$ -compact relative to τ . By the hypothesis, then $A \in \tau$, a contradiction.

Remark 5.10. The readers can generalize the above concepts in bitopological spaces to unify various types of compactness.

References

- J. Dontchev, M. Ganster, and D. A. Rose, *Ideal resolvability*, Topology and Its Applications 93 (1999), no. 1, 1–16.
- [2] S. V. Fomin, *Extensions of topological spaces*, Annals of Mathematics. Second Series 44 (1943), 471–480.
- [3] T. R. Hamlett and D. Janković, *Compactness with respect to an ideal*, Bollettino della Unione Matematica Italiana. B. Serie VII 4 (1990), no. 4, 849–861.
- [4] L. L. Herrington and P. E. Long, *Characterizations of C-compact spaces*, Proceedings of the American Mathematical Society **52** (1975), 417–426.
- [5] D. Janković and T. R. Hamlett, *New topologies from old via ideals*, The American Mathematical Monthly 97 (1990), no. 4, 295–310.
- [6] K. Kuratowski, Topology. Vol. I, Academic Press, New York, 1966.
- [7] N. Levine, *Simple extensions of topologies*, The American Mathematical Monthly **71** (1964), no. 1, 22–25.
- [8] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proceedings of the Mathematical and Physical Society of Egypt (1982), no. 53, 47–53 (1983).
- [9] R. L. Newcomb, *Topologies which are compact modulo an ideal*, Ph.D. thesis, University of California, Santa Barbara, California, 1967.
- [10] O. Njåstad, On some classes of nearly open sets, Pacific Journal of Mathematics 15 (1965), 961– 970.
- [11] D. V. Rancin, Compactness modulo an ideal, Soviet Mathematics. Doklady 13 (1972), 193–197.
- [12] V. Renuka Devi, D. Sivaraj, and T. Tamizh Chelvam, *Codense and completely codense ideals*, Acta Mathematica Hungarica **108** (2005), no. 3, 197–205.
- [13] P. Samuels, *A topology formed from a given topology and ideal*, Journal of the London Mathematical Society. Second Series **10** (1975), no. 4, 409–416.
- [14] R. Vaidyanathaswamy, *The localisation theory in set-topology*, Proceedings of the Indian Academy of Sciences. Section A **20** (1944), 51–61.
- [15] _____, Set Topology, 2nd ed., Chelsea, New York, 1960.
- [16] G. Viglino, C-compact spaces, Duke Mathematical Journal 36 (1969), no. 4, 761–764.

M. K. Gupta: Department of Mathematics, Faculty of Science, Ch. Charan Singh University, Meerut-250004, India

E-mail address: mkgupta2002@hotmail.com

T. Noiri: 2949-1, Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken 869-5142, Japan *E-mail address*: t.noiri@nifty.com