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We study the behavior of two maps in an effort to better understand the stability of ω-
limit sets ω(x, f ) as we perturb either x or f , or both. The first map is the set-valued
function Λ taking f in C(I ,I) to its collection of ω-limit points Λ( f ) = ⋃x∈I ω(x, f ),
and the second is the map Ω taking f in C(I ,I) to its collection of ω-limit sets Ω( f )=
{ω(x, f ) : x ∈ I}. We characterize those functions f in C(I ,I) at which each of our maps
Λ and Ω is continuous, and then go on to show that both Λ and Ω are continuous on a
residual subset of C(I ,I). We then investigate the relationship between the continuity of
Λ and Ω at some function f in C(I ,I) with the chaotic nature of that function.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

We begin with a brief historical overview in an effort to place this paper’s results in con-
text. Let f be a continuous self-map of the unit interval I = [0,1], and take as our start-
ing point the iterates of this map. In particular, we begin by considering the trajectories
generated by our function f ∈ C(I ,I) for particular initial conditions x in I , and let
τ(x, f ) = { f k(x)}∞k=0 = {x, f (x), f ( f (x)), . . . , f n(x), . . .} be the trajectory of x ∈ I gener-
ated by f . Central to the study of dynamical and chaotic systems is the desire to under-
stand how trajectories τ(x, f ) = { f k(x)}∞k=0 are affected by slight changes in the initial
condition x. In order to somewhat simplify this study, one oftentimes considers the ω-
limit set generated by x rather than the trajectory. We take ω(x, f )—the ω-limit set gen-
erated by x—to be the collection of subsequential limit points of the trajectory τ(x, f ).
Whenever f is a continuous self-map of a compact interval, the ω-limit set ω(x, f ) enjoys
several nice properties. In particular, ω(x, f ) is always nonempty, closed, and strongly in-
variant under the generating function f so that f (ω(x, f ))= ω(x, f ). Nonetheless, as [1]
shows, ω-limit sets and the trajectories that give rise to them can be wildly complicated
(see Theorem 2.2). One thread found in the literature, then, is to investigate when and
how these complicated ω-limit sets can be approximated by simpler structures. If we let
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2 Continuity of ω-limit sets and ω-limit points

Λ( f )=⋃x∈ f ω(x, f ) represent the closed set of ω-limit points of f , one natural question

to consider is what conditions on f insure that P( f )=Λ( f ), where P( f ) is the collection
of the periodic points of f . Our first theorem is from [13].

Theorem 1.1. If f ∈ C(I ,I) is piecewise monotonic, then P( f )=Λ( f ).

Examples constructed in [10, 18], however, show that P( f ) �= Λ( f ) is possible when
we restrict our attention to either the class of Lipschitz or continuously differentiable
functions.

We find another approach in [9] where Coven and D’Aniello study the relationship
between the sets P( f ) and Λ( f ) and the chaotic nature of the generating function f ∈
C(I ,I).

Theorem 1.2. Let A = { f ∈ C(I ,I) : P( f ) �= Λ( f )}. Then A is dense in C(I ,I) and any
map f in A is Li-Yorke chaotic.

In [3] the relationship between periodic orbits and ω-limit sets is studied directly, and
a very interesting result dealing with wandering intervals and the prevalence of periodic
orbits is established.

Theorem 1.3. If f ∈ C(I ,I) and each wandering interval of f converges to a periodic orbit,
then the family of periodic orbits of f is dense with respect to the Hausdorff metric in the
collection of ω-limit sets of f .

We note that P( f ) = Λ( f ) whenever the family of periodic orbits of f is dense with
respect to the Hausdorff metric in the collection of ω-limit sets.

Another recurring thread in the literature is to investigate the stability of certain struc-
tures when the generating function is perturbed. Consider the following result from [14].

Theorem 1.4. Suppose f ∈ C(I ,I), f has zero topological entropy, P( f ) is nowhere dense,
and any simple system of f has nonempty interior. Then, for any ε > 0, there exist n(ε) a
natural number and δ(ε) > 0 so that the following condition holds: if ‖ f − g‖ < δ(ε), then
for any ω-limit set ω0 of g there exists a 2k-cycle p of g such that k ≤ n(ε) and the Hausdorff

distance between ω and p is less than ε.

What this theorem tells us is that every ω-limit set of a function g can be ε-approx-
imated in the Hausdorff metric space by one of its 2k-cycles whenever g is sufficiently
close to a particularly well-behaved function f . Recalling Theorem 1.3, it is worth not-
ing that if f ∈ C(I ,I), f has zero topological entropy, and any simple system of f has
nonempty interior, then the 2k-cycles of f are dense with respect to the Hausdorff metric
in the collection of ω-limit sets of f .

The primary purpose of this paper is to provide complete answers to several stability
queries posed by Bruckner at the Twentieth Summer Symposium in Real Analysis [5].
In particular, how are the set of ω-limit points and the collection of ω-limit sets of a
function affected by slight changes in that function? As Bruckner points out, we also may
want to ask these questions when restricting our attention to particular subsets of C(I ,I),
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such as those functions that are in some way nonchaotic, or those functions that satisfy
a particular smoothness condition. We will see that in answering Bruckner’s queries we
are able to develop insight into, or extend, the previously mentioned results. Here is how
we proceed.

We work in four metric spaces. We use the regular, Euclidean metric d on I =[0,1],
and make occasional use of neighborhoods of closed sets F of the form Bε(F) = {x ∈
I : d(x, y) < ε, y ∈ F}. Within C(I ,I) we use the supremum metric given by ‖ f − g‖ =
sup{| f (x)− g(x)| : x ∈ I}. Our third metric space (K ,H) is composed of the class of
nonempty closed sets K in I endowed with the Hausdorff metric H given by H(E,F) =
inf{δ > 0 : E ⊂ Bδ(F),F ⊂ Bδ(E)}. This space is compact [6]. Our final metric space
(K∗,H∗) consists of the nonempty closed subsets of K . Thus, K ∈ K∗ if K is a nonempty
family of nonempty closed sets in I such that K is closed in K with respect to H . We
endow K∗ with the metric H∗, so that K1 and K2 are close with respect to H∗ if each
member of K1 is close to some member of K2 with respect to H , and vice versa.

Our interest in, and the utility of, the metric spaces (K ,H) and (K∗,H∗) stems at least
in part from the following two theorems from [4, 15], respectively.

Theorem 1.5. For any f in C(I ,I), the set Λ( f ) is closed in I .

Theorem 1.6. For any f in C(I ,I), the set Ω( f ) is closed in (K ,H).

These theorems allow us to formulate earlier stability queries via the maps Λ : (C(I ,I),
‖ · ‖)→ (K ,H) given by f →Λ( f ) and Ω : (C(I ,I),‖ · ‖)→ (K∗,H∗) given by f →Ω( f ).
Specifically, Bruckner asked how one could characterize those functions f at which each
of the maps Λ : (C(I ,I),‖ · ‖)→ (K ,H) and Ω : (C(I ,I),‖ · ‖)→ (K∗,H∗) is continuous.
In order to make these ideas explicit, three examples are developed in some detail. These
examples will provide some insight into the behavior of the functions Λ and Ω as well as
focus efforts in the ensuing sections.

Example 1.7. Consider fn(x) = x(n−1)/n. As n goes to infinity, we see that fn goes to the
identity function f . Thus, Λ( f )= [0,1]. Since Λ( fn)= {0,1} for all n, we see that Λ is not
continuous at f , so that Ω must necessarily be discontinuous there, too. While this does
rule out the best possible result—that Ω, and therefore Λ, are continuous—our example
does not rule out a natural generalization of the theorem found in [4].

Recall that our four authors in [4] show that if {ωn} ⊆Ω( f ), and ωn → ω in K , then
ω ∈Ω( f ). In Example 1.7, {0} ∈Ω( fn) for every n, and {0} ∈Ω( f ). Perhaps, then, the
following is true: if ωn ∈Ω( fn) for each n, fn → f and ωn→ L, then L∈Ω( f ). This con-
jecture simplifies to the result of [4] if we let fn = f for all n.

For our next example, we need the following definition. Let M be a nowhere dense
compact set in I , with A= {a0,a1, . . . ,ak−1} �=∅ a set of limit points of M. Suppose there
is a system {Mi

n}∞n=0, i= 0,1, . . . ,k− 1, of nonempty pairwise disjoint compact subsets of
M such that M \⋃i,nM

i
n = A and limn→∞Mi

n = ai for each i. Let f : M →M be a con-
tinuous map with A a k-cycle of f such that f (ai) = ai−1 for i > 0 and f (a0) = ak−1. If
f (Mi

n)=Mi−1
n for i > 0 and any n, f (M0

n)=Mk−1
n−1 for n > 0, and f (M0

0)= ak−1, then M is
called a homoclinic set of order k with respect to f .
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Example 1.8. We will construct a sequence of homoclinic ω -limit sets ωn for functions
fn in C(I ,I) so that ωn → L, fn → f , yet L is not contained in Λ( f ). This negates our
conjectured generalization of the result from [4].

We begin by constructing our ω-limit sets ωn. For each portion Mi
n, we take a scaled

copy of the middle-third Cantor set with the indicated convex closure.

For ω1, let a0 = 1/2 and convM0
n = [1/2 + 1/22+n,1/2 + 1/22+n + 1/23+n]. Set A0 = a0∪

{⋃∞n=0M
0
n}. Now, let a1 = 0 and convM1

n = [1/22+n,1/22+n + 1/23+n].

For ω2, we begin with the set A0 described above, and take a1 = 1/4 and convM1
n =

[1/4 + 1/23+n,1/4 + 1/23+n + 1/24+n]; let A1 = a1 ∪{
⋃∞

n=0M
1
n}. Now, let a2 = 0 and conv

M2
n = [1/23+n,1/23+n + 1/24+n].
In general, for ωm, we begin with the sets A0,A1, . . . ,Am−2 and take am−1 = 1/2m and

convMm−1
n = [1/2m+1 + 1/2m+2+n,1/2m+1 + 1/2m+2+n + 1/2m+3+n]; let Am−1 = am−1 ∪

{⋃∞n=0M
m−1
n }. Now, let am = 0 and convMm

n = [1/2m+2+n,1/2m+2+n + 1/2m+3+n].
We see that each of our sets ωn will be homoclinic of order n+ 1, and the sequence

{ωn} converges in K to the set L= {0}∪{⋃∞n=0An}. How our functions fn : ωn → ωn are
defined is clear from our definition of a homoclinic trajectory as well as the construction
of the sets ωn. Moreover, since each resulting fn is continuous, we can use [8] to extend
fn : ωn → ωn to a function we will also call fn that is in C(I ,I) and has the property that
ωn = ω(x, fn) for some x ∈ I . Since we can take fn | A1 ∪···∪Am = fk | A1∪···∪Am

for all n and k greater than m + 2, and An → 0 as n→∞, we can take our fn so that
f = limn→∞ fn exists, and f (x)= 0 for x ∈ [1/2,1]. Thus, Λ( f )∩ [1/2,1]=∅ as f (0)=
limn→∞ fn(0)= limn→∞ 1/2n.

It is worth pointing out that not only is L not anω-limit set of f , but we lose a consider-
able portion of our ω-limit points as well. For each n,A0 ⊆ ωn ⊆Λ( fn) with A0 ⊆ [1/2,1],
yet Λ( f )∩ [1/2,1]=∅.

Example 1.9 [5]. Let f (x)= x on I , and for ε > 0, choose 1/n < ε. An appropriate polyg-
onal function fn that possesses the orbit 0→ 1/n→ 2/n→ ··· → (n− 1)/n→ 1→ (n−
1/2)/n→ (n− 3/2)/n→ ··· → 1/2/n→ 0 has a periodic orbit that spans I , and the prop-
erty that ‖ f − fn‖ ≤ 1/n. Since Ω( f ) = {{x} : x ∈ I}, it follows that H∗(Ω( fn),Ω( f )) =
1/2 for all n. By choosing a subsequence if necessary, one may assume that limn→∞Ω( fn)
exists, since (K∗,H∗) is compact. Then limn→∞ fn = f , and H∗(limn→∞Ω( fn),Ω( f )) =
1/2. Thus, Ω is discontinuous at the identity function, a function with zero topological
entropy. Unlike Example 1.8, however, in this example we did not lose any ω-limit points
in going from Λ( fn) to Λ( f ), as Λ( f )= [0,1], but we did lose all of our nontrivial ω-limit
sets in the limit.

We should note that in Examples 1.8 and 1.9, we can take the sequence { fn} to be
equicontinuous as well as bounded, so that { fn} has a compact closure in C(I ,I). We
conclude, then, that fn → f ,ωn ∈Ω( fn) and ωn → L do not imply that L is in Ω( f ) even
for compact sequences { fn}. As we see in Section 4, however, whenever fn → f , ωn → L
and ωn ∈Ω( fn) for every n, the limit set L does enjoy some of the properties of an ω-
limit set, even though L may not be an element of Ω( f ) (see Proposition 4.3). Later in
Section 4 we also see that these sets L play a critical role in characterizing those f ∈ C(I ,I)
at which Ω : C(I ,I)→ K∗ is upper semicontinuous (see Theorem 4.4).
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We proceed through several sections. After presenting the definitions and previously
known results needed in the sequel, we begin our analysis in Section 3. There we study
the map Λ : (C(I ,I),‖◦‖)→ (K ,H) given by f →Λ( f ), and characterize those functions
f ∈ C(I ,I) at which Λ is continuous with Theorem 3.1. We show that Λ is continuous
on a residual subset of C(I ,I) with Proposition 3.5 and Theorem 3.6. Section 4 is dedi-
cated to the study of the map Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) given by f →Ω( f ). Theo-
rem 4.8 characterizes those functions f at which Ω is continuous when we restrict the
domain to the set E = { f ∈ C(I ,I) : f has zero topological entropy}, and Theorem 4.7
characterizes those functions at which Ω is continuous without any domain restrictions.
Section 4 concludes with Propositions 4.11 and 4.12 which establish the continuity of
Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) on a residual subset of C(I ,I). Section 5 addresses the re-
lationship between the chaotic nature of a function and the behavior of Λ and Ω there.

2. Preliminaries

We make the following definitions in addition to those already presented in Section 1. Let
P( f ) represent those points x ∈ I that are periodic under f , and if x is a periodic point
of period n for which f n(x)− x takes on both positive and negative values in any deleted
neighborhood of x, then x is called a stable periodic point; we let S( f ) represent the stable

periodic points of f . We let �S( f )= {ω : ω is a stable periodic orbit of f in C(I ,I)} be the

collection of stable periodic orbits of f , and set ˜Ω( f ) = {L : L ⊂ [0,1] is nonempty and
closed, f (L)= L, and for any nonempty proper closed F ⊂ L one has F ∩ f (L−F) �= ∅}.
Now, let ε > 0 be given, and take x and y to be any points in [0,1]. An ε-chain from
x to y with respect to a function f is a finite set of points {x0,x1, . . . ,xn} in [0,1] with
x = x0, y = xn and | f (xk−1)− xk| < ε for k = 0,1, . . . ,n− 1. We call x a chain recurrent
point of f if there is an ε-chain from x to itself for any ε > 0, and write x ∈ CR( f ). We
note that for every f in C(I ,I), S( f ) ⊆ P( f ) ⊆ Λ( f ) ⊆ CR( f ). Central to the ensuing
study of the maps Λ : (C(I ,I),‖ ◦ ‖)→ (K ,H) and Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) is the
notion of semicontinuity. Consider the set-valued function F : (C(I ,I),‖ ◦ ‖)→ (K ,H)
with f ∈ C(I ,I). We say that F is upper semicontinuous at f if for any ε > 0 there exists
δ > 0 so that F(g)⊂ Bε(F( f )) whenever ‖ f − g‖ < δ. Similarly, F is lower semicontinuous
at f if for any ε > 0 there exists δ > 0 so that F( f )⊂ Bε(F(g)) whenever ‖ f − g‖ < δ.

In part of the sequel we will restrict our attention to a closed subset E of C(I ,I) com-
posed of those functions f having zero topological entropy, denoted by h( f ) = 0. The
reader is referred to [11, Theorem A] for an extensive list of equivalent formulations of
topological entropy zero. For our purposes, it suffices to note that every periodic orbit
of a continuous function with zero topological entropy has cardinality of a power of two
[12]. The following theorem, due to Smı́tal [16], sheds considerable light on the structure
of infinite ω-limit sets for functions with zero topological entropy.

Theorem 2.1. Ifω is an infiniteω-limit set of f ∈ C(I ,I) possessing zero topological entropy,
then there exists a sequence of closed intervals {Jk}∞k=1 in [0,1] such that

(1) for each k, { f i(Jk)}2k
i=1 are pairwise disjoint, and Jk = f 2k (Jk);

(2) for each k, Jk+1∪ f 2k (Jk+1)⊂ Jk;
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(3) for each k,ω ⊂⋃2k

i=1 f
i(Jk);

(4) for each k and i,ω∩ f i(Jk) �= ∅.

Let J be an interval in I so that J , f (J), . . . , f n−1(J) are pairwise disjoint, and f n(J)= J .
We call J a periodic interval, and refer to { f i(J)}n−1

i=1 = orb J as a cycle of intervals. Now, take
J0 ⊃ J1 ⊃ J2 ⊃ ··· to be periodic intervals with periods m0,m1,m2, . . . , so that mi must
divide mi+1 for any i. If mi →∞, then the intervals {Ji}∞1=0 generate a solenoidal system
of f , and any invariant closed set S⊂ L=⋂i≥0 orb Ji is called a solenoidal set of f . From
Smı́tal’s theorem one sees that every map f with zero topological entropy is solenoidal
on each of its infinite ω-limit sets, with Jk having period 2k for every k. When the period
of Jk is 2k for every interval Jk, we refer to the solenoidal system as a simple system.

Now, let us suppose that f has a cycle of intervals M = J ∪ f (J)∪···∪ f n−1(J), and
consider the set {x ∈M : for any relative neighborhood U of x in M we have orbU =M}.
This closed set M is invariant, and we refer to M as a basic set of f , provided that it is
infinite. A fundamental structure associated with both positive topological entropy and
basic sets is a horseshoe. If f ∈ C(I ,I) has positive topological entropy, then there exist
intervals K and L in I having at most one point in common such that K ∪L⊂ f m(K)∩
f m(L), for some natural number m. This horseshoe structure gives rise to a set F ⊂ I
such that f (F) = F and f m | F is semiconjugate to the shift operator on two symbols.
Speaking loosely, the horseshoe structure shows us that there is a considerable amount of
expansion that takes place within basic sets that is not present in solenoidal systems.

The following theorem characterizes ω-limit sets for continuous functions [1].

Theorem 2.2. Let F ⊆ I be a nonempty closed set. Then F is an ω-limit set for some
f ∈ C(I ,I) if and only if F is either nowhere dense, or F is the union of finitely many nonde-
generate closed intervals.

3. Continuity of Λ : (C(I ,I),‖◦‖)→ (K ,H)

The main result of this section, Theorem 3.1, characterizes those functions f ∈ C(I ,I) at
which the map Λ : (C(I ,I),‖◦‖)→ (K ,H) is continuous.

Theorem 3.1. Λ is continuous at f if and only if S( f )= CR( f ).

This result follows from Lemmas 3.3 and 3.4, as Lemma 3.3 characterizes those contin-
uous functions at which Λ is upper semicontinuous, and Lemma 3.4 characterizes those
continuous functions at which Λ is lower semicontinuous. In the proof of Lemma 3.3, it
is helpful to recall the following result from [2].

Lemma 3.2. If x ∈ CR( f ), then any open neighborhood of f in C(I ,I) contains a function
g for which x ∈ P(g).

Lemma 3.3. Let f ∈ C(I ,I). Then for any ε > 0 there exists δ > 0 so that Λ(g)⊂ Bε(Λ( f ))
whenever ‖ f − g‖ < δ if and only if Λ( f )= CR( f ).

Proof. Suppose Λ( f )= CR( f ). Since CR : (C(I ,I),‖ ◦ ‖)→ (K ,H) given by g �→ CR(g) is
upper semicontinuous, for any ε > 0 there is a δ > 0 so that CR(g)⊂ Bε(CR( f )) whenever
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‖ f − g‖ < δ [2]. By hypothesis, we have that Λ( f ) = CR( f ), so that Λ(g) ⊂ CR(g) ⊂
Bε(Λ( f )), and our conclusion follows.

Now, let us suppose that x ∈ CR( f )−Λ( f ). Then there exists { fn} ⊂ C(I ,I) so that
fn→ f and x ∈ P( fn) for each n, so that x ∈ limΛ( fn)−Λ( f ). �

Lemma 3.4. Let f ∈ C(I ,I). Then for any ε > 0 there exists δ > 0 so that Λ( f )⊂ Bε(Λ(g))
whenever ‖ f − g‖ < δ if and only if S( f )=Λ( f ).

Proof. The sufficiency of our lemma follows immediately from the definition of a stable
periodic orbit, and the compactness of Λ( f ). As for the necessity, let us suppose S( f ) is
a proper subset of Λ( f ), and let J be an open interval in [0,1] for which Λ( f )∩ J �= ∅,
but S( f )∩ J =∅. If P( f )∩ J �= ∅, then there exists K an open interval contained in J for
which P( f )∩K ⊆ Pn( f ), for some natural number n. If P( f )∩ J =∅, set K = J . In either
case, then, there exists { fn} ⊂ C(I ,I) and an open interval K for which K ∩Λ( f ) �= ∅,
but P( fn)∩K =∅ for all natural numbers n, and fn → f . Since we may take fn to be
piecewise monotonic on I , Λ( fn)= P( fn) for each n [2], so that by taking a subsequence
of { fn} if necessary, we have Λ( fn)= P( fn)→ F in (K ,H), with F ∩K =∅. Thus, Λ( f ) is
not contained in limΛ( fn). �

Theorem 3.6 shows that the map Λ : (C(I ,I),‖◦‖)→ (K ,H) is continuous on a resid-
ual subset of C(I ,I). This will follow immediately from Proposition 3.5, where we show
that S(g)= CR(g) for the typical f in C(I ,I).

Proposition 3.5. The set S= { f ∈ C(I ,I) : S( f )= CR( f )} is residual in (C(I ,I),‖◦‖).

Proof. Since S( f )⊆ CR( f ) and CR( f ) is closed in I it follows that S( f )⊆ CR( f ). To show
that H(S( f ),CR( f )) < ε, then, it suffices to show that for any x ∈ CR( f ) there exists y ∈
S( f ) so that | x− y |< ε. Set Sn = { f ∈ C(I ,I) : H(S( f ),CR( f )) < 1/n}. Since S=⋂∞n=1 Sn,
we need to show that Sn is both dense and open in C(I ,I).

We first verify that Sn is a dense subset of C(I ,I). Let f ∈ C(I ,I)− Sn with ε > 0.
Since CR : C(I ,I)→ K is upper semicontinuous, there exists δ > 0 so that ‖ f − g‖ < δ im-
plies CR(g) ⊂ Bε(CR( f )). Take δ > 0 so that CR(g)⊂ B1/2n(CR( f )) whenever ‖ f − g‖ <
δ, and let {x1,x2, . . . ,xm} ⊆ CR( f ) be a 1/2n-net of CR( f ). Now, choose g ∈ C(I ,I) so
that xi ∈ S(g) for 1 ≤ i ≤ m and ‖ f − g‖ < min{δ,ε}. Then CR( f ) ⊂ B1/2n(S(g)) since
{x1,x2, . . . ,xm} ⊆ S(g) and CR(g) ⊂ B1/2n(CR( f )), so that CR(g) ⊂ B1/n(S(g)). We con-
clude that H(S(g),CR(g)) < 1/n.

We now show that Sn is an open subset of C(I ,I). Let f ∈ Sn with n≥ 4. Say H(S( f ),
CR( f )) = α < 1/n, and set γ = 1/n− α. Let δ1 > 0 so that ‖ f − g‖ < δ1 implies CR(g) ⊂
Bγ/n(CR( f )). Take {x1,x2, . . . ,xm} ⊆ S( f ) to be an (α+ γ/n)-net of CR( f ). Now, there ex-
ists δ2 > 0 so that ‖ f − g‖ < δ2 implies S(g)∩Bγ/n(xi) �= ∅ for i= 1,2, . . . ,m. If g ∈ C(I ,I)
for which ‖ f − g‖ < min{δ1,δ2}, then

⋃m
i=1 xi ⊂ Bγ/n(S(g)), CR( f )⊂ Bα+γ/n(

⋃m
i=1 xi) and

CR(g) ⊂ Bγ/n(CR( f )). It follows that CR(g) ⊂ B1/n(S(g)) so that H(S(g),CR(g)) < 1/n,
and g ∈ Sn. �

Theorem 3.6. The map Λ : (C(I ,I),‖◦‖)→ (K ,H) given by f �→Λ( f ) is continuous on a
residual subset of C(I ,I).
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Theorem 1.2 shows that the set A = { f ∈ C(I ,I) : P( f ) �= Λ( f )} is dense in C(I ,I);
Proposition 3.5 shows that A cannot be too large, however, since it is contained in a set
of the first category. Moreover, not only is P( f ) = Λ( f ) for the class of “nice” piecewise
monotonic maps (Theorem 1.1), but P( f )=Λ( f ) also is true for the typical f ∈ C(I ,I).
We note that the typical element of C(I ,I) has positive topological entropy, so while Li-
Yorke chaos is necessary for P( f ) �=Λ( f ), it is not sufficient.

4. Continuity of Ω : (C(I ,I),‖◦‖)→ (K∗,H∗)

As with Λ : (C(I ,I),‖ ◦ ‖)→ (K ,H), semicontinuity is central to our analysis of Ω : (C(I ,
I),‖ ◦ ‖) → (K∗,H∗). Since the upper semicontinuity of Λ : (C(I ,I),‖ ◦ ‖) → (K ,H) is
a necessary condition for the upper semicontinuity of Ω : (C(I ,I),‖ ◦ ‖) → (K∗,H∗),
Lemma 3.3 provides a necessary condition for the upper semicontinuity of Ω.

Proposition 4.1. A necessary condition for the function f to be a point of upper semicon-
tinuity of the map Ω : (C(I ,I),‖◦‖)→ (K∗,H∗) is that Λ( f )= CR( f ).

That the condition of Proposition 4.1 is not sufficient to insure that f ∈ C(I ,I) is a
point of upper semicontinuity of Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) follows from considera-
tion of the hat map h where h(x)= 2x for x ∈ [0,1/2] and h(x)= 2(1− x) for x ∈ (1/2,1].
Since S(h) = CR(h) = [0,1], Λ is continuous at h. Now, let us consider g ∈ C(I ,I) so
that g(0) = ε/2,g(1/2) = 1,g(1) = 0, and g is linear on both (0,1/2) and (1/2,1). Then
‖g − h‖ < ε, yet ω(x,g)∩ [1/2,1] �= ∅ for all x in I . Since {0} = ω(0,h) ∈ Ω(h), we see
that H∗(Ω(g),Ω( f ))≥ 1/2, so that Ω is discontinuous at h.

Turning now to our next results, Proposition 4.2 recalls a couple of basic properties of
ω-limit sets [2], and Proposition 4.3 shows that these properties are shared by closed sets
L whenever fn→ f ,ωn→ L and ωn ∈Ω( fn) for each n.

Proposition 4.2. Suppose f ∈ C(I ,I) with ω ∈Ω( f ). Then
(1) f (ω)= ω,
(2) if F is any nonempty proper closed subset of ω, then F ∩ f (ω \F) �= ∅.

Proposition 4.3. Suppose fn→ f ,ωn→ L and ωn ∈Ω( fn) for each n. Then
(1) f (L)= L,
(2) if F is any nonempty proper closed subset of L, then F ∩ f (L \F) �= ∅.

Proof. We first show that f (L)= L.
f (L) ⊆ L : let y ∈ L, and take {yn} so that yn ∈ ωn for each n, and yn → y. Then

fn(yn)→ f (y), and since fn(yn)∈ ωn, it follows that f (y)∈ L.
L ⊆ f (L): let y ∈ L, and take {yn} so that yn ∈ ωn for each n, and yn → y. Suppose

xn ∈ f −1
n (yn)∩ωn, with {xnk} ⊆ {xn} a convergent subsequence; say xnk → x. Then x ∈ L,

and f (x)= y, as | f (x)− y| ≤ | f (x)− f (xnk )|+ | f (xnk )− fnk (xnk )|+ | fnk (xnk )− y|.
In order to prove the second part of our proposition, suppose, to the contrary, that F

and f (L \F) are disjoint. Then there exist open sets G1,G2 such that L \ F ⊆ G1,F ⊆ G2

and G2 is disjoint from f (G1). Say σ =min{|x− y| : x ∈ G2, y ∈ f (G1)}. Since ωn → L,
there exists M a natural number such that ωn ⊆ G1∪G2 and ωn∩G1 �= ∅,ωn∩G2 �= ∅
for all n≥M. Also, since fn→ f , there is a natural number N so that | fm(x)− f (x)| < σ/2
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for all m≥N and x ∈ I . Let us take n, then, so that n > max{M,N}, and set Fn = ωn∩G2.
Then Fn is a closed, nonempty, proper subset of ωn, and G2 is disjoint from fn(G1). Let
xn ∈ I so that ωn = ω(xn, fn). For all large k, f kn (xn) belongs to either G1 or G2, and it
belongs to each of them infinitely often. Thus there is an infinite sequence k1 < k2 < k3 <

··· so that f kin (xn)∈G1, and f ki+1
n (xn)∈G2. If y is a limit point of the sequence f kin (xn),

then y ∈G1, and f (y)∈G2, which is a contradiction. �

Proposition 4.3 holds the key to characterizing those functions f ∈ C(I ,I) at which
Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) is upper semicontinuous. Any ω-limit set of a continuous
function f satisfies both parts of the conclusion of Proposition 4.3; however, a function f
will be a point of upper semicontinuity of Ω : (C(I ,I),‖◦‖)→ (K∗,H∗) only when these
conditions characterize its ω-limit sets. This is the content of Theorem 4.4.

Theorem 4.4. The map Ω : (C(I ,I),‖ ◦ ‖) → (K∗,H∗) is upper semicontinuous at the
function f if and only if L∈Ω( f ) whenever L∈ K for which f (L)= L and F ∩ f (L \F) �=
∅ for any nonempty proper closed subset F of L.

Significant progress in proving Theorem 4.4 is made with the development of the fol-
lowing proposition.

Proposition 4.5. Let f ∈ C(I ,I) with L∈ K for which f (L)= L and F ∩ f (L \F) �= ∅ for
any nonempty proper closed subset F of L. For any ε > 0 there exist g ∈ C(I ,I) and ω ∈Ω(g)
so that ‖ f − g‖ < ε and H(ω,L) < ε.

Proof. Let ε > 0. Since f ∈ C(I ,I), f is uniformly continuous on I , so that there exists
δ1 > 0 with the property that | f (x)− f (y)| < ε whenever |x− y| < δ1. Choose δ so that
0 < δ < min{δ1,ε}, and take {x1,x2, . . . ,xn} ⊆ L to be a δ-net for L. It suffices to perturb
f to get a function g ∈ C(I ,I) possessing a periodic attractor ω so that ‖ f − g‖ < ε and
{x1,x2, . . . ,xn} ⊆ ω ⊆⋃n

i=1Bδ(xi), as this implies H(ω,L) < ε. That this is possible follows
from our hypothesis that F ∩ f (L \F) �= ∅ for any nonempty proper closed subset F
contained in L. In particular,

(1) let F = L\Bδ(xi) to see that there exists x ∈ Bδ(xi) such that f (x) ∈ Bδ(xj) for
some j �= i, for any i= 1,2, . . . ,n;

(2) let F = L\⋃ j �=i Bδ(xj) to see that there exists x ∈ Bδ(xj) for some j �= i so that
f (x)∈ Bδ(xi), for any i= 1,2, . . . ,n;

(3) let S⊆ {1,2, . . . ,n} with F = L\⋃i∈S Bδ(xi) to see that there exists x ∈⋃i∈S Bδ(xi)
so that f (x)∈ Bδ(xj) for some j ∈ {1,2, . . . ,n}\S. �

With Proposition 4.5, a proof of Theorem 4.4 follows easily.

Proof of Theorem 4.4. Suppose Ω : (C(I ,I),‖◦‖)→ (K∗,H∗) is upper semicontinuous at
f , and L∈ K for which f (L)= L and F ∩ f (L \F) �= ∅ for any nonempty proper closed
subset F of L. By Proposition 4.5, there exists { fn} ⊆ C(I ,I) with ωn ∈Ω( fn) for any n so
that limn→∞ fn = f and limn→∞ωn = L. Since Ω is upper semicontinuous at f , it follows
that L∈Ω( f ).

Now, suppose that L∈Ω( f ) whenever L∈ K for which f (L)= L and F ∩ f (L \F) �=
∅ for any nonempty proper closed subset F of L. Let { fn} ⊆ C(I ,I) with ωn ∈Ω( fn) for
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any n so that limn→∞ fn = f and limn→∞ωn = L∗. Since f (L∗)= L∗ and F∩ f (L∗ \F) �=∅
for any nonempty proper closed subset F of L∗ by Proposition 4.3, it follows that L∗ ∈
Ω( f ), so that Ω : (C(I ,I),‖◦‖)→ (K∗,H∗) is upper semicontinuous at f . �

The next task is to develop some insight into those functions f in C(I ,I) at which
Ω : (C(I ,I),‖◦‖)→ (K∗,H∗) is lower semicontinuous.

Theorem 4.6. If f ∈ C(I ,I) for which P( f )− S( f ) �= ∅, then Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,
H∗) is not lower semicontinuous at f .

Proof. Let x0 ∈ P( f )− S( f ), say of period n. Since x0 ∈ P( f )− S( f ), for each 0 ≤ i ≤
n− 1 there exists a neighborhood Ni containing xi = f i(x) so that f n(xi)− xi is unisigned
on Ni−{xi}. By taking sufficiently small neighborhoods we may assume that Ni∩Nj =
∅ whenever i �= j. Now, let ε > 0 so that Bε(xi) ⊆ Ni for all i and f (Bε(xi)) � Ni+1 for
0 ≤ i ≤ n− 2 with f (Bε(xn−1)) � N0. We now take δ > 0 so that g(Bε(xi)) � Ni+1, too,
for 0 ≤ i ≤ n− 2 with g(Bε(xn−1)) � N0 whenever ‖ f − g‖ < δ. Fix g ∈ C(I ,I) so that
Pn(g)∩Ni =∅ for 0≤ i≤ n− 1 and ‖ f − g‖ < δ. Should f n(y)≥ y for all y ∈N0−{x0},
it suffices to take g(x)= f (x) + δ/2 for x ∈ Bε(xn−1), g(x)= f (x) for x /∈Nn−1, and extend
g appropriately to the remainder of Nn−1. We show that H(ω(x0, f ),ω(y,g)) > ε for all
y in I . Suppose, to the contrary, that there exists y∗ in I so that H(ω(x0, f ),ω∗) < ε,
where ω∗ = ω( y∗,g). Then ω∗ ⊆ Bε(ω(x0, f )) ⊆⋃n−1

i=0 Ni, and by choosing g as we did
we know that g(ω∗ ∩Ni) = ω∗ ∩Ni+1 for 0 ≤ i ≤ n− 2 with g(ω∗ ∩Nn−1) = ω∗ ∩N0.
Thus, gn(ω∗ ∩Ni)= ω∗ ∩Ni for all i, so that the convex closure conv(ω∗ ∩Ni) contains
a periodic point of period n. This, however, contradicts our earlier choice of g. �

We are now in a position to state and prove a main result of the section. We note
that condition (1) implies the continuity of the map Λ : (C(I ,I),‖◦‖)→ (K ,H) at f and
condition (3) insures the upper semicontinuity of the map Ω : (C(I ,I),‖◦‖)→ (K∗,H∗)
there. Both of these are clearly necessary to the continuity of Ω at f .

Theorem 4.7. Let f ∈ C(I ,I). The map Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) is continuous at f
if and only if

(1) S( f )= CR( f ),
(2) all the periodic points of f are stable,
(3) L ∈ Ω( f ) whenever L ∈ K for which f (L) = L and F ∩ f (L \F) �= ∅ for every

nonempty proper closed subset F of L.

Proof. Suppose the map Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) is continuous at f . It follows im-
mediately from the definition of the map Λ : (C(I ,I),‖◦‖)→ (K ,H) that it, too, must be
continuous there. Moreover, if P( f )− S( f ) �= ∅, then Ω would not be lower semicontin-
uous at f , so that Ω could not be continuous there. Finally, as Ω is continuous at f , Ω
must be upper semicontinuous there, so that (3) holds as it characterizes those functions
at which Ω is upper semicontinuous.

Now, let us suppose that conditions (1) through (3) hold for some f ∈ C(I ,I).
Since condition (3) characterizes those continuous functions at which Ω is upper

semicontinuous, we see that Ω is necessarily upper semicontinuous at f . We must show
that Ω is lower semicontinuous at f .
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We begin by showing that any infinite ω-limit set of f is contained in the Hausdorff

closure of its periodic orbits. Let ω∗ be a basic set of f . From Theorem 1.3, any ω-limit
set contained in ω∗ is in the closure of the periodic orbits of f whenever there is no
wandering interval J converging to an infinite ω-limit set in ω∗. To see that this is not
possible, assume that J is such an interval and set A=⋃∞n=0 f

−n(J). Then ω∗ ⊂ A so that
A∩ P( f ) = ∅ and A∩ CR( f ) �= ∅. But this contradicts (1). It remains to show that
any simple set W is contained in the closure of the periodic orbits. Let {Jk} be a nested

family of compact intervals such that Jk has period 2k and W ⊂⋂∞k=1

⋃2k−1
i=0 f i(Jk) = L.

Since every interval U ⊂ L consists of nonperiodic chain recurrent points, condition (1)
implies that L has empty interior so that W can be approximated by periodic orbits, too.

We now show that Ω is lower semicontinuous at f . If ω ∈ Ω( f ) is finite, then ω is
stable by (2), so that for any ε > 0 there exists δ > 0 such that any g ∈ C(I ,I) for which
‖ f − g‖ < δ possesses a periodic orbit α with the property that H(α,ω) < ε. If ω ∈Ω( f )
is infinite, then ω can be Hausdorff approximated by stable periodic orbits; this provides
the lower semicontinuity of Ω at f . �

Now, suppose that f ∈ E and S( f )= CR( f ). Then intL=∅ for any simple system of
f , and P( f ) has nonempty interior, so that such a function f satisfies the hypotheses of
Price and Smı́tal’s Theorem 1.4.

Theorem 4.8. If f ∈ E, then Ω : C(I ,I) → K∗ is continuous at f if and only if S( f ) =
CR( f ).

This theorem from [19] sharpens the result of [14] and indicates that whenever f ∈ E,
the map Ω is continuous at f if and only if the map Λ is continuous there. From the
definition of a solenoidal system, f must possess a wandering interval that converges to
an infinite ω-limit set of f whenever a solenoidal system has nonempty interior. As [3]
indicates, this wandering interval may generate an infinite ω-limit set that is not found
in the Hausdorff closure of the periodic orbits so that Ω : C(I ,I)→ K∗ may not be lower
semicontinuous there. Theorem 4.4 shows that Ω : C(I ,I)→ K∗ is never upper semicon-
tinuous at such an f .

Our next objective is to establish the continuity ofΩ : C(I ,I)→ K∗ on a residual subset

of C(I ,I). Proposition 4.9 shows that ˜Ω( f ) is closed in (K ,H). This allows Ω̃ to play a role
analogous to that of the chain recurrent set in the analysis of Λ : C(I ,I)→ K in Section 3.

Proposition 4.9. If f ∈ C(I ,I), then ˜Ω( f ) is closed in (K ,H).

Proof. Let {Lk}∞k=1 ⊂ K with f ∈ C(I ,I) so that Lk = f (Lk) for any k, and Lk → L in K .
Since f is continuous, it follows that f (Lk)→ f (L) in K , too. We conclude that L= f (L).
Now, suppose that for each k, the following holds for Lk: If F �= ∅ is closed such that F �

Lk, then F ∩ f (Lk −F) �= ∅. We show that for any F �= ∅ closed, F � L, it follows that F ∩
f (L−F) �= ∅. Suppose, to the contrary, that there exists such an F so that F ∩ f (L−F)=
∅; say H(F, f (L−F))= σ . Let δ > 0 so that |x− y| < δ implies | f (x)− f (y)| < σ/4 and
choose n sufficiently large so that H(Ln,L) < γ, Ln∩Bγ(F) �= ∅, and Ln∩Bγ(L−F) �= ∅,

where γ < min(δ,σ/8). Set F̃ = Ln∩Bγ(F). Then F̃ ∩ f (Ln− F̃) = ∅ since F̃ ⊂ Bσ/4(F)

and f (Ln− F̃)⊂ Bσ/4( f (L−F)). �
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Proposition 4.10. The map Ω̃ : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) given by f �→ ˜Ω( f ) is upper
semicontinuous.

Proof. Let fn→ f in (C(I ,I),‖◦‖) with Ln ∈ ˜Ω( fn) for each n, and Ln→ L in (K ,H). We

show that L∈ ˜Ω( f ).

We first show that L= f (L). Since f ∈ C(I ,I), fn→ f uniformly and Ln→ L in (K ,H),
we have H(L, f (L)) = H(L,Ln) + H(Ln, fn(Ln)) + H( fn(Ln), f (Ln)) + H( f (Ln), f (L))
where each of the terms on the right-hand side goes to zero as n→∞. It follows that
L= f (L).

Now, let us suppose to the contrary that there exists an appropriate F for which our
transport property does not hold for F, L− F and f . In particular, F �= ∅ is closed,
F � L and F ∩ f (L−F) =∅. Say H(F, f (L−F)) = σ . Since fn → f uniformly, there is
N1 a natural number so that n > N1 implies | f (x)− fn(x)| < σ/8 for all x ∈ I . Since
f is uniformly continuous on I there is a δ > 0 so that | f (x)− f (y)| < σ/8 whenever
|x− y| < δ. Since Ln → L in (K ,H) there is N2 a natural number so that n > N2 implies
H(Lk,L) < γ, Lk ∩Bγ(F) �= ∅, and Lk ∩Bγ(L− F) �= ∅, where γ < min{δ,σ/8}. Now, set

F̃ = Lk ∩Bγ(F), so that F̃ ⊂ Bσ/4(F). Then fk(Lk − F̃)⊂ Bσ/8( f (Lk − F̃)) and f (Lk − F̃)⊂
Bσ/8( f (L−F)) so that fk(Lk − F̃)⊂ Bσ/4( f (L−F)) whenever k > max{N1,N2}. This im-

plies H(F̃, fk(Lk − F̃)) > σ/2, a contradiction. �

The next result ties the behavior of Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) to the upper semi-
continuity of the map Ω̃ : (C(I ,I),‖◦‖)→ (K∗,H∗).

Proposition 4.11. If f ∈ C(I ,I) for which �S( f ) = ˜Ω( f ) in (K∗,H∗), then Ω : (C(I ,I),
‖◦‖)→ (K∗,H∗) is continuous at f .

Proof. Recall that for any f ∈ C(I ,I), �S( f )⊂Ω( f )⊂ ˜Ω( f ). Let us fix f and ε > 0. Since
Ω̃ : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) is upper semicontinuous at f , there exists δ1 > 0 so that
�Ω(g)⊂ Bε/4( ˜Ω( f )) whenever ‖ f − g‖ < δ1. Since �S( f ) is dense in ˜Ω( f ), there exists δ2 > 0

so that ˜Ω( f )⊂ Bε/4(�S(g)) whenever ‖ f − g‖ < δ2. If ‖ f − g‖ < min{δ1,δ2}, then Ω(g)⊂
�Ω(g) ⊂ Bε/4( ˜Ω( f )) ⊂ Bε/2(�S(g)) ⊂ Bε/2(Ω(g)) so that Ω(g) ⊂ Bε/2(Ω( f )) and Ω( f ) ⊂
˜Ω( f ) ⊂ Bε/4(Ω(g)). It follows that H(Ω(g),Ω( f )) < ε/2, and Ω : (C(I ,I),‖ ◦ ‖) → (K∗,
H∗) is continuous at f . �

It remains to show that �S( f )= ˜Ω( f ) for the typical f in C(I ,I).

Proposition 4.12. The set G= { f ∈ C(I ,I) : �S( f )= ˜Ω( f )} is residual in (C(I ,I),‖◦‖).

Proof. Let Bn = { f ∈ C(I ,I) : H∗(�S( f ), ˜Ω( f )) > 1/n}. It suffices to show that Bn is
nowhere dense for any n.

We first show thatC(I ,I)−Bn is dense. Let f ∈ Bn. Since Ω̃ : (C(I ,I),‖◦‖)→ (K∗,H∗)

is upper semicontinuous at f , there exists δ > 0 so that �Ω(g)⊂ B4n( ˜Ω( f )) whenever ‖ f −
g‖ < δ. Since ˜Ω( f ) is closed in K , there exist {Li}mi=1 ⊂ ˜Ω( f ) so that {Li}mi=1 is a 4n-net
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of ˜Ω( f ). Choose g ∈ C(I ,I) so that ‖ f − g‖ < δ and there is a stable periodic orbit Ki ∈
�S(g) so that H(Ki,Li) < 1/4n for i = 1,2,3, . . . ,m. It follows that �Ω(g) ⊂ B1/4n( ˜Ω( f )) ⊂
B1/2n({Li}mi=1)⊂ B1/2n(�S(g)), so that H∗(�S(g), �Ω(g)) < 1/2n.

We now show that C(I ,I)−Bn is open. Let f ∈ C(I ,I) such that H∗(�S( f ), ˜Ω( f ))= σ <

1/n; say 1/n− σ = ε. Choose δ1 > 0 so that �Ω(g)⊂ Bε/4( ˜Ω( f )) whenever ‖ f − g‖ < δ1, and

take {Li}mi=1 ⊂�S( f ) with the property that H∗({Li}mi=1, ˜Ω( f )) < σ + ε/4. Since {Li}mi=1 ⊂
�S( f ), there exists δ2 > 0 so that ‖ f − g‖ < δ2 implies the existence, for any i= 1,2, . . . ,m, of

Ki ∈�S(g) so that H(Ki,Li) < ε/4. Let g ∈ C(I ,I) with ‖ f − g‖ < min{δ1,δ2}. Then �Ω(g)⊂
Bε/4( ˜Ω( f )) ⊂ Bσ+ε/2({Li}mi=1)⊂ Bσ+3ε/4({Ki}mi=1)⊂ Bσ+3ε/4(�S(g)), so that H∗(�S(g), �Ω(g)) <
σ + 3ε/4 < 1/n. �

From Propositions 4.11 and 4.12 it now follows immediately that Ω : (C(I ,I),‖◦‖)→
(K∗,H∗) is continuous on a residual subset of C(I ,I).

Theorem 4.13. The map Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) given by f �→Ω( f ) is continuous
at a residual set of functions f in C(I ,I).

5. The relationship between stability and chaos

The goal of this section is to determine the relationship between the chaotic nature of
a function f in C(I ,I) and the behavior of the maps Λ : (C(I ,I),‖ ◦ ‖) → (K ,H) and
Ω : (C(I ,I),‖◦‖)→ (K∗,H∗) at that function. We begin by considering functions f that
are not chaotic in the sense of Li-Yorke, and then consider the evolving behavior of Λ :
(C(I ,I),‖ ◦ ‖) → (K ,H) and Ω : (C(I ,I),‖ ◦ ‖) → (K∗,H∗) as we make the function f
progressively more chaotic.

Lemma 5.1. Suppose f ∈ C(I ,I) is not chaotic in the sense of Li-Yorke. Then one of the
following possibilities must hold:

(1) the maps Λ : (C(I ,I),‖ ◦ ‖)→ (K ,H) and Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) are both
continuous at f ;

(2) the maps Λ : (C(I ,I),‖ ◦ ‖)→ (K ,H) and Ω : (C(I ,I),‖ ◦ ‖)→ (K∗,H∗) are both
discontinuous at f .

Proof. If f is not chaotic in the sense of Li-Yorke, then f has zero topological entropy,
so that Λ and Ω are either both continuous or discontinuous together at f . This follows
from Theorems 3.1 and 4.8. �

As the next pair of examples shows, each of the situations described in Lemma 5.1
is possible. Suppose f (x) = 0 for all x ∈ I . Then f is not Li-Yorke chaotic and both Λ
and Ω are continuous there. This follows from the observation that S( f )= CR( f )= {0}.
Now, let f (x) = x for all x ∈ I . Then f is not Li-Yorke chaotic and both Λ and Ω are
discontinuous there. We note that S( f )=∅ whereas CR( f )= [0,1].

We now consider the behavior of Λ : (C(I ,I),‖ ◦ ‖)→ (K ,H) and Ω : (C(I ,I),‖ ◦ ‖)→
(K∗,H∗) at functions f that are chaotic in the sense of Li-Yorke but still have zero topo-
logical entropy.
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Proposition 5.2. Let E = { f ∈ C(I ,I) : f has zero topological entropy}. If f is an element
of E chaotic in the sense of Li-Yorke, then the maps Λ : (C(I ,I),‖ ◦ ‖) → (K ,H) and Ω :
(C(I ,I),‖◦‖)→ (K∗,H∗) are both discontinuous at f .

Proof. Let f ∈ E be chaotic in the sense of Li-Yorke. Since f ∈ E, Λ and Ω will either
be continuous or discontinuous together at f . From [7] we know that f must possess a
simple system L with nonempty interior. Since int(L)∩ S( f ) =∅ and int(L) ⊂ CR( f ),
we see that S( f ) � CR( f ), and our conclusion follows from Theorem 3.10. �

We now apply Proposition 5.2 to functions f for which the map ωf : I → K is not in
the first class of Baire but do still possess zero topological entropy.

Corollary 5.3. Suppose f is an element of E and the map ωf : I → K is not in the first
class of Baire. Then Λ : (C(I ,I),‖◦‖)→ (K ,H) and Ω : (C(I ,I),‖◦‖)→ (K∗,H∗) are both
discontinuous at f .

With Proposition 5.4 we consider the behavior of Λ and Ω at a function f possessing
positive topological entropy.

Proposition 5.4. Let T = { f ∈ C(I ,I) : f has positive topological entropy}, with f ∈ T .
Then one of the following possibilities must hold:

(1) Λ and Ω are both continuous at f ;
(2) Λ is continuous at f , but Ω is discontinuous there;
(3) Λ and Ω are both discontinuous at f .

Proof. This proposition follows readily from Theorems 3.1 and 4.7. �

We provide examples illustrating each of the three possibilities found in Proposi-
tion 5.4. From Theorem 4.13 we know that Ω is continuous on a residual subset of C(I ,I).
Since T is also residual in C(I ,I), it follows that the set { f ∈ T : Ω is continuous at f } is
also residual in C(I ,I). Thus, our first possibility holds on a residual subset of C(I ,I).

As for the second possibility, consider the hat map h(x) given by x �→ 2x for x ∈ [0,1/2]
and x �→ 2(1− x) for x ∈ (1/2,1]. Then S(h) = CR(h) = [0,1], so that Λ : (C(I ,I),‖ ◦
‖) → (K ,H) is continuous at h. Since {0} ∈ P(h)− S(h), by Theorem 4.7 we see that
Ω : (C(I ,I),‖◦‖)→ (K∗,H∗) is discontinuous at f .

We turn our attention to the third possibility. Consider a function f ∈ T possessing
a wandering interval L such that the closure of the orbit of L contains a basic set ω0.
Since S( f )∩ int(orb(L))=∅ and int(orb(L))∩CR( f ) �= ∅, we see that S( f ) � CR( f ),
so that Λ : (C(I ,I),‖ ◦ ‖) → (K ,H), and hence Ω : (C(I ,I),‖ ◦ ‖) → (K∗,H∗), must be
discontinuous there.
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