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We introduce the notion of nonevasive reduction and show that for any monotone poset
map ϕ : P→ P, the simplicial complex Δ(P) NE-reduces to Δ(Q), for any Q ⊇ Fixϕ.

As a corollary, we prove that for any order-preserving map ϕ : P→ P satisfying ϕ(x)≥
x, for any x ∈ P, the simplicial complex Δ(P) collapses to Δ(ϕ(P)). We also obtain a gen-
eralization of Crapo’s closure theorem.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Order complexes, collapsing, and NE-reduction

For a poset P we let Δ(P) denote its nerve: the simplicial complex whose simplices are all
chains of P. For a simplicial complex X we let V(X) denote the set of its vertices.

An elementary collapse in a simplicial complex X is a removal of two open simplices σ
and τ from X , such that dimσ = dimτ + 1, and σ is the only simplex of X , different from
τ itself, which contains the simplex τ in its closure.

When Y is a subcomplex of X , we say that X collapses onto Y if there exists a sequence
of elementary collapses leading from X to Y ; in this case we write X ↘ Y (or, equivalently,
Y ↗ X).

Definition 1.1. (1) A finite nonempty simplicial complex X is called nonevasive if either
X is a point, or, inductively, there exists a vertex v of X , such that both X \ {v} and lkX v
are nonevasive.

(2) For two nonempty simplicial complexes X and Y , write X ↘NE Y (or, equivalently,
Y ↗NE X), if there exists a sequence X = A1 ⊃ A2 ⊃ ··· ⊃ At = Y , such that for all i ∈
{1, . . . , t− 1}, V(Ai)=V(Ai+1)∪{xi}, so that lkAixi is nonevasive.

We recall that the notion of nonevasive simplicial complexes was introduced in [9],
and was initially motivated by the complexity-theoretic considerations. For further con-
nections to topology and more facts on nonevasiveness we refer to [13, 16]. Recently an
interesting connection has been established between discrete Morse theory and evasive-
ness, the standard references are [7, 8].
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Several classes of simplicial complexes are known to be nonevasive. Perhaps the sim-
plest example is provided by the fact that all cones are nonevasive. A more complicated
family of nonevasive simplicial complexes is obtained by taking the order complexes of
the noncomplemented lattices, see [10].

In the situation described in Definition 1.1(2), we say that the simplicial complex X
NE-reduces to its subcomplex Y . The following facts about NE-reduction are useful for
our arguments.

Fact 1. If X1 and X2 are simplicial complexes, such that X1 ↘NE X2, and Y is an arbitrary
simplicial complex, then X1∗Y ↘NE X2∗Y .

Here the symbol ∗ denotes the simplicial join of two simplicial complexes, see [14].
That X1 ∗Y ↘NE X2 ∗Y follows by induction from the facts that if v is any vertex of a
simplicial complexX , then we have lkX∗Y v = (lkX v)∗Y and (X ∗Y) \ {v} = (X \ {v})∗
Y , for any v ∈V(X).

To NE-reduce X1∗Y to X2∗Y , simply take the sequence of vertices x1, . . . ,xt ∈V(X1)
which NE-reduces X1 to X2. We have lkX1∗Y (x1)= (lkX1 (x1))∗Y . In turn, the simplicial
complex (lkX1 (x1))∗Y is nonevasive: this is seen by induction on the number of vertices
of the first factor, with the base given by the fact that all cones are nonevasive. Removing
x1 from X1 ∗Y yields the simplicial complex (X1 \ {x1})∗Y , hence, continuing in this
way, we will NE-reduce X1∗Y all the way to X2∗Y .

Fact 2. The reduction X ↘NE Y implies X ↘ Y , which in turn implies that Y is a strong
deformation retract of X .

2. Monotone poset maps

Next we define a class of maps which are particularly suitable for our purposes.

Definition 2.1. Let P be a poset. An order-preserving map ϕ : P→ P is called a monotone
map, if for any x ∈ P either x ≥ ϕ(x) or x ≤ ϕ(x).

If x ≥ ϕ(x) for all x ∈ P, then ϕ is called a decreasing map, analogously, if x ≤ ϕ(x) for
all x ∈ P, then ϕ is called an increasing map.

We remark here the fact that while a composition of two decreasing maps is again a
decreasing map, and, in the same way, a composition of two increasing maps is again an
increasing map, the composition of two monotone maps is not necessarily a monotone
map.

Example 2.2. Let P be the lattice of all subsets of {1,2}, and define ϕ(S) = S∪{2}, and
γ(T)= T \ {1}, for all S,T ⊆ {1,2}. The composition T ◦ S maps all the subsets to {2}, in
particular it is not a monotone map.

On the other hand, any power of a monotone map is again monotone. Indeed, let ϕ :
P→ P be monotone, let x ∈ P, and say x ≤ ϕ(x). Since ϕ is order-preserving, we conclude
that ϕ(x)≤ ϕ2(x), ϕ2(x)≤ ϕ3(x), and so forth. Hence x ≤ ϕN (x) for arbitrary N .
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The following proposition shows that monotone maps have a canonical decomposi-
tion in terms of increasing and decreasing maps.

Proposition 2.3. Let P be a poset, and let ϕ : P→ P be a monotone map. There exist unique
maps α,β : P→ P, such that

(i) ϕ= α◦β;
(ii) α is an increasing map, whereas β is a decreasing map;

(iii) Fixα∪Fixβ = P.

Proof. Set

α(x) :=
⎧
⎪⎨

⎪⎩

ϕ(x), if ϕ(x) > x,

x, otherwise,
(2.1)

β(x) :=
⎧
⎪⎨

⎪⎩

ϕ(x), if ϕ(x) < x,

x, otherwise.
(2.2)

Clearly, Fixα∪ Fixβ = P. Let us see that ϕ(x) = α(β(x)), for any x ∈ P. This is obvious
if ϕ(x) ≥ x, since then α(β(x)) = α(x) = ϕ(x) by (2.1) and (2.2), respectively. Assume
ϕ(x) < x, then β(x)= ϕ(x), hence α(β(x))= α(ϕ(x)). Since ϕ is order-preserving, ϕ(x) < x
implies ϕ(ϕ(x)) ≤ ϕ(x). Thus (2.1) gives ϕ(x) ∈ Fixα, and we conclude that α(β(x)) =
α(ϕ(x))= ϕ(x).

To see that α is an increasing map, we just need to see that it is order-preserving. Since
α either fixes an element or maps it to a larger one, the only situation which needs to be
considered is when x, y ∈ P, x < y, and α(x)= ϕ(x). However, under these conditions we
have α(y)≥ ϕ(y)≥ ϕ(x)= α(x), and so α is order-preserving. That β is a decreasing map
can be seen analogously. Finally, the uniqueness follows from the fact that each x ∈ P
must be fixed by either α or β, and the value ϕ(x) determines which one will fix x. �

3. The main theorem and implications

Prior to this work, it has been known that a monotone map ϕ : P→ P induces a homotopy
equivalence between Δ(P) and Δ(ϕ(P)), see [4, Corollary 10.17]. It was also proved in
[4] that if the map ϕ satisfies the additional condition ϕ2 = ϕ, then ϕ induces a strong
deformation retraction from Δ(P) to Δ(ϕ(P)).

The latter result was strengthened in [11, Theorem 2.1], where it was shown that when-
ever ϕ is an ascending (or descending) closure operator, Δ(P) collapses onto Δ(ϕ(P)).
There this fact was used to analyze the effect of the folding operation on the correspond-
ing Hom complexes, see also [1–3, 12].

The next theorem strengthens and generalizes the results from [4, 11].

Theorem 3.1. Let P be a poset, and let ϕ : P → P be a monotone map. Assume P ⊇ Q ⊇
Fixϕ, P \Q is finite, and, for every x ∈ P \Q, P<x ∪ P>x is finite, then Δ(P) ↘NE Δ(Q), in
particular, Δ(P) collapses onto Δ(Q).
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Remarks 3.2. (1) Note that when P is finite, the conditions of the Theorem 3.1 simply
reduce to: P ⊇Q ⊇ Fixϕ.

(2) Under conditions of Theorem 3.1, the simplicial complex Δ(P) collapses onto the
simplicial complex Δ(Q), in particular, the complexes Δ(P) and Δ(Q) have the same sim-
ple homotopy type, see [5].

(3) Under conditions of Theorem 3.1, the topological space Δ(Q) is a strong deforma-
tion retract of the topological space Δ(P).

(4) Any posetQ satisfying P ⊇Q ⊇ ϕ(P) will also satisfy P ⊇Q ⊇ Fixϕ, hence Theorem
3.1 will apply. In particular, for finite P, we have the following corollary.

Corollary 3.3. For any poset P, and for any monotone map ϕ : P→ P, satisfying conditions
of Theorem 3.1, Δ(P)↘NE Δ(ϕ(P)).

It is easy to prove Theorem 3.1, once the following auxiliary result is established.

Proposition 3.4. Let P be a poset, and let ϕ : P → P be a monotone map. Assume x ∈
P, such that ϕ(x) �= x, and P<x ∪ P>x is finite, then Δ(P<x)∗Δ(P>x) is nonevasive. More
precisely, if ϕ(x) < x, then Δ(P<x) is nonevasive, and if ϕ(x) > x, then Δ(P>x) is nonevasive.

Proof. Since the expression Δ(P<x)∗Δ(P>x) is symmetric with respect to inverting the
partial order of P, it is enough, without loss of generality, to only consider the case ϕ(x) <
x. Let us show that in this case Δ(P<x) is nonevasive. We proceed by induction on |P<x|.
If |P<x| = 1, then the statement is clear, so assume |P<x| ≥ 2.

Let ψ : P<x → P<x denote the restriction of ϕ. It is easy to see that ψ is a monotone map
of P<x. To verify that Δ(P<x) ↘NE Δ(P≤ϕ(x)), order the elements of P<x \ P≤ϕ(x) following
an arbitrary linear extension in the decreasing order, say P<x \ P≤ϕ(x) = {a1, . . . ,at}, and
ai �< aj , for i < j. By the choice of the order of ai’s, we have P<ai = Pi<ai , where Pi = P \
{a1, . . . ,ai−1}. Therefore, by the induction assumption, Δ(P<ai) is nonevasive for all 1 ≤
i≤ t, and we have

Δ
(
P<x
)= Δ

(
P1
<x

)↘NE Δ
(
P2
<x

)↘NE ··· ↘NE Δ
(
Pt+1
<x

)= Δ
(
P≤ϕ(x)

)
. (3.1)

On the other hand, Δ(P≤ϕ(x)) is a cone, hence it is nonevasive, and therefore Δ(P<x) is
nonevasive as well. It follows that Δ(P<x)∗Δ(P>x) is nonevasive. �

Proof of Theorem 3.1. The proof is by induction on |P \Q|. The statement is trivial when
|P \Q| = 0, so assume |P \Q| ≥ 1.

To start with, we replace the monotone map ϕ with a monotone map γ satisfying
γ(P)⊆Q and Fixγ = Fixϕ. To achieve that objective we can set γ := ϕN , where N = |P \
Q|. With this choice of γ, the inclusion γ(P)⊆Q follows from the assumption that Fixϕ⊆
Q, since Fixγ = γ(P).

Take arbitrary x ∈ P \Q. Since x /∈ γ(P), we have x �= γ(x), hence by Proposition 3.4
we know that lkΔ(P) x = Δ(P<x)∗Δ(P>x) is nonevasive. This means Δ(P)↘NE Δ(P \ {x}).

Let ψ : P \ {x} → P \ {x} be the restriction of γ. Clearly, ψ is a monotone map, and
Fixψ = Fixγ. This implies that Fixψ ⊆Q, hence, by the induction hypothesis Δ(P \ {x})
↘NE Δ(Q). Summarizing, we conclude that Δ(P)↘NE Δ(Q). �
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On the enumerative side, we obtain the following generalization of Crapo’s closure
theorem from 1968, see [6, Theorem 1].

Corollary 3.5. Let P be a finite poset with 0̂ and 1̂, and let ϕ : P→ P be an increasing map.
Assume P ⊇Q ⊇ Fixϕ, and Q∩ϕ−∞(1̂)= {1̂}. Then,

∑

ϕ∞(z)=1̂

μP(0̂,z)=
⎧
⎨

⎩

μQ(0̂, 1̂), if 0̂∈ Fixϕ,

0, otherwise.
(3.2)

Here ϕ∞ is the stabilization of ϕ, say ϕ∞ := ϕ|P|, so ϕ−∞(1̂) denotes the set of all elements of
P which map to 1̂ after a sufficiently high iteration of ϕ.

Before we give the proof, recall the following convention: whenever P is a poset with 0̂
and 1̂, we let P̄ denote P \ {0̂, 1̂}.
Proof of Corollary 3.5. Assume first that 0̂∈ Fixϕ, hence 0̂, 1̂∈Q, and, since ϕ is increas-
ing, ϕ−∞(0̂)= {0̂}. Set R := (P \ϕ−∞(1̂))∪{0̂, 1̂}, that is, R is the set of all elements of P̄
which will not map to 1̂, no matter how high iteration of ϕ we take, with the maximal
and the minimal elements attached. Let ψ : R̄→ R̄ be the restriction of ϕ. Clearly, ψ is a
monotone map, and Fixψ = Fixϕ \ {0̂, 1̂}.

Since R̄ ⊇ Q̄ ⊇ Fixψ, we conclude that Δ(R̄) collapses onto Δ(Q̄); in particular the
simplicial complexes Δ(R̄) and Δ(Q̄) have the same Euler characteristic. By Ph. Hall’s
theorem, see [15], for any poset P with a maximal element and a minimal element we
have χ(Δ(P̄))= μP(0̂, 1̂), therefore here we conclude that μQ(0̂, 1̂)= μR(0̂, 1̂).

On the other hand, by definition of the Möbius function, we have the equality
∑

z∈P μP(0̂,z)= 0, which can be rewritten as
∑

z∈ϕ−∞(1̂)μP(0̂,z)=−∑z /∈ϕ−∞(1̂)μP(0̂,z). Sim-

ilarly, μR(0̂, 1̂)=−∑x∈R\{1̂}(0̂,x). Since the condition z /∈ ϕ−∞(1̂) is equivalent to the con-

dition z ∈ R \ {1̂}, and R<x = P<x, for any x ∈ R, we conclude that μQ(0̂, 1̂) = μR(0̂, 1̂) =
∑

z∈ϕ−∞(1̂)μP(0̂,z).

Consider now the case 0̂ /∈ Fixϕ. If ϕ∞(0̂) = 1̂, then the statement follows from the
definition of the Möbius function, since then ϕ∞(z)= 1̂ for all z ∈ P. Assume ϕ∞(0̂) �= 1̂.
We can define a new map ψ by changing the value of ϕ in one element:

ψ(x)=
⎧
⎨

⎩

0̂, if x = 0̂,

ϕ(x), otherwise.
(3.3)

Clearly, ψ is a monotone function, Fixψ = Fixϕ∪{0̂}, and ϕ−∞(1̂)= ψ−∞(1̂). Hence, the
first part of the proof applies, and we conclude that

∑

ψ∞(z)=1̂

μP(0̂,z)=
∑

ϕ∞(z)=1̂

μP(0̂,z)= μQ(0̂, 1̂), (3.4)
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Figure 4.1. A house with two rooms.

for anyQ such that P ⊇Q ⊇ Fixψ, and such thatQ∩ϕ−∞(1̂)= {1̂}. ChooseQ = (P≥ϕ(0̂) \
ϕ−∞(1̂))∪{0̂, 1̂}. Since ϕ(0̂) /∈ ϕ−∞(1̂), the poset Q has only one atom ϕ(0̂), thus we have
μQ(0̂, 1̂)= 0, and the proof is complete. �

4. NE-reduction and collapses

The NE-reduction can be used to define an interesting equivalence relation on the set of
all simplicial complexes.

Definition 4.1. Let X and Y be simplicial complexes. Recursively, it is said that X �NE Y
if X ↘NE Y , or Y ↗NE X , or if there exists a simplicial complex Z, such that X �NE Z and
Y �NE Z.

Clearly, if X is nonevasive, then X �NE pt, but is the opposite true? The answer to that
is “no.” To see this, consider the standard example of a space which is contractible, but
not collapsible: let H be the so-called house with two rooms, see Figure 4.1.

The spaceH is not collapsible, hence nonevasive, see [5] for an argument. On the other
hand, we leave it to the reader to see that it is possible to triangulate the filled cylinder C
given by the equations |z| ≤ 1, x2 + y2 ≤ 1, so that C ↘NE H .

The analogous equivalence relation, where ↘NE and ↗NE are replaced by ↘ and ↗,
is called the simple homotopy equivalence; its equivalence classes are called simple ho-
motopy types. The celebrated theorem of J.H.C. Whitehead states that the simplicial
complexes with the simple homotopy type of a point are precisely those which are con-
tractible, see [5]. Therefore, the class of the simplicial complexes which are NE-equivalent
to a point relates to nonevasiveness in the same way as contractibility refers to collapsi-
bility. Clearly, this means that this class should constitute an interesting object of study.
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We conjecture that the NE-equivalence is much finer than the Whitehead’s simple
homotopy type. We make two conjectures: a weak conjecture and a strong one.

Conjecture 4.2. There exist finite simplicial complexes X and Y having the same simple
homotopy type, such that X ��NE Y .

Conjecture 4.3. There exists an infinite family of finite simplicial complexes {Xi}∞i=1, which
all have the same simple homotopy type, such that Xi ��NE Xj , for all i �= j.

Again, in the simple homotopy setting, the phenomenon of the Conjectures 4.2 and 4.3
is governed by an algebraic invariant called the Whitehead torsion, namely: a homotopy
equivalence between finite connected CW-complexes is simple if and only if its White-
head torsion is trivial, see [5, (22.2)]. It is enticing to hope for an existence of some similar
invariant in our NE-setting.

Finally, let us remark that whenever we have simplicial complexesX �NE Y , there exists
a simplicial complex Z, such that X ↗NE Z ↘NE Y . Indeed, assume A ↘NE B ↗NE C, for
some simplicial complexes A, B, and C. Let S= V(A) \V(B), and T = V(C) \V(B). Let
D be the simplicial complex obtained by attaching to A the vertices from T in the same
way as they would be attached to B ⊆ A. Clearly, since the links of the vertices from S
did not change, they can still be removed in the same fashion as before, and therefore we
have A ↗NE D ↘NE C. Repeating this operation several times and using the fact that the
reductions ↗NE (as well as ↘NE) compose, we prove the claim.
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