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The notion of (unbounded) C∗-seminorms plays a relevant role in the representation
theory of ∗-algebras and partial ∗-algebras. A rather complete analysis of the case of
∗-algebras has given rise to a series of interesting concepts like that of semifinite C∗-
seminorm and spectral C∗-seminorm that give information on the properties of
∗-representations of the given ∗-algebra A and also on the structure of the ∗-algebra
itself, in particular when A is endowed with a locally convex topology. Some of these
results extend to partial ∗-algebras too. The state of the art on this topic is reviewed in
this paper, where the possibility of constructing unbounded C∗-seminorms from certain
families of positive sesquilinear forms, called biweights, on a (partial) ∗-algebra A is also
discussed.
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1. Introduction

1.1. Motivations. The existence of a C∗-seminorm p defined on a ∗-algebra A (i.e., a
seminorm p satisfying the C∗-property p(a∗a) = p(a)2, for every a ∈ A) is very closely
linked to the existence of nontrivial bounded ∗-representations of A in Hilbert space.
For instance, if a bounded ∗-representation π of A exists, then, putting p(a) = ‖π(a)‖,
a ∈ A, a C∗-seminorm on A is immediately obtained. Conversely (and this is much
more difficult to prove!) if a C∗-seminorm p on A is given, then it is possible to find
a bounded ∗-representation π of A such that p(a) = ‖π(a)‖, for every a ∈ A. On the
other hand, if A possesses a C∗-seminorm p, then the family of positive linear function-
als on A does not reduce to {0} and, in turn, a positive linear functional defines, via the
Gel’fand-Naı̆mark-Segal (GNS) construction, a ∗-representation of A, which is however
not necessarily bounded, unless a so-called admissibility condition is satisfied.

What makes of C∗-seminorms a relevant object to consider is the fact that through
them the rich representation theory of C∗-algebras, mostly developed by Gel’fand and
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Naı̆mark by the middle of the 20th century (see [27] also for a beautiful historical report)
can be invoked. For instance, if A is a ∗-algebra and p a C∗-seminorm on A, then every ∗-
representation of the Hausdorff completion of (A, p) defines a bounded ∗-representation
of A in Hilbert space [22]. The existence of a C∗-seminorm guarantees the existence of
a rich family of ∗-representations of A and this fact clearly reflects on the structure of A

itself.
This fundamental role of C∗-seminorms in the representation theory of ∗-algebras

becomes more evident when the given ∗-algebra A is endowed with some topology [27,
37] and it is well known, for instance, that studying the geometric aspects of the collection
of all C∗-seminorms gives a deep insight into the structure of Banach ∗-algebras [23,
Chapter V.39]. Last, but not least, it is worth reminding that also investigations on more
general locally convex ∗-algebras take great advantage from the use of C∗-seminorms
(see, e.g., [18, 31, 34]).

The notion of C∗-seminorms has been first considered by Fell [30] and Effros [29] and
researches on this topic have been undertaken in several different directions, according to
the various situations where they arise.

In many concrete examples, however, a locally convex ∗-algebra A does not admit an
everywhere defined C∗-seminorm, but it is sometimes possible to find a C∗-seminorm
p defined only on a ∗-subalgebra �(p) of A. These seminorms were first considered by
Bhatt et al. [22] who named them unbounded C∗-seminorms. On the other hand, non-
everywhere defined C∗-seminorms had already appeared to be relevant in many mathe-
matical [39, 48] and physical applications [1, 47].

A very natural situation where unbounded C∗-seminorms make their appearance (but
they were not named in this way, of course!) was considered by Yood [48]. He studied, in
fact, C∗-seminorms on a ∗-algebra A that can be defined via a family � of positive lin-
ear functionals on A. These C∗-seminorms, whose definition is strongly inspired by the
Gel’fand seminorm on a Banach ∗-algebra, are, in general, defined only on a ∗-subalgebra
of A. A systematic study of this type of non-everywhere defined C∗-seminorms was then
in order and it was actually undertaken by Bhatt et al. [19–22] who obtained a series of
deep results in the representation theory of a ∗-algebra, introducing often new concepts
or revisiting of old ones (semifinitess, spectrality, stability, etc.).

In the mid 1980’s, Antoine and Karwowski [8], retrieving an earlier definition given
by Borchers [24], introduced the notion of partial ∗-algebra. This structure appears in
a natural way when families of unbounded operators, possessing a common, dense but
not necessarily invariant domain, are considered. These studies were also motivated by a
number of examples of this type that arise in Quantum theories [28, 32].

Roughly speaking, a partial ∗-algebra is a complex vector space A, with involution ∗

and a multiplication x · y defined only for pairs of compatible elements determined by a
binary relation Γ on A. This multiplication is required to be distributive (this makes of
the so-called multiplier spaces true subspaces of A) but it is not required to be associative,
in general (and, indeed, in many examples it is not!).

After this new object was at hand, Antoine et al. undertook a systematic study of par-
tial ∗-algebras with a special care to partial ∗-algebras of operators (shortly, partial O∗-
algebras, see, e.g., [2–5]). A large number of results was found and a long series of papers
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appeared. In the meantime other researchers (Mathot, Bagarello, Ekhaguere, etc.) had di-
rected their attention to this subject and all that contributed to make of partial ∗-algebras
a rather complete theory. These results are synthesized and sometimes improved in the
monograph [7], whose bibliography we refer to.

Coming back to C∗-seminorms, some natural questions can be posed at this point:
does the notion of (unbounded) C∗-seminorms extend to the new environment of par-
tial ∗-algebras? Do they play in this case a role as crucial as they do in the theory of
representations of ∗-algebras?

A first study in this direction was made in [7, 11], where unbounded C∗-seminorms
on partial ∗-algebras were introduced and studied (the usual definition must be adapted,
of course, to the lack of an everywhere defined multiplication). As an outcome, some
results of representation theory of ∗-algebras (e.g., some of those in [22]) extend to the
case of partial ∗-algebras, even if there is a price to pay: the need of a series of sometimes
unpleasant technical assumptions.

Also Yood’s approach extends to the partial algebraic setting as shown in [44] for the
case of quasi ∗-algebras and in [46] for more general partial ∗-algebras. In both cases
positive linear functionals are systematically replaced by positive sesquilinear forms, en-
joying certain invariance properties that make possible to by-pass the partial nature of the
multiplication. In particular, in the case of partial ∗-algebras a relevant role is played by
a special kind of non-everywhere defined sesquilinear forms called biweights: they are ex-
actly the forms that allow a GNS-like contruction for partial ∗-algebras [6, 7]. Of course,
one expects that Gel’fand-like seminorms in partial or quasi ∗-algebras can provide use-
ful information on these structures, especially when the latter carry some locally convex
topology and a first step in this direction is to consider the case of normed or even Banach
partial or quasi ∗-algebras [9, 10, 45].

In this paper we will review the whole subject of (unbounded) C∗-seminorms. We
will, in particular, focus our attention both on their interplay with representation theory
(Section 2) and on the possibility of constructing (unbounded) C∗-seminorms starting
from families of positive linear or sesquilinear forms (Section 3).

Finally, Section 4 is devoted to the construction of Gel’fand-like seminorms on a quasi
∗-algebra (A,A0). This case exhibits some peculiarities that it is worth mentioning. In-
deed, a quasi ∗-algebra (A,A0) can be easily constructed by completing a locally convex
∗-algebra A0 with separately but not jointly continuous multiplications. The topology τ
of the completion defines, in a natural way, a reduced topology τ0 on the ∗-algebra A0

where the construction started from. If τ is a norm topology and τ0 can be defined by a
complete C∗-norm, then (A,A0) is called a CQ∗-algebra. The notion of a CQ∗-algebra
was introduced by Bagarello and the present author [14] and further studies were devel-
oped in [15, 16]. The interest of this structure relies on the fact that CQ∗-algebras exhibit
a certain number of analogies with C∗-algebras and this seems to make of them a natu-
ral extension of the notion of a C∗-algebra in the partial algebraic setting. As well as the
theory of ∗-algebras makes natural to consider C∗-seminorms, the notion of a quasi ∗-
algebra leads in the same spirit to consideration of CQ∗-seminorms. This notion, which
is different from that of (unbounded) C∗-seminorm considered in the previous sections,
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can be used to get, in similar fashion, information on the structure of a locally convex
quasi ∗-algebra.

Before closing this introduction, we want to warn the reader that only a few statements
are proven here in detail. This choice is essentially due to the will of maintaining the paper
as readable as possible, avoiding length and technicalities. Proofs are given only when the
statement is presented in a form which differs from the original one or when it is not very
easy to find them in the current literature.

1.2. Preliminaries. Before going to the main matter of the paper, we collect below some
preliminary definitions.

A partial ∗-algebra is a complex vector space A, endowed with an involution x �→ x∗

(i.e., a bijection such that x∗∗ = x) and a partial multiplication defined by a set Γ⊂A×A

(a binary relation) such that
(i) (x, y)∈ Γ implies (y∗,x∗)∈ Γ;

(ii) (x, y1),(x, y2)∈ Γ implies (x,λy1 +μy2)∈ Γ, for all λ,μ∈ C;
(iii) for any (x, y) ∈ Γ, a product x · y is defined in A, which is distributive with re-

spect to the addition and satisfies the relation (x · y)∗ = y∗ · x∗.
We say that a partial ∗-algebra A has a unit if there exists an element e ∈ A such that

e∗ = e, (e,x)∈ Γ, for all x ∈A, and e · x = x · e = x, for all x ∈A. (If A has no unit, it may
always be embedded into a larger partial ∗-algebra with unit, in the standard fashion.)

Given the defining set Γ, spaces of multipliers are defined in the obvious way:

(x, y)∈ Γ⇐⇒ x ∈ L(y) or x is a left multiplier of y

⇐⇒ y ∈ R(x) or y is a right multiplier of x.
(1.1)

If M⊆A, we put

LM= {x ∈A : (x, y)∈ Γ, ∀y ∈M
}

, RM= {x ∈A : (y,x)∈ Γ, ∀y ∈M
}
. (1.2)

In particular elements of RA (resp., LA) are called universal right (resp., left) multipliers.
Let � be a complex Hilbert space and � a dense subspace of �. We denote by �†(�,

�) the set of all (closable) linear operators X such that �(X) =�, �(X∗) ⊇�. The set
�†(�,�) is a partial ∗-algebra [7] with respect to the following operations: the usual sum
X1 +X2, the scalar multiplication λX , the involution X �→ X† = X∗� �, and the (weak)
partial multiplication X1�X2 = X1

†∗X2, defined by

(
X1,X2

)∈ Γ⇐⇒ X2�⊂D
(
X†∗1

)
, X†1 �⊂D

(
X∗2
)
,

(
X1�X2

)
ξ := X†∗1 X2ξ, ∀ξ ∈�.

(1.3)

If (X1,X2)∈ Γ, we say that X2 is a weak right multiplier of X1 or, equivalently, that X1

is a weak left multiplier of X2 (we write X2 ∈ Rw(X1) or X1 ∈ Lw(X2)). When we regard
�†(�,�) as a partial ∗-algebra with those operations, we denote it by �†

w(�,�).
A partial O∗-algebra on � is a ∗-subalgebra M of �†(�,�), that is, M is a subspace

of �†(�,�) such that X† ∈M whenever X ∈M and X1�X2 ∈M for any X1,X2 ∈M

such that X2 ∈ Rw(X1).
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Let

�†(�)= {X ∈�†(�,�) : X�⊆D, X†�⊆D
}
. (1.4)

Then �†(�) is a ∗-algebra with respect to � and X1�X2ξ = X1(X2ξ) for each ξ ∈�. A
∗-subalgebra of �†(�) is called an O∗-algebra [33, 40].

A ∗-representation of a partial ∗-algebra A is a ∗-homomorphism of A into �†
w(�π ,

�π), for some pair (�π ,�π), where �π is a dense subspace of a Hilbert space �π , that
is, a linear map π : A→�†

w(�π ,�π) such that (i) π(a∗) = π(a)† for every a ∈ A; (ii) if
a,b ∈ A with a ∈ L(b), then π(a) ∈ Lw(π(b)) and π(a)�π(b) = π(ab). If A has a unit e,
we assume that π(e)= 1, the identity operator.

If A is a ∗-algebra, we may always suppose, without loss of generality, that π(A) ⊆
�†(�π). Indeed, if π is a ∗-representation of a ∗-algebra A into �†

w(�π ,�π), we can
define

�π̂ =
{

ξ0 +
n∑

k=1

π
(
ak
)
ξk; ξ0,ξk ∈�, ak ∈A, k = 1,2, . . . ,n

}

,

π̂(x)

(

ξ0 +
n∑

k=1

π
(
ak
)
ξk

)

:= π(x)ξ0 +
n∑

k=1

(
π(x)�π

(
ak
))
ξk.

(1.5)

Then π̂ is a ∗-representation of A on the domain �π̂ having the property π̂(A)⊂�†(�π̂).
A ∗-representation π of a partial ∗-algebra A is called

(i) cyclic: if there exists η ∈�π such that π(A)η is dense in �π ;
(ii) faithful: if π(a)= 0 implies a= 0.

If π is a ∗-representation of A in �†
w(�π ,�π), then the closure π̃ of π is defined, for

each x ∈ X, as the restriction of π(x) to the domain �̃π , which is the completion of �π

under the graph topology defined by the seminorms ξ ∈�π →‖π(x)ξ‖, x ∈X [7]. If π =
π̃, the representation is said to be closed.

The adjoint of a ∗-representation π of a partial ∗-algebra A is defined as follows:

�
(
π∗
)=�∗(π(A)

)≡
⋂

x∈A

�
(
π(x)∗

)
, π∗(x)= π

(
x∗
)∗ � �

(
π∗
)
, x ∈A,

�
(
π∗∗

)=�∗∗(π(A)
)≡

⋂

x∈A

�
(
π∗(x)∗

)
,

π∗∗(x)= π∗
(
x∗
)∗ � �

(
π∗∗

)
, x ∈A.

(1.6)

In general neither π∗ nor π∗∗ are ∗-representations of A. If A is a ∗-algebra, then π∗

is a representation of A and π∗∗ is a ∗-representation of A. If π = π∗, then π is said to be
self-adjoint.

The set of all ∗-representations of A is denoted with Rep(A).
The definition of a quasi ∗-algebra was originally given by Lassner [35, 36] indepen-

dently of that of a partial ∗-algebra.
A quasi ∗-algebra [40] is a couple (A,A0), where A is a vector space with involution

∗, A0 is a ∗-algebra and a vector subspace of A, and A is an A0-bimodule whose module
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operations and involution extend those of A0. Clearly, a quasi ∗-algebra may be viewed as
an instance of a partial ∗-algebra in obvious fashion.

As already mentioned, the most typical instance of a quasi ∗-algebra is provided by
the completion A := Â0 of a locally convex ∗-algebra A0[τ] whose multiplication is not
jointly continuous. This situation is rather important for concrete applications: in quan-
tum statistical mechanics, for example, one often takes the completion of the local ob-
servable algebra (typically a C∗-algebra) in some locally convex topology suggested by
the physical model under consideration [12, 13, 35, 36, 43].

Full details on partial ∗-algebras and their representation theory can be found in the
monograph [7].

2. C∗-seminorms and ∗-representations

This section is devoted to unbounded C∗-seminorms on partial ∗-algebras. In particular,
the interplay between C∗-seminorms and the representation theory of partial ∗-algebras
will be reviewed. This has been discussed in full detail in [11, 46] and so we will only
present the main results mostly without proving them.

2.1. Representations originating from a C∗-seminorm

Definition 2.1. A mapping p of a (partial) ∗-subalgebra �(p) of a partial ∗-algebra A into
R+ is said to be an unbounded m∗-(semi)norm on A if

(i) p is a (semi) norm on �(p);
(ii) p(x∗)= p(x), for all x ∈�(p);

(iii) p(xy)≤ p(x)p(y), for all x, y ∈�(p) such that x ∈ L(y).
An unbounded m∗-(semi)norm p on A is said to be an unbounded C∗-(semi)norm if

(iv) p(x∗x)= p(x)2, for all x ∈�(p) such that x∗ ∈ L(x).
An unbounded m∗-(semi) norm (resp., C∗-(semi)norm) on A is said to be an m∗-(semi)
norm (resp., C∗-(semi)norm) if �(p)=A.

An (unbounded) m∗-seminorm p on A is said to have property (D) if it satisfies the
following basic density condition:

RA∩�(p) is dense in �(p) with respect to p. (D)

In what follows we will assume that A is a semiassociative partial ∗-algebra, by which
we mean that y ∈ R(x) implies yz ∈ R(x) for every z ∈ RA and

(xy)z = x(yz). (2.1)

Example 2.2. Let π be a ∗-representation of a (partial) ∗-algebra A. Then, an unbounded
C∗-seminorm rπ of A is defined by

�
(
rπ
)=Aπ

b ≡
{
x ∈A; π(x)∈�

(
�π
)}

,

rπ(x)= ∥∥π(x)
∥
∥, x ∈�

(
rπ
)
.

(2.2)
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In the first part of this section we will consider the question as to whether, given an
unbounded C∗-seminorm p, there exists a ∗-representation π of A such that p(a) =
‖π(a)‖, for every a ∈ �(p). For a more complete discussion of this problem we refer
to [7, 11].

Lemma 2.3 [7, Lemma 8.1.2]. Let p be an m∗-seminorm on A having property (D), that
is, RA is p-dense in A. Denote by Â the set of all Cauchy sequences in A with respect to the
seminorm p and define an equivalence relation in Â as follows:
{an}∼ {bn} if and only if limn→∞ p(an− bn)= 0. Then the following statements hold.
(1) The quotient space Â/ ∼ is a Banach ∗-algebra under the following operations, invo-

lution, and norm:
{
an
}

∼

+
{
bn
}

∼ ≡ {an + bn
}

∼

; λ
{
an
}

∼ ≡ {λan
}

∼

;
{
an
}

∼
{
bn
}

∼ ≡ {xnyn
}

∼

, where
{
xn
}

∼

,
{
yn
}

∼

in RA s.t.
{
xn
}

∼ ≡ {an
}

∼

,
{
yn
}

∼ ≡ {bn
}

∼

;
{
an
}

∼∗ ≡ {a∗n
}

∼

,
∥
∥{an

}
∼
∥
∥
p ≡ lim

n→∞ p
(
an
)
.

(2.3)

(2) For each a∈A, put

ã= {an
}

∼
(
an = a, n∈N),

Ã= {ã; a∈A}.
(2.4)

Then Ã is a dense ∗-invariant subspace of Â/ ∼ satisfying ãb̃ = (ab)∼ whenever a∈ L(b).
(3) Suppose p is a C∗-seminorm on A. Then Â/ ∼ is a C∗-algebra.

The proof that Â/ ∼ is a Banach space is made as in the usual construction of the
completion of a normed space. The existence of an everywhere defined multiplication in
Â/ ∼ and the algebra properties depend, in essential way, on the semiassociativity of A.

The previous lemma is very relevant for our purposes, since a C∗-algebra has plenty
of ∗-representations (and also a faithful one, by the Gel’fand-Naı̆mark theorem) and
they can be used to construct ∗-representations of A. Indeed if p is an unbounded C∗-
seminorm on A with property (D), then Lemma 2.3 can be applied to the partial ∗-
algebra �(p). We put Ap :=�(p)/ ∼. Then, for any faithful ∗-representation Πp of Ap,
we put

π0
p(x)=Πp(x̃), x ∈�(p), (2.5)

where x̃ denotes any sequence p-converging to x. Then π0
p is a bounded ∗-representation

of �(p) on �Πp .
Of course π0

p is only a ∗-representation of �(p) and, in general, it cannot be extended
to the whole A. The possibility of doing this depends, in crucial way, on the algebra

�p =
{
x ∈�(p)∩RA; ax ∈�(p), ∀a∈A

}
. (2.6)

We give below an outline of the construction and an account of the main results ob-
tained on this problem. Proofs can be found in the monograph [7].
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We remind the notion of nondegeneracy of a ∗-representation π of A given in [7]: we
put, as in Example 2.2,

Aπ
b =

{
x ∈A; π(x)∈�

(
�π
)}

, (2.7)

Nπ =
{
x ∈Aπ

b ∩RA; ax ∈Aπ
b , ∀a∈A

}
. (2.8)

Definition 2.4. If π(Nπ)�(π) is total in �π , then π is said to be strongly nondegenerate.

Now suppose that �p �⊂ Ker p. Then we begin with defining the domain �(πp) as the
linear span of the set

{
Πp
(
(xy)∼

)
ξ; x, y ∈�p, ξ ∈�Πp

}
, (2.9)

and the Hilbert space �πp as the closure of �(πp) in �Πp . Next we define

πp(a)

(
∑

k

Πp
(
x̃k
)
ξk

)

=
∑

k

Πp
((
axk
)

∼
)
ξk, (finite sums) for a∈A,

{
xk
}⊂�p,

{
ξk
}∈�Πp .

(2.10)

Then the following statement holds.

Theorem 2.5. Let p be an unbounded C∗-seminorm on A with property (D). Suppose
�p �⊂ Ker p. Then, for any Πp ∈ Rep(Ap), there exists a strongly nondegenerate ∗-represen-
tation πp of A such that

(i) ‖πp(x)‖ ≤ p(x) for every x ∈�(p);
(ii) ‖πp(x)‖ = p(x) for every x ∈�p.

Let p be an unbounded C∗-seminorm with property (D) and such that �p �⊂ Ker p.
We denote by Rep(A, p) the class of all ∗-representations of A constructed as above from
Rep(Ap), that is,

Rep(A, p)= {πp; Πp ∈ Rep
(
Ap
)}
. (2.11)

Definition 2.6. The unbounded C∗-seminorm p is called
(i) finite if �p =�(p),

(ii) semifinite if �p is p-dense in �(p),
(iii) weakly semifinite if it has property (D) and

RepWB(A, p)≡ {πp ∈ Rep(A, p); �πp =�Πp

} �= ∅ (2.12)

and an element πp of RepWB(A, p) is said to be a well-behaved ∗-representation of
A in Rep(A, p).

We remark that semifinite unbounded C∗-seminorms automatically satisfy property
(D) and the condition �p �⊂ Ker p.
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Theorem 2.7. Let p be an unbounded C∗-seminorm on A with property (D). Then the
following statements hold.

(1) If p is semifinite, then it is weakly semifinite and

RepWB(A, p)= {πp ∈ Rep(A, p); Πp is nondegenerate
}
. (2.13)

(2) Suppose πp ∈ RepWB(A, p). Then

∥
∥πp(x)

∥
∥= p(x), ∀x ∈�(p). (2.14)

Conversely, suppose that πp ∈ Rep(A, p) satisfies condition (2.14) above. Then there exists
an element πWB

p of RepWB(A, p) which is a restriction of πp.

Remark 2.8. Of course given a ∗-representation π of a partial ∗-algebra, it is possible to
construct an unbounded C∗-seminorm rπ on A, as in Example 2.2. Following the same
steps as before, we can also build up a ∗-representation πN

rπ called natural. The relation-
ship between πN

rπ and the ∗-representation π where we had started from was investigated
in [11].

2.2. Main results on ∗-algebras. If A is a ∗-algebra, then what we have discussed so
far applies, but many simplifications occur and, clearly, a larger amount of results is ob-
tained. This simplification begins with the definition itself. Indeed, Definition 2.1 reads
as follows.

Definition 2.9. Let A be a ∗-algebra and �(p) a ∗-subalgebra of A. A seminorm p on
�(p) is called an unbounded C∗-seminorm if

p
(
a∗a

)= p(a)2, for every a∈�(p). (2.15)

In fact, from a beautiful result of Sebestyén [42] it follows that the C∗-condition im-
plies ∗-preservation and submultiplicativity, that is,

p(ab)≤ p(a)p(b), ∀a,b ∈�(p). (2.16)

A first question concerns the existence of a well-behaved ∗-representation. By the def-
inition itself, this is equivalent to the existence of a weakly semifinite unbounded C∗-
seminorm.

Proposition 2.10 [18, Proposition 2.4]. Let A be a ∗-algebra with unit e. The following
statements are equivalent.

(i) There exists a well-behaved ∗-representation, that is, there exists a weakly semifinite
unbounded C∗-seminorm on A.

(ii) There exists a strongly nondegenerate ∗-representation of A.
(iii) There exists an unbounded C∗-seminorm on A satisfying �p �⊂ Ker p.

Remark 2.11. It is worth noticing that a different notion of well-behaved ∗-representation
was given by Schmüdgen [41]. The two notions, that are seemingly unrelated, essentially
because the starting points of the two definitions are deeply different, are compared in
[7] and they are shown to agree in several situations.
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As we have seen, unbounded C∗-seminorms contribute to clarification of the behavior
of the family of ∗-representations of a ∗-algebra A. But they also give information on the
structure of A itself, when this notion is related to the spectral theory of A. The most
interesting results in this direction are due to Bhatt et al. [22]. Generalizing a notion of
Palmer [37], they considered spectral unbounded C∗-seminorms.

Assume that A has a unit e. Then, as usual, the spectrum σ(a) of an element a∈ A is
defined as

σ(a)= {λ∈ C : (a− λe) is not invertible in A
}

(2.17)

and the spectral radius of a as

rA(a)= sup
{|λ|; λ∈ σ(a)

}
. (2.18)

Definition 2.12. An unbounded m∗-seminorm on A is called spectral if

r�(p)(a)≤ p(a), ∀a∈�(p). (2.19)

Proposition 2.13 [22, Lemma 6.1]. Let p be an unbounded C∗-seminorm on A. The
following statements are equivalent.

(i) p is spectral.
(ii) For each a∈D(p) such that p(a) < 1, e− a has an inverse in A.

(iii) r�(p)(a)≤ p(a), for all a∈�(p).
(iii) r�(p)(a)= limn→∞ p(an)1/n, for all a∈�(p).
(iv) r�(p)(a)= p(a), for all a∈�(p) such that a∗a= aa∗.

Definition 2.14. An unbounded C∗-seminorm p on A is called hereditary spectral if for
any ∗-subalgebra B of A the restriction p� B of p to B is spectral.

It is known (see [25, Proposition 2.10.2]) that if A is a C∗-algebra and B a closed ∗-
subalgebra of A, then for any ∗-representation π of B on �π , there exists a ∗-representa-
tion π̂ of A in a Hilbert space �π̂ such that �π is a closed subspace of �π̂ and π(a) =
π̂(a)� �π for every a∈B. This suggests of defining [22] a notion of stability for an un-
bounded C∗-seminorm p.

Let π be a ∗-representation of A with domain �π in Hilbert space �π . Then the ∗-
subalgebra Aπ

b , defined in (2.7), is the domain of a natural unbounded C∗-seminorm rπ
related to π:

rπ(a)= ∥∥π(a)
∥
∥, a∈Aπ

b . (2.20)

Definition 2.15. An unbounded C∗-seminorm p is called stable if for any ∗-subalgebra B

of A and any ∗-representation π of B such that
(a) B∩�(p)⊂Bπ

b ;
(b) π(B∩�(p))�π is dense in �π

there exists a ∗-representation ρ of A such that
(i) �(p)⊂A

ρ
b;

(ii) ρ(�(p))�ρ is dense in �ρ;
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(iii) �p is a closed subspace of �ρ;
(iv) π(a)= ρ(a)� �π for every a∈B∩�(p).

The following characterization [22, Theorem 6.10] of the hereditary spectrality of p
can then be read as a generalization of the property of C∗-algebras mentioned above.

Theorem 2.16. Let A be a ∗-algebra and p a semifinite unbounded C∗-seminorm on A.
The following statements are equivalent:

(i) p is hereditary spectral;
(ii) p is spectral and stable.

Definition 2.17. A ∗-algebra A is called an unbounded (hereditary) C∗-spectral algebra if
it admits an unbounded (hereditary) spectral C∗-seminorm.

Example 2.18. Every GB∗-algebra in the sense of Dixon [26] is an unbounded C∗-spec-
tral algebra [22, Example 7.1].

As the foregoing discussion shows, the notion of spectrality for an unbounded C∗-
seminorm on a ∗-algebra has many interesting consequences. For this reason, it would
be rather important to have at our disposal fairly good extensions of this notion when
dealing with partial ∗-algebras. Unfortunately, a reasonable general definition of spec-
trum for an element of a partial ∗-algebra still fails: the lack of associativity causes even
difficulties of defining a unique inverse of an element!

A complete overview of all the work that has been done for unboundedC∗-seminorms
on ∗-algebras goes perhaps beyond the confines of this review paper. But there are how-
ever some results that deserve, at least, to be mentioned for the sake of information.

In [18], Bhatt et al. studied the existence of well-behaved ∗-representations for a lo-
cally convex ∗-algebra by means of unbounded C∗-seminorms. In this case the interplay
between the initial locally convex topology of A and an unbounded C∗-seminorm allows
to get a characterization of the existence of well-behaved ∗-representations.

Recently Bhatt et al. [17] have studied the existence of spectral well-behaved represen-
tations of a ∗-algebra. The notion of spectral ∗-representation was introduced in [19]: if
A is a ∗-algebra and π a (bounded) ∗-representation of A on a Hilbert space �π , then π
is called a spectral ∗-representation if

σA(a)= σ�∗(π)
(
π(a)

)∪{0}, ∀a∈A, (2.21)

where �∗(π) is theC∗-subalgebra of �(�π) given by the norm-closure π(A) of the image
π(A) of π in �(�π).

Finally, in [34], Inoue and Takeshita have obtained a series of results on the structure
of a locally convex ∗-algebra with a topology τ possessing an unbounded C∗-norm p
such that the topology τp defined by p on �(p) is finer than τ� �(p) and the identity
map is closable from �(p)[τ] into �(p)[τp]. They have also characterized locally convex
∗-algebras with a normal unbounded C∗-norm that are GB∗-algebras in the sense of
Dixon [26].
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3. Constructing C∗-seminorms from sesquilinear forms

In the previous section we have discussed the relationship between unbounded C∗-semi-
norms and ∗-representations of a partial ∗-algebra A and the lesson is that under certain
circumstances (weakly semifinite unbounded C∗-seminorms, on one side; well-behaved
representations, on the other side) this connection is actually very close. But, as it is
well known, positive linear functionals play a fundamental role for the existence of ∗-
representations of a given ∗-algebra A and C∗-seminorms defined by families of positive
linear functionals are often used to get information on the structure of a normed or Ba-
nach ∗-algebra [23, 37]. Thus it is natural, in the present framework, to try to extend
these facts to partial ∗-algebras. To begin with, we summarize in the next example the
situation for Banach ∗-algebras. This will help the reader to understand where our work
is aimed to.

Example 3.1 (normed ∗-algebras). If A is a Banach ∗-algebra with unit e, then every
positive linear functionalω is continuous and ‖ω‖ = ω(e). This fact allows us to construct
the so-called Gel’fand seminorm p on A by putting

p(a)= sup
ω∈	(A)

ω
(
a∗a

)1/2
, a∈A, (3.1)

where 	(A) denotes the set of all positive linear functionals ω on A with ω(e)= 1. One
has p(a)≤ ‖a‖ for every a∈A. If ω is a positive linear functional on A and x ∈A, then
the linear functional ωx defined by ωx(a) = ω(x∗ax) is also positive and, if ω(x∗x) = 1,
then ωx ∈ 	(A). Using this fact, that, as we will see, is the key for the construction of
Gel’fand-like seminorms in general ∗-algebras (cf. Definition 3.5), one can prove that
(3.1) actually defines a C∗-seminorm on A. In general, p is not a norm; that is, there
might exist nonzero elements a∈A such that p(a)= 0. Let


p ≡ Ker p = {b ∈A : p(b)= 0
}
. (3.2)

Then it is easily seen that 
p is a closed ∗-ideal of A. The completion of the quotient A/
p

is a C∗-algebra, with norm ‖[a]‖
∼
= p(a). The set 
p is nothing but the ∗-radical �∗ of

the Banach ∗-algebra A (i.e., the intersection of the kernels of all ∗-representations of A)
and so ∗-semisimplicity of A corresponds to 
p = {0}. If A is a C∗-algebra, for each a∈
A, there exists a positive linear functional ω with ω(e)= 1 such that ω(a∗a)= ‖a‖2. This
then leads to the well-known Gel’fand’s characterization of the norm of a C∗-algebra:

‖a‖ = p(a)= sup
ω∈	(A)

ω
(
a∗a

)1/2
, ∀a∈A. (3.3)

3.1. The case of ∗-algebras. Gel’fand-like seminorms on a ∗-algebra where no topol-
ogy has been given a priori have been considered by Yood [48]. We will now review his
main results, proposing a slightly different approach which makes use of the Gel’fand-
Naı̆mark-Segal (GNS) contruction, that we shortly summarize. For general ∗-algebras
the GNS construction was first proved by Powers [38].

If A is a ∗-algebra, we denote by �(A) the set of all positive linear functionals on A.
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Let ω ∈�(A). Then the set

Nω =
{
a∈A : ω

(
a∗a

)= 0
}

(3.4)

is a left-ideal of A. The quotient �ω := A/Nω can be made into a pre-Hilbert space with
inner product

〈
λω(a) | λω(b)

〉= ω
(
b∗a

)
, a,b ∈A, (3.5)

where λω(a), a∈A, denotes the coset containing a. Let �ω be the Hilbert space obtained
by completion of �ω.

Then one defines, for a∈A

π◦ω(a)λω(b)= λω(ab), b ∈A. (3.6)

Then π◦ω is a ∗-representation of A; we denote with πω its closure which is also a ∗-
representation with domain �̃ω.

Theorem 3.2. Let A be a ∗-algebra and ω a positive linear functional on A. Then there exist

a dense domain �̃ω in a Hilbert space �ω and a closed ∗-representation πω such that

〈
πω(a)λω(b) | λω(c)

〉= ω
(
c∗ab

)
, ∀a,b,c ∈A. (3.7)

If A has a unit e, then πω is cyclic with cyclic vector ξω := λω(e). In this case πω is unique, up
to unitary equivalence.

Let now � be a family of positive linear functionals on A. We put

q�(a)= sup
{
ω
(
b∗a∗ab

)
: ω ∈�, b ∈A, ω

(
b∗b

)= 1
}

(3.8)

on the set

�
(
q�
)= {a∈A : q�(a) <∞}. (3.9)

Lemma 3.3. The following equalities hold:

�
(
q�
)=

{
a∈A : πω(a) is bounded,∀ω ∈�, sup

ω∈�

∥
∥πω(a)

∥
∥ <∞

}
.

q�(a)= sup
ω∈�

∥
∥πω(a)

∥
∥, ∀a∈�

(
q�
)
.

(3.10)

By Lemma 3.3 the following proposition holds.

Proposition 3.4. �(q�) is a ∗-subalgebra of A and q� is an unbounded C∗-seminorm on
A.

If ω is a positive linear functional on A and x ∈A, we put

ωx(a)= ω
(
x∗ax

)
, a∈A. (3.11)

Clearly ωx is also a positive linear functional on A.
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Definition 3.5. Let A be a ∗-algebra. A family � of positive linear functionals on A is
called balanced if, for each x ∈A and ω ∈�, the positive linear functional ωx also belongs
to �.

Remark 3.6. It is clear that �(A) itself is balanced, but it is worth reminding the reader
that, for a general ∗-algebra, �(A) may reduce to {0}. In what follows, we will suppose
that nontrivial balanced families of positive linear functionals do really exist.

If A has a unit e and if � is a balanced family of positive linear functionals on A, then
one can define

�(�)=
{
a∈A : sup

ω∈�s

ω
(
a∗a

)
<∞

}
, (3.12)

where �s = {ω ∈� : ω(e)= 1} and

|a|2� = sup
ω∈�s

ω
(
a∗a

)
. (3.13)

By the definition itself of | · |� it follows that

|a|� ≤ q�(a), ∀a∈A. (3.14)

On the other hand, if ω ∈� and b ∈A with ω(b∗b)= 1, then ωb(e)= 1 and so ωb ∈�s.
This implies that

q�(a)≤ |a|�, ∀a∈A. (3.15)

Then we have the following.

Proposition 3.7. Let A be a ∗-algebra with unit e and � a balanced family of positive
linear functionals on A. Then

�(�)=�
(
q�
)
, |a|� = q�(a), ∀a∈A. (3.16)

Thus, �(�) is a ∗-subalgebra of A and | · |� is an unbounded C∗-seminorm on A.

Remark 3.8. It is instructive to try to prove directly ∗-preservation and C∗-property for
| · |� [48]. Let a ∈�(�) and ω ∈�s. Then ω(aa∗) ≤ |a|2�. Indeed, if ω(aa∗) > 0 (the
case ω(aa∗)= 0 is trivial), the Cauchy-Schwarz inequality implies that

ω
(
aa∗

)2 ≤ ω
((
aa∗

)2)= ωa∗
(
a∗a

)
. (3.17)

Put b = a∗/ω(aa∗)1/2. Then

ω
(
aa∗

)2 ≤ ωb
(
a∗a

)
ω
(
aa∗

)
. (3.18)

Since ωb(e)= 1, we have ωb ∈�s. Hence

ω
(
aa∗

)≤ ωb
(
a∗a

)≤ |a|2�. (3.19)
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This in turn implies that a∗ ∈�(�) and |a∗|� ≤ |a|�. Thus, interchanging the roles of
a and a∗, the equality |a∗|� = |a|� follows.

Finally we prove theC∗-condition. Let a∈�(�) andω ∈�s. Then, using the Cauchy-
Schwarz inequality,

ω
(
a∗a

)2 ≤ ω
((
a∗a

)2)≤ ∣∣a∗a∣∣2
�. (3.20)

Hence, |a|2� ≤ |a∗a|�.

Definition 3.9. A positive linear functional ω on A is called admissible if, for every a∈A,
there exists γa > 0 such that

ω
(
x∗a∗ax

)≤ γaω
(
x∗x

)
, ∀x ∈A. (3.21)

We denote with �a(A) the set of all admissible positive linear functionals on A and,
for shortness, we put μ(a)= q�a(A)(a) for every a∈ A. Then μ is an everywhere defined
C∗-seminorm on A.

Admissibility is a relevant property of positive linear functionals, since it is indeed
equivalent to the boundedness of the corresponding GNS representation as we will see
below.

Let q be a seminorm on A and ω a linear functional on A. Then ω is said to be contin-
uous with respect to q, or, simply, q-continuous or q-bounded, if there exists γ > 0 such
that

∣
∣ω(a)

∣
∣≤ γq(a), ∀a∈A. (3.22)

We denote with ‖ω‖q the infimum of the positive constants for which (3.22) holds.
The positive linear functional ω is said to be relatively q-bounded, if, for every x ∈A,

the positive linear functional ωx, defined in (3.11), is q-bounded (of course, in general,
the corresponding constant γ of (3.22) will depend on x). Clearly, each q-bounded pos-
itive linear functional is relatively q-bounded. If A has a unit e, then the converse also
holds.

Admissibility is characterized by the following.

Proposition 3.10. Let A be a ∗-algebra and ω a positive linear functional on A. The fol-
lowing statements are equivalent.

(i) ω is admissible.
(ii) πω is bounded.

(iii) There exists a submultiplicative seminorm q on A such that πω is q-continuous and
‖πω(a)‖ ≤ q(a), for every a∈A.

(iv) There exists a submultiplicative seminorm q on A such thatω is relatively q-bounded.
If A has a unit e, then the previous statements are equivalent also to the following.

(iv′) There exists a submultiplicative seminorm q on A such that ω is q-bounded.

Proof. (i)⇒(ii) Assume that ω is admissible. Then, for each a∈A there exists γa > 0 such
that

ω
(
b∗a∗ab

)≤ γaω
(
b∗b

)
, ∀b∈A. (3.23)
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Then we have

∥
∥πω(a)λω(b)

∥
∥2 = ω

(
b∗a∗ab

)≤ γaω
(
b∗b

)= γa
∥
∥λω(b)

∥
∥2

, ∀b∈A. (3.24)

Therefore πω is bounded.
(ii)⇒(iii) Assume that πω is bounded and define

q(a)= ∥∥πω(a)
∥
∥, a∈A. (3.25)

Then, as it is easily seen, q is a C∗-seminorm that trivially satisfies (iii).
(iii)⇒(iv) Indeed, we have

∣
∣ω
(
b∗ab

)∣∣= ∣∣〈πω(a)λω(b) | λω(b)
〉∣∣≤ q(a)

∥
∥λω(b)

∥
∥2

, ∀a,b ∈A. (3.26)

Hence ω is relatively q-bounded.
(iv)⇒(i) Assume that ω is relatively q-bounded, where q is a submultiplicative semi-

norm on A. Then, for all a,b ∈A and n∈N, the Kaplansky inequality holds:

ωb
(
a∗a

)≤ ω
(
b∗b

)1−2n
(
ωb

((
a∗a

)2n
))2−n

. (3.27)

Then

ωb
(
a∗a

)≤ ω
(
b∗b

)1−2n
(∥
∥ωb

∥
∥
qq
((
a∗a

)2n
))2−n

. (3.28)

For n→∞, we get

ωb
(
a∗a

)≤ q
(
a∗a

)
ω
(
b∗b

)
. (3.29)

Hence ω is admissible. �

Now let us suppose that a C∗-seminorm on A is given; it is natural to ask what is
the relationship between q and the C∗-seminorm defined by the family of all q-bounded
positive linear functionals on A.

Theorem 3.11. Let q be a C∗-seminorm on A. The following statements hold.
(i) There exists a bounded ∗-representation π of A such that

∥
∥π(a)

∥
∥= q(a), ∀a∈A. (3.30)

(ii) Let � denote the set of all q-bounded positive functionals on A. Then �(�)=A and

q(a)2 = sup
ω∈�s

ω
(
a∗a

)
, ∀a∈A. (3.31)

Proof. (i) Let 
q = {a∈A : q(a)= 0}; then A/
q is a normed space with norm:

∥
∥a+ 
q

∥
∥= q(a), a∈A. (3.32)
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Its completion B0 is a C∗-algebra. Then by the Gel’fand-Naı̆mark theorem, there exists
an isometric ∗-isomorphism π̂ of B0 onto aC∗-algebra of bounded operators in a Hilbert
space �. Now we put

π(a)= π̂
(
a+ 
q

)
, a∈A. (3.33)

Then π is a well-defined bounded ∗-representation of A and

∥
∥π(a)

∥
∥= ∥∥π̂(a+ 
q

)∥∥= q(a), ∀a∈A. (3.34)

Proposition 3.10 implies that each ω ∈� is admissible and

ω
(
a∗a

)≤ q(a)2ω(e), ∀a∈A. (3.35)

Therefore �(�)=A and

sup
ω∈�s

ω
(
a∗a

)≤ q(a)2, ∀a∈A. (3.36)

We need to prove the converse inequality.
(ii) Let π be the ∗-representation constructed in (i). Let ξ ∈�, ‖ξ‖ = 1. We put

ωξ(a)= 〈π(a)ξ | ξ〉, a∈A. (3.37)

Then ωξ ∈� and ωξ(e)= 1. Then we have

q(a)= ∥∥π(a)
∥
∥= sup

‖ξ‖=1

∥
∥π(a)ξ

∥
∥

= sup
‖ξ‖=1

ωξ
(
a∗a

)1/2 ≤ sup
ω∈�s

ω
(
a∗a

)1/2
, ∀a∈A.

(3.38)

�

The following statement is now clear.

Theorem 3.12. Let A be a ∗-algebra. The following statements are equivalent.
(i) A admits a nonzero bounded ∗-representation π.

(ii) There exists a nonzero C∗-seminorm q on A.
(iii) There exists a family � of positive linear functionals such that q� is an everywhere

defined, nonzero C∗-seminorm on A.

The set �a(A) of all admissible positive linear functionals is balanced. The correspond-
ing C∗-seminorm μ (which is everywhere defined, as we have already seen) turns out to
be the maximal C∗-seminorm on A, in the sense that if p is another C∗-seminorm on A,
then μ(a)≥ p(a), for every a∈A [48, Theorem 2.6].

If π ∈ Rep(A) and �π is its domain in Hilbert space �π , for every ξ ∈ �π , we can
define

ωξ(a)= 〈π(a)ξ | ξ〉, a∈A. (3.39)
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If every ω ∈�(A) is admissible, then, for every a∈A, we have

∥
∥π(a)ξ

∥
∥2 = 〈π(a)ξ | π(a)ξ

〉= 〈π(a∗a)ξ | ξ〉

= ωξ
(
a∗a

)≤ μ(a)2ω(e)= μ(a)2‖ξ‖2.
(3.40)

Hence π is bounded and ‖π(a)‖ ≤ μ(a), for every a∈A. This clearly implies that

sup
π∈Rep(A)

∥
∥π(a)

∥
∥≤ μ(a), ∀a∈A. (3.41)

From these simple facts one can easily deduce the following.

Theorem 3.13. Let A be a ∗-algebra with unit e. The following statements are equivalent.
(i) Each positive linear functional ω on A is admissible.

(ii) Each ∗-representation π of A is bounded and

sup
π∈Rep(A)

∥
∥π(a)

∥
∥ <∞, ∀a∈A. (3.42)

(iii) Each GNS representation πω, ω ∈�(A) is bounded and

sup
ω∈�(A)

∥
∥πω(a)

∥
∥ <∞, ∀a∈A. (3.43)

3.2. The case of partial ∗-algebras. As we have seen in the case of ∗-algebras, the pos-
sibility of constructing C∗-seminorms is closely linked to the GNS representation deter-
mined by positive linear functionals. For partial ∗-algebras a GNS contruction is possible
starting from a particular class of positive sesquilinear forms called biweights that we de-
fine below.

Let ϕ be a positive sesquilinear form on �(ϕ)×�(ϕ), where �(ϕ) is a subspace of A.
Then we have

ϕ(x, y)= ϕ(y,x), ∀x, y ∈�(ϕ), (3.44)

∣
∣ϕ(x, y)

∣
∣2 ≤ ϕ(x,x)ϕ(y, y), ∀x, y ∈�(ϕ). (3.45)

We put

Nϕ =
{
x ∈�(ϕ) : ϕ(x,x)= 0

}
. (3.46)

By (3.45) we have

Nϕ =
{
x ∈�(ϕ) : ϕ(x, y)= 0, ∀y ∈�(ϕ)

}
, (3.47)

and so Nϕ is a subspace of �(ϕ) and the quotient space �(ϕ)/Nϕ ≡ {λϕ(x)≡ x+Nϕ; x ∈
�(ϕ)} is a pre-Hilbert space with respect to the inner product (λϕ(x) | λϕ(y))= ϕ(x, y),
x, y ∈�(ϕ). We denote by �ϕ the Hilbert space obtained by the completion of �(ϕ)/Nϕ.

Definition 3.14. Let ϕ be a positive sesquilinear form on �(ϕ)×�(ϕ). A subspace B(ϕ)
of �(ϕ) is said to be a core for ϕ if

(i) B(ϕ)⊆ RA;
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(ii) {ax; a∈A, x ∈ B(ϕ)} ⊆�(ϕ);
(iii) λϕ(B(ϕ)) is dense in �ϕ;
(iv) ϕ(ax, y)= ϕ(x,a∗y), for all a∈A, for all x, y ∈ B(ϕ);
(v) ϕ(a∗x,by)= ϕ(x, (ab)y), for all a∈ L(b), for all x, y ∈ B(ϕ).

We denote by �ϕ the set of all cores B(ϕ) for ϕ.

Definition 3.15. A positive sesquilinear form ϕ on �(ϕ)×�(ϕ) such that �ϕ �= ∅ is
called a biweight on A.

For a biweight on A a GNS-like construction can be performed as follows.
Let ϕ be a biweight on A with core B(ϕ). We put

π◦ϕ(a)λϕ(x)= λϕ(ax), a∈A, x ∈ B(ϕ). (3.48)

Using (iii) of Definition 3.14 and a simple limit argument, it follows that

ϕ(y, y)= 0 for y ∈ B(ϕ) implies ϕ(ay,ay)= 0, ∀a∈A. (3.49)

Then π◦ϕ(a) is a well-defined linear operator of λϕ(B(ϕ)) into �ϕ. Furthermore, it fol-
lows from (iv) and (v) of Definition 3.14 that π◦ϕ is a ∗-representation of A. We denote
by πB

ϕ the closure of π◦ϕ. Then the triple (πB
ϕ ,λϕ,�ϕ) is called the GNS construction for the

biweight ϕ on A with the core B(ϕ).

Example 3.16. Very simple examples of biweights can be constructed in Lp-spaces. These
spaces can be made into partial ∗-algebras in a natural way, the partial multiplication
being established via Hölder’s inequality.

(i) Let 2≤ p <∞. We put

D(ϕ)= Lp[0,1],

ϕ(x, y)=
∫ 1

0
x(t)y(t)dt, x, y ∈D(ϕ).

(3.50)

Then ϕ is a biweight on Lp[0,1] with largest core L∞[0,1].
(ii) Let 1≤ p < 2 and A= Lp[0,1]. Then the positive sesquilinear form ϕ on �(ϕ)×

D(ϕ) defined by

D(ϕ)= L2[0,1],

ϕ(x, y)=
∫ 1

0
x(t)y(t)dt, x, y ∈D(ϕ),

(3.51)

is not a biweight on Lp[0,1], because (i) and (ii) in Definition 3.14 are incompat-
ible in this case. Therefore �ϕ =∅.

It is much more interesting for our purposes to consider the example of vector forms
of the type 〈Aξ | Bξ〉 defined on a partial O∗-algebra M on a pre-Hilbert space �, with
ξ ∈�. We will not discuss here the general case but only the one arising when a ∗-repre-
sentation of a partial ∗-algebra A is considered. For full details we refer to [6, 7].
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Example 3.17. Let π be a ∗-representation of the partial ∗-algebra A into �†(�π ,�π)
and ξ ∈�π . Define

�
(
ϕπ
ξ

)= {a∈A : ξ ∈D
(
π
(
a∗
)∗)}

,

ϕπ
ξ (a,b)= 〈π(a∗)∗ξ | π(b∗)∗ξ〉.

(3.52)

Then ϕπ
ξ is a sesquilinear form on �(ϕπ

ξ )×�(ϕπ
ξ ).

If ξ ∈�π , we put

B
(
ϕπ
ξ

)= {x ∈ RA : π(x)ξ ∈�(π∗∗)
}
. (3.53)

If ξ ∈�π \�π , we define B(ϕπ
ξ ) as the linear span of the set

B0
(
ϕπ
ξ

)= {x ∈ RA : ξ ∈D
(
π(x)

)
, π(x)ξ ∈�

}
. (3.54)

Then, if π(B(ϕπ
ξ ))ξ is dense in π(D(ϕπ

ξ ))ξ, ϕπ
ξ is a biweight on A. A proof of this statement

can be done as in [7, Example 9.1.12].

Let now B be a subspace of RA. We denote with BW(A,B) the family of biweights of
A having B as a core.

If �⊆ BW(A,B) we put

pB
� (a)= sup

{
ϕ(ax,ax)1/2 : ϕ∈�, x ∈B, ϕ(x,x)= 1

}
,

�
(
pB

�

)= {a∈A : pB
� (a) <∞}.

(3.55)

Proposition 3.18. Let �⊆ BW(A,B). Then

�
(
pB

�

)=
{
a∈A : πB

ϕ (a) is bounded and sup
ϕ∈�

∥
∥πB

ϕ (a)
∥
∥ <∞

}
,

pB
� (a)= sup

ϕ∈�

∥
∥πB

ϕ (a)
∥
∥, ∀a∈�

(
pB

�

)
.

(3.56)

From this equality, one gets that, for any family �⊆ BW(A,B),
(i) �(pB

� ) is a partial ∗-algebra in A;
(ii) pB

� is an unbounded C∗-seminorm on A with domain �(pB
� ).

Similarly to the case of positive linear functionals, the notion of admissibility can be
introduced for a biweight ϕ but it is linked to a core of admissibility.

Definition 3.19. A biweight ϕ on the partial ∗-algebra is admissible if there exists a core
B(ϕ) such that

∀a∈A, ∃γa > 0 : ϕ(ax,ax)≤ γaϕ(x,x), ∀x ∈ B(ϕ). (3.57)

In principle, if we choose a different core B1(ϕ), then ϕ need not satisfy condition
(3.57) when x ∈ B1(ϕ).
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Assume now that � ⊆ BW(A,B). Let ϕ ∈�, a ∈ A, and x ∈B. If ϕ(x,x) = 0, then
(3.49) implies ϕ(ax,ax)=0. If ϕ(x,x)>0, then, puttingw=x/ϕ(x,x)1/2 we have ϕ(w,w)=1
and

ϕ(ax,ax)= ϕ(aw,aw)ϕ(x,x). (3.58)

Then if a∈D(pB
� ), we obtain

ϕ(ax,ax)≤ p�(a)2ϕ(x,x). (3.59)

Therefore, we have the following proposition.

Proposition 3.20. Let �⊆ BW(A,B). If D(pB
� )=A, then each ϕ∈� is admissible.

Definition 3.21. Let q be a seminorm defined on a partial ∗-subalgebra �(q) of A and ϕ
a sesquilinear form on �(ϕ)×�(ϕ), �(ϕ)⊆A. ϕ is said to have a q-bounded if

(i) �(q)⊆�(ϕ);
(ii) ∃γϕ > 0 : |ϕ(a,b)| ≤ γϕq(a)q(b), for all a,b ∈�(q).

We denote with ‖ϕ‖q the infimum of all positive constants for which (ii) holds.
Let ϕ be a biweight on A with domain �(ϕ) and core B(ϕ). If x ∈ B(ϕ), we denote

with ϕx the positive sesquilinear form on A×A defined by

ϕx(a,b)= ϕ(ax,bx), a,b ∈A. (3.60)

Definition 3.22. Let ϕ be a biweight on A with domain �(ϕ) and core B(ϕ) and let q
be a seminorm with domain �(q). ϕ is said to have a q-bounded B(ϕ)-orbit if each ϕx,
x ∈ B(ϕ), is q-bounded.

A biweight ϕ could have a q-bounded B(ϕ)-orbit, without ϕ being q-bounded.
Let now q be a seminorm on A with �(q)=A and B a subspace of RA. Let

CO(q,B)= {ϕ∈ BW(A,B) : ϕ has a q-bounded B-orbit
}

,

COe(q,B)= {ϕ∈ CO(q,B) :
∥
∥ϕx

∥
∥
q ≤ ϕ(x,x), x ∈B

}
.

(3.61)

The following theorem characterizes admissibility of biweights and generalizes Prop-
osition 3.10 to partial ∗-algebras.

Theorem 3.23. Let ϕ be a biweight on A with domain �(ϕ). The following statements are
equivalent.

(i) ϕ is admissible.
(ii) There exists a core B(ϕ) for ϕ such that πB

ϕ is bounded.
(iii) There exist a submultiplicative seminorm q on A and core B(ϕ) for ϕ such that πB

ϕ is
q-bounded and ‖πB

ϕ (a)‖ ≤ q(a) for every a∈A.
(iv) There exist a submultiplicative seminorm q on A and core B(ϕ) for ϕ such that ϕ∈

COe(q,B(ϕ)).

Proof. The proofs of (i)⇒(ii), (ii)⇒(iii), and (iii)⇒(iv) are similar to those given in the
proof of Proposition 3.10, therefore we omit them.
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(iv)⇒(i) Since ϕ ∈ COe(q,B(ϕ)), then ϕ has a q-bounded B(ϕ)-orbit and ‖ϕx‖q ≤
ϕ(x,x), for each x ∈ B(ϕ). Therefore, for each a∈A,

ϕ(ax,ax)≤ q(a)2ϕ(x,x), ∀x ∈ B(ϕ) (3.62)

and so ϕ is admissible. �

In general, COe(q,B) �= CO(q,B), in contrast with what happens for the correspond-
ing objects in ∗-algebras. A sufficient condition for the equality to hold has been given in
[46] and involves the notion of “length” of an element of a partial ∗-algebra [4, 7].

If A is a partial ∗-algebra and a ∈ A, the length �(a) of a is the largest n ∈ N∪{∞}
such that an is well defined in A.

We put

RA∞ =
{
x ∈ RA : �

(
x∗x

)=∞}. (3.63)

Then the following statement holds.

Proposition 3.24. Let q be an m∗-seminorm on A (i.e., �(q)=A). Assume that RA∞ is
q-dense in A. Then, for each subspace B of RA, CO(q,B)= COe(q,B).

Remark 3.25. If B is a ∗-algebra, q-dense in A, the assumption of Proposition 3.24 is
automatically fulfilled, since B⊆ RA∞; then, in this case, CO(q,B)= COe(q,B).

The assumption that RA is dense in A implies that if A is semiassociative, there exist a
C∗-algebra R, with ‖ · ‖q (cf. Definition 3.21) and a linear map a∈A→ ã∈R, preserv-

ing the involution and such that �a · b = ã · b̃ whenever a · b is well defined (Lemma 2.3).
By the Gel’fand-Naı̆mark theorem, there exists an isometric ∗-isomorphism Φ of R onto
a C∗-algebra M of bounded operators in Hilbert space �. If ξ ∈�, we put

ϕξ(a,b)= 〈Φ(ã)ξ |Φ(b̃)ξ
〉

, a,b ∈A. (3.64)

Then ϕξ is a well-defined positive sesquilinear form on A×A and it can be shown that
it is a biweight with D(ϕξ) = A and B(ϕξ) =B. Moreover ϕξ ∈ COe(q,B). Now since
e ∈B, we have

q(a)2 = sup
{
ϕξ(a,a); ‖ξ‖ = 1

}≤ p�(a)2, ∀a∈A. (3.65)

But p�(a)≤ q(a), for every a∈A. Thus we have the following.

Theorem 3.26. Let A be a semiassociative partial ∗-algebra, q a C∗-seminorm on A and
B a subspace of RA, q-dense in A and such that e ∈B. If �= CO(q,B), then �(p�)=A,
and

q(a)= p�(a), ∀a∈A. (3.66)

The following statement is the analog of Theorem 3.12 in the case of partial ∗-algebras.

Theorem 3.27. Let A be a partial ∗-algebra. The following statements are equivalent.
(i) A admits a nonzero bounded ∗-representation π.
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(ii) There exists a nonzero everywhere defined C∗-seminorm q on A.
(iii) There exists a family � of biweights with core RA such that p� is an everywhere

defined, nonzero C∗-seminorm on A.

We conclude this section by showing how (unbounded) C∗-seminorms defined on a
partial ∗-algebra A by families of biweights can be used to get some information on the
structure properties of Banach partial ∗-algebras (e.g., about the automatic continuity of
bounded ∗-representations of A).

Definition 3.28. A partial ∗-algebra A is said to be a normed partial ∗-algebra if it carries
a norm ‖ · ‖ such that

(i) the involution a �→ a∗ is isometric: ‖a‖ = ‖a∗‖, for all a∈A;
(ii) for every x ∈ LA, there exists a constant γx > 0 such that

‖xa‖ ≤ γx‖a‖, ∀a∈A. (3.67)

A[‖ · ‖] is called a Banach partial ∗-algebra if, in addition,
(iii) A[‖ · ‖] is a Banach space.

Using (i), (ii), and the fact that RA= LA∗, we also have
(ii′) for every y ∈ RA, there exists a constant γy > 0 such that

‖ay‖ ≤ γy‖a‖, ∀a∈A. (3.68)

Remark 3.29. The first definition of normed partial ∗-algebra was given in [7] where
some additional conditions on the topologies of multiplier spaces where required. Re-
cently Antoine and the present author reconsidered the whole question again in [9].

Since we are going to study properties of ∗-representations of a partial ∗-algebra, the
vector forms considered in Example 3.17 will play a relevant role in what follows. We refer
to the notations introduced there.

Remark 3.30. If π is a bounded ∗-representation of A, then �(ϕπ
ξ ) = A and, if ξ ∈ �,

B(ϕπ
ξ )= RA.

Definition 3.31. A ∗-representation π of a partial ∗-algebra A is said to be regular if ϕπ
ξ is

a biweight on A, for every ξ ∈�π .

Proposition 3.32. Let A be a normed partial ∗-algebra and assume that RA is dense in A.
Then each continuous bounded representation is regular.

Proof. If π is a continuous bounded representation and ξ ∈�, there exists γ > 0 such that

∥
∥π(a)

∥
∥≤ γ‖a‖, ∀a∈A. (3.69)

For every a∈A, there exists a sequence {xn} ⊂ RA such that ‖a− xn‖→ 0. Then we have

∥
∥λϕπ

ξ
(a)− λϕπ

ξ

(
xn
)∥∥2 = ϕπ

ξ

(
a− xn,a− xn

)

= ∥∥π(a− xn
)
ξ
∥
∥2 ≤ γ2

∥
∥a− xn

∥
∥2‖ξ‖2 −→ 0.

(3.70)
�



24 C∗-seminorms, biweights, and ∗-representations

Theorem 3.33. Let A[‖ · ‖] be a normed partial ∗-algebra such that every biweight ϕ ∈
BW(A;RA) satisfies the inequality

ϕ(ax,ax)≤ ‖a‖ϕ(x,x), ∀a∈A, x ∈ RA. (3.71)

Then the following hold:
(i) every regular ∗-representation of A is bounded and continuous from A[‖ · ‖] into

�(�)[‖ · ‖] and
∥
∥π(a)

∥
∥≤ ‖a‖, ∀a∈A; (3.72)

(ii) there exists a C∗-seminorm q on A such that q(a) ≤ ‖a‖, for every a ∈ A and for
every regular ∗-representation π one has

∥
∥π(a)

∥
∥≤ q(a), ∀a∈A; (3.73)

Proof. (i) Let π be a regular ∗-representation of A into �†(�π ,�π); for ξ ∈�π , consider
the corresponding vector form ϕπ

ξ . By the regularity of π, ϕπ
ξ is a biweight with core RA.

Then we have that, for every a∈A,

∥
∥π(a)ξ

∥
∥2 = ϕπ

ξ (a,a)≤ ‖a‖2ϕπ
ξ (e,e)= ‖a‖2‖ξ‖2. (3.74)

This implies that π is bounded and
∥
∥π(a)

∥
∥≤ ‖a‖, ∀a∈A. (3.75)

(ii) The assumption clearly implies that pRA is everywhere defined on A and

pRA(a)≤ ‖a‖, ∀a∈A. (3.76)

Now, if π is regular, then, by (i), it is bounded. So if ξ ∈�π , ‖ξ‖ = 1, the vector form ϕπ
ξ

is a biweight with domain A and core RA satisfying ϕπ
ξ (e,e) = 1. Then, for every a ∈ A,

we have
∥
∥π(a)ξ

∥
∥2 = 〈π(a)ξ | π(a)ξ

〉= ϕπ
ξ (a,a)= ϕπ

ξ (ae,ae)≤ pRA(a)2 (3.77)

which, clearly, implies the statement. �

4. CQ∗-seminorms on quasi ∗-algebras

Among partial ∗-algebras, a distinguished role is played by quasi ∗-algebras. The reason
for that is twofold: first, quasi ∗-algebras frequently appear in applications, because one
often is led to consider the completion of a locally convex ∗-algebra whose multiplication
is separately but not jointly continuous (we refer to [7] for a discussion of a number of
physical situations where this structure appears in a natural way); the second reason is
that, as a partial ∗-algebra, a quasi ∗-algebra (A,A0) has a particularly simple structure.
Indeed, in this case, the defining set Γ can be taken as

Γ= {(a,b)∈A×A : a∈A0 or b∈A0
}

(4.1)
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and it turns out that, with its natural partial multiplication, A may be regarded as a semi-
associative partial ∗-algebra and A0 is exactly the set of universal multipliers of A, that
is, RA= LA= A0. The results of the previous sections apply, of course, also to this case,
but the central role played by the ∗-algebra A0 makes natural the choice of considering
only biweights having A0 as core. This also leads to a further simplification: if (A,A0)
has a unit e (i.e., e ∈ A0, e = e∗ and xe = ex = x, for every x ∈A), then condition (ii) of
Definition 3.14 implies that a biweight ϕ is necessarily everywhere defined. On the other
hand if (A,A0) has no unit, then it can be embedded in a quasi ∗-algebra with a unit in
a standard fashion. Thus, we can consider only the case where D(ϕ)=A. For this reason
we simplify a little the notations and call (A) := BW(A,A0), since sesquilinear forms on
A×A, satisfying the conditions (iv) and (v) of Definition 3.14, are often called invariant
[7].

C∗-seminorms are always connected with C∗-algebras. In this aspect, the following
question is of a certain interest: given a quasi ∗-algebra (A,A0), could one define semi-
norms via some families of positive sesquilinear forms on A×A, such that another struc-
ture like the one described below be defined on A?

Assume that (A,A0) is a quasi ∗-algebra which is also a normed space with respect to
a norm ‖ · ‖ enjoying the following properties:

(a) ‖a∗‖ = ‖a‖, for all a∈A;
(b) for every x ∈A0 there exists γ > 0 such that

‖ax‖ ≤ γ‖a‖, ∀a∈A; (4.2)

(c) A0 is dense in A[‖ · ‖].
Then (A,A0) is said to be a normed quasi ∗-algebra; if A[‖ · ‖] is complete, then (A,A0)
is called a Banach quasi ∗-algebra.

The norm of A defines a natural norm on A0 by

‖x‖0 =max

{

sup
‖a‖≤1

‖ax‖, sup
‖a‖≤1

‖xa‖
}

. (4.3)

If (A,A0) is a Banach quasi ∗-algebra and A0 is a C∗-algebra with respect to ‖ · ‖0, then
(A,A0) is called a CQ∗-algebra [14, 15].

4.1. CQ∗-seminorms. To begin with, following [44], we distinguish some particular
types of seminorms on a quasi ∗-algebra.

Definition 4.1. Let (A,A0) be a quasi ∗-algebra with unit e and p a seminorm on A. p is
a Q∗-seminorm on (A,A0) if

(Q∗1) p(a)= p(a∗), for all a∈A;
(Q∗2) for each x ∈A0 there exists γx > 0 such that

p(ax)≤ γx p(a), ∀a∈A; (4.4)

(Q∗3) p(e)= 1.
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If p is a Q∗-seminorm, we can define

p0(x) :=max

{

sup
p(a)=1

p(ax), sup
p(a)=1

p(xa)

}

; (4.5)

then p(x)≤ p0(x) for every x ∈A0 and

p(ax)≤ p(a)p0(x), ∀a∈A, x ∈A0. (4.6)

We will call p0 the reduced seminorm of p.

Remark 4.2. A quasi ∗-algebra (A,A0) with unit e which admits a Q∗-norm ‖ · ‖ such
that A0 is dense in A is, clearly, a normed quasi ∗-algebra.

On the basis of our previous discussion, it is reasonable to expect that one of the most
favorable situations occurs when, in analogy to what happens for CQ∗-algebras [15], p0

is a C∗-seminorm on A0.

Definition 4.3. A Q∗-seminorm p is called a CQ∗-seminorm if p0 is a C∗-seminorm on
A0.

If p itself satisfies the C∗-condition when restricted to A0, then we call it an extended
C∗-seminorm on (A,A0).

Definition 4.4. Let (A,A0) be a quasi ∗-algebra with unit e. A positive sesquilinear form
ϕ∈(A) is called left invariant if

ϕ(xa,b)= ϕ
(
a,x∗b

)
, ∀a,b ∈A, x ∈A0. (4.7)

We put �(A)= {ϕ∈(A) : ϕ is left invariant}.
Let ϕ∈�(A). For each a∈A, we define

ωa
ϕ(x)= ϕ(xa,a), x ∈A0. (4.8)

Then ωa
ϕ is a positive linear functional on A0.

Let now �⊆�(A) and let

�0 = {ωa
ϕ : ϕ∈�, a∈A

}
. (4.9)

Then �0 is balanced in the sense of Definition 3.5; thus the set

�
(
�0)= {x ∈A0 : sup

{
ωa
ϕ

(
x∗x

)
: ϕ∈�, a∈A, ϕ(a,a)= 1

}
<∞} (4.10)

is a ∗-subalgebra of A0 and

|x|�0 = sup
{
ωa
ϕ

(
x∗x

)1/2
: ϕ∈�, a∈A, ϕ(a,a)= 1

}
(4.11)

defines a C∗-seminorm on �(p�0 ).
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On the other hand, for a∈A, we can put

p�(a)= sup
ϕ∈�s

ϕ(a,a)1/2, (4.12)

where �s = {ϕ∈� : ϕ(e,e)= 1}.
Then we define

�(�)= {a∈A : p�(a) <∞, p�
(
a∗
)
<∞},

p�(a)=max
{
p�(a), p�

(
a∗
)}
.

(4.13)

The set �(�) is a ∗-invariant subspace of A but, in general, need not be a quasi ∗-
algebra over �(�0). There is, however, some special situation as we will see in Proposition
4.6.

We notice at this point that any family �⊆�(A) defines three seminorms on their re-
spective domains: p� on A, its reduced seminorm p�

0 on A0 and the C∗-seminorm | · |�0

also on A0. It is then natural to study their properties and their mutual relationships. To
begin with, we introduce some notation.

If ϕ ∈ �(A) and x ∈ A0, we put, as before, ϕx(a,b) := ϕ(ax,bx), a,b ∈ A. Using the
semiassociativity of (A,A0) it is easily seen that ϕx ∈�(A).

Definition 4.5. Let �⊆�(A). � is regular if
(i) � is balanced, that is, for each ϕ∈� and for each x ∈A0, ϕx ∈�;

(ii) p�(a∗)= p�(a), for all a∈A.

If � is regular, then the following inequality holds:

p�(ax)≤ |x|�0 · p�(a), ∀a∈�(�), x ∈�
(
�0). (4.14)

This implies that (�(�),�(�0)) is a quasi ∗-algebra, p� is a ∗-invariant seminorm on
(�(�),�(�0)), and

p�(ax)≤ |x|�0 · p�(a), ∀a∈�(�), x ∈�
(
�0). (4.15)

Proposition 4.6. Let (A,A0) be a quasi ∗-algebra and � ⊂ �(A) a regular family of
sesquilinear forms on A×A. Then p� is an extended C∗-seminorm on (�(�),�(�0)).

Of course, if | · |�0 = p�
0 , where p�

0 is the reduced seminorm of p� (see (4.5)), then
p� is automatically a CQ∗-seminorm [44, Proposition 2.9].

Proposition 4.7. Let � ⊂ �(A) be a regular family of sesquilinear forms and (�(�),
�(�0)) the quasi ∗-algebra constructed as above. The following statements are equivalent:

(i) |x|�0 = p�
0 (x), for all x ∈�(�0);

(ii) ϕ(xa,xa)≤ |x|2�0ϕ(a,a), for all ϕ∈�, x ∈�(�0), a∈A;
(iii) for each ϕ∈� and a∈A, ωa

ϕ is p�
0 -continuous.

If any of the previous statements holds, then p� is a CQ∗-seminorm on (�(�),�(�0)).
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Example 4.8. Let I be a compact interval on the real line and consider the quasi∗-algebra
[16] of functions (Lp(I),C(I)) where C(I) stands for the ∗-algebra of all continuous func-
tions on I and Lp(I) is the usual Lp-space on I . We assume that p ≥ 2.

Let w ∈ Lp/(p−2)(I) (we take 1/0=∞) and w ≥ 0. Then

ϕ(w)( f ,g)=
∫

I
f (x)g(x)w(x)dx, f ,g ∈ Lp(I), (4.16)

defines a left invariant positive sesquilinear form on Lp(I).
If w ∈ L∞(I), then ϕ(w) is admissible.
We put

�= {ϕ(w) : w ∈ Lp/(p−2)(I), w ≥ 0
}
. (4.17)

It is easy to see that � is strongly balanced and that ϕ(w) ∈�s if and only if ‖w‖1 = 1.
Very easy estimates show that �(�0)= C(I) and |φ|�0 = ‖φ‖∞.
On the other hand,

�(�)=
{
f ∈ Lp(I) : sup

‖w‖1=1

∫

I

∣
∣ f (x)

∣
∣2
w(x)dx <∞

}
= L∞(I). (4.18)

Therefore, the extended C∗-seminorm p� coincides with the L∞-norm on L∞(I).

Once the seminorm p� (or p�) is defined, one can consider the set �(p�) of all el-
ements of �(A) that are p�-bounded. Then � := �(p�) is balanced but it is not nec-
essarily regular, since (ii) of Definition 4.5 may fail. Clearly � ⊆ � and, as it is easily
seen, p�(a)= p�(a), for every a∈�(�). It is therefore natural to ask the question as to
whether � =� (this equality would mean that the balancedness condition can be satis-
fied only if � is large enough). However it is not so, as the next example shows.

Example 4.9. Let � be an infinite dimensional Hilbert space. Let us consider a bounded
self-adjoint operator A with continuous spectrum σ ⊂ R and let C(σ) denote the ∗-
algebra of all continuous functions on the compact set σ with its usual sup norm ‖ · ‖∞.
Let

A= { f (A); f ∈ C(σ)
}

, (4.19)

where f (A) is defined via the functional calculus. As it is known, each f (A) is bounded
and ‖ f (A)‖ = ‖ f ‖∞. Then A is a C∗-algebra of bounded operators. We define � as fol-
lows. If ξ ∈�, we put

ϕξ(A,B)= 〈Aξ | Bξ〉, A,B ∈A. (4.20)

Then each ϕξ is left-invariant and the set �= {ϕξ ; ξ ∈�} is balanced.
In this case �(�)=�(�0)=A and

p�(A)= ‖A‖, ∀A∈A. (4.21)
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The set �(p�) consists of all sesquilinear forms Φ for which there exists γ > 0 such that

Φ(A,B)≤ γ‖A‖‖B‖, ∀A,B ∈A. (4.22)

We will show that, in general, �(p�) properly contains �.
Indeed, let λ0 ∈ σ be fixed. We define a sesquilinear form ϕλ0 by

ϕλ0

(
f (A),g(A)

)= f
(
λ0
)
g
(
λ0
)
, f ,g ∈ C(σ); (4.23)

ϕλ0 is positive, left invariant, and bounded, that is, ϕλ0 ∈�(p�). Indeed,

∣
∣ϕλ0

(
f (A),g(A)

)∣∣= ∣∣ f (λ0
)
g
(
λ0
)∣∣

≤ ‖ f ‖∞‖g‖∞ =
∥
∥ f (A)

∥
∥
∥
∥g(A)

∥
∥, f ,g ∈ C(σ).

(4.24)

This implies that ‖ϕλ0‖p� ≤ 1 (indeed, the equality holds). Assume that there exists η ∈�
such that

ϕλ0

(
f (A),g(A)

)= 〈 f (A)η | g(A)η
〉

, ∀ f ,g ∈ C(σ). (4.25)

Then, if E(·) denotes the spectral measure of A, we have

ϕλ0

(
f (A),g(A)

)= 〈 f (A)η | g(A)η
〉

=
∫

σ
f (λ)g(λ)d

〈
E(λ)η | η〉

= f
(
λ0
)
g
(
λ0
)
, ∀ f ,g ∈ C(σ),

(4.26)

and this is possible only if λ0 is an eigenvalue of A. Therefore ϕλ0 ∈� \�.

4.2. The case of Banach quasi ∗-algebras. Let us consider finally the case where (A,A0)
is a normed quasi ∗-algebra with norm ‖ · ‖ and unit e. For details and proofs we refer to
[45].

Let b(A) denote the subset of all elements of (A) that are ‖ · ‖-bounded (it is easily
seen that b(A)⊂�(A)) and 	(A)= {ϕ∈b(A) : ‖ϕ‖ ≤ 1}.

To begin with, we put

p(a)= sup
ϕ∈	(A)

ϕ(a,a)1/2, a∈A, (4.27)

then p is a seminorm on A with p(a)≤ ‖a‖ for every a∈A.
We also put


p =
{
a∈A : p(a)= 0

}
. (4.28)

We define

q(a)= sup
{
ϕ(a,a)1/2; ϕ∈b(A), ϕ(e,e)= 1

}
, a∈A,

D(q)= {a∈A : q(a) <∞}.
(4.29)
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It is clear that, if ϕ ∈ b(A), then also ϕa ∈ b(A), for every a ∈ A0, where ϕx(a,b) =
ϕ(ax,bx) for every a,b ∈A. Thus b(A) is balanced.

The seminorms p and q are compared as follows.

Proposition 4.10. Let (A,A0) be a normed quasi ∗-algebra. Then
(i) p(ax)≤ q(a)p(x), for all a∈D(q), x ∈A0;

(ii) if (A,A0) has a unit, then

p(a)≤ q(a), ∀a∈�(q). (4.30)

Proposition 4.11. Let (A,A0) be a normed quasi ∗-algebra. The following statements
hold:

(i) A0 ⊆D(q) and q(a)≤ ‖a‖0, for all a∈A0;
(ii)

D(q)=
{

a∈A : πϕ bounded,∀ϕ∈b(A), sup
ϕ∈b(A)

∥
∥πϕ(a)

∥
∥ <∞

}

,

q(a)= sup
ϕ∈b(A)

∥
∥πϕ(a)

∥
∥, ∀a∈D(q);

(4.31)

(iii) q is an extended C∗-seminorm on (A,A0);
(iv) p(xa)≤ ‖x‖0p(a), for all a∈A, x ∈A0.

Definition 4.12. A Banach quasi ∗-algebra (A,A0) is called regular if
(i) 	(A) is sufficient, that is, if a∈A and ϕ(a,a)= 0, for every ϕ∈	(A), then a= 0;

(ii) p(a)= ‖a‖, for every a∈A.

The set of bounded elements of a given normed quasi ∗-algebra has been studied in
[45].

Definition 4.13. Let (A,A0) be a Banach quasi∗-algebra. An element a ∈ A is said to be
bounded if there exists γa > 0 such that

max
{‖ax‖,‖xa‖}≤ γa‖x‖, ∀x ∈A0. (4.32)

The set of all bounded elements of A is denoted by Ab.

If a is bounded, then the multiplication operators

x ∈A0 �−→ Lax = ax x ∈A0 �−→ Rax = xa (4.33)

have bounded extensions to A. In Ab we define the norm

‖a‖b =max
{∥∥La

∥
∥,
∥
∥Ra

∥
∥}. (4.34)

Two new multiplications can be defined. Let a∈Ab and b ∈A. Then we put

a�b= Lab. (4.35)
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Similarly, if b ∈Ab and a∈A, we put

a�b = Rba. (4.36)

If a,b ∈ Ab, then both a�b and a�b are well defined, but, in general, a�b �= a�b. But
for a regular Banach quasi ∗-algebra they always coincide and the set Ab is a ∗-algebra.

Theorem 4.14. Let (A,A0) be a regular Banach quasi∗-algebra with unit e. Then D(q)
coincides with the set Ab of all bounded elements of A. Moreover

q(a)= ‖a‖b, ∀a∈Ab. (4.37)

Therefore (Ab,‖ · ‖b) is a C∗-algebra.

In other words, the previous theorem says that the norm of a regular Banach quasi
∗-algebra is always a CQ∗-norm in the sense of Definition 4.3.

On the other hand, by means of the set of bounded elements one can define a notion
of spectrum for elements of a regular Banach quasi ∗-algebra (this notion can actually
be introduced for the larger class of normal Banach quasi ∗-algebras, but we will not
consider this case here).

Let (A,A0) be a regular Banach quasi ∗-algebra with unit e. An element a ∈ A has a
bounded inverse if there exists b ∈Ab such that Rb(a)= Lb(a)= e. If the element b exists,
then it is unique. If a has a bounded inverse we denote it with a−1

b .
The resolvent ρ(a) of a∈A is the set

ρ(a)= {λ∈ C : (a− λe)−1
b exists

}
. (4.38)

The set σ(a)= C \ ρ(a) is called the spectrum of a.
Finally, if a∈A, the nonnegative number

r(a)= sup
λ∈σ(a)

|λ| (4.39)

is called the spectral radius of x.

Proposition 4.15. Let a∈A. Then r(a) <∞ if and only if a∈Ab.

In other words, for regular Banach quasi ∗-algebras, the unbounded C∗-seminorm q

identifies the elements of finite spectral radius. Thus we could think of q as to the smallest
spectral unbounded C∗-seminorm on A.

5. Conclusions

As the reader has certainly realized, the extension of the theory of C∗-seminorms to par-
tial or quasi ∗-algebras requires a certain effort. The lack of an everywhere defined mul-
tiplication, which is in itself a quite unfamiliar feature, brings with it a series of technical
difficulties that it is sometimes impossible to by-pass. There are many differences with the
case of ∗-algebras and many (perhaps still too many!) questions are still unsolved also in
the Banach case, which should be expected to be more and more regular. A fundamental
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question which has still no answer is under which conditions a biweight on a Banach par-
tial ∗-algebra is forced to have continuous orbits with respect to some core. So there is still
a lot of work to be done in this area. We hope that the reading of this paper could draw
the attention of other mathematicians to this field. This was, indeed, the main motivation
when the writing of this paper was undertaken.
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