
INTERNAL LIFSHITZ TAILS FOR DISCRETE
SCHRÖDINGER OPERATORS

HATEM NAJAR

Received 22 March 2005; Revised 14 May 2006; Accepted 6 August 2006

We consider random Schrödinger operators Hω acting on l2(Zd). We adapt the technique
of the periodic approximations used in (2003) for the present model to prove that the
integrated density of states of Hω has a Lifshitz behavior at the edges of internal spectral
gaps if and only if the integrated density of states of a well-chosen periodic operator is
nondegenerate at the same edges. A possible application of the result to get Anderson
localization is given.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

We consider the following random operator acting on l2(Zd):

(
Hωψ

)
(n)= 2dψ(n)−

∑

|m−n|=1

ψ(m) +Wper(n)ψ(n) +Vω(n)ψ(n). (1.1)

Here, for n= (n1, . . . ,nd)∈ Zd, |n| =∑d
i=1 |ni|. It is a second-order finite difference anal-

ogous to the Schrödinger equation. These operators have been of interest for a long time
in mathematics, and also in physics where they appear in the tight binding approxima-
tion of the condensed matter system. The discrete version has the advantage of being less
technical and more transparent than the continuous one.

Let us start by defining the main object of our study: the integrated density of states.
For this, for L∈N let HL

ω be the (2L+ 1)d × (2L+ 1)d matrix obtained by restricting Hω

to sites n = (n1, . . . ,nd) with |ni| ≤ L. Let, for E ∈ R, �(HL
ω ≤ E) denote the number of

eigenvalues of HL
ω smaller than or equal to E. We consider

N(E)= lim
L→∞

1
(L+ 1)d

�
(
HL
ω ≤ E

)
. (1.2)
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2 Internal Lifshitz tails for discrete Schrödinger operators

It is shown that the limit in (1.2) exists almost surely for all E and ω is independent. It is
called the integrated density of states of Hω (IDS) (see [15]). In 1964, Lifshitz [10] argued
using physical interpretations that for the continuous case N should decrease exponen-
tially fast at the bottom of the spectrum. This behavior of the IDS is known as Lifshitz
tails (for more details see [15, part IV.9.A]). This behavior is a characteristic of random
operators; it has been proved mathematically in several papers. See [9, 11–13, 17, 18].

The works already existing in the discrete case are based on the Temple inequality. See
[11] for the internal case in one dimension, [18] for the multidimensional one, and [17]
in the external edges of the spectrum.

For the discrete model, the IDS was also the subject of [8], where the band edge be-
havior of the IDS of random Jacobi matrices in dimension 1 was proved.

Hamiltonians with a potential energy, which is the sum of periodic potential and a
random one, give other examples of models with gaps in the spectrum and for which the
investigation of the internal Lifshitz tails is a natural problem. They occur, for example,
in the study of an electron in crystal with impurities. If the support of the one site dis-
tribution of the purely random part of the potential is contained in a compact set with a
diameter smaller than the size of the gaps of the periodic potential, then the spectrum of
the full operator will still have gaps. For such an operator, the IDS exists and its topolog-
ical support is equal to the almost sure spectrum. Hence it is constant on these gaps and
one could try to determine as before the behavior of the IDS near these gap edges, this is
the subject of the present work. The mathematics are more technical and more difficult
because of the presence of the periodic potential and the only known results on this con-
text concerns external edges or internal edges, with gaps due to gaps on the probability
density as the case in [17, 18].

In the present work we adapt the technique of [9, 12] to the discrete case. It is based on
the uncertainty principle and the periodic approximation which allows us to relax some
technical assumptions.

1.1. The model. We consider Hω as in (1.1), with
(i) Wper(·) is a bounded periodic function such that there exists a vector q0 =

(q1, . . . ,qd)∈ Zd with positive components such that

∀x ∈ Zd, Wper(x+ q′)=Wper ∀q′ ∈ q0 ·Z; (1.3)

(ii) (Vω(n))n∈Zd is a family of nonconstant and positive independent identically dis-
tributed random variables whose common probability measure is noted by Pω0 .
We note the probability space by (Ω,�,P). We assume that Pω0 is compactly
supported.

As defined, Hω is a bounded selfadjoint operator on l2(Zd).
Indeed, if τγ refers to the translation by γ, then (τγ)γ∈qZd is a group of unitary operators

on l2(Zd), and for γ ∈ q0Zd we have

τγHωτ−γ =Hτγω. (1.4)
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Thus, according to [7, 15], we know that there exist Σ, Σpp, Σac and Σsc closed and non-
random sets of R such that Σ is the spectrum of Hω with probability one and such that if
σpp (resp., σac and σsc) designs the pure point spectrum (resp., the absolutely continuous
and singular continuous spectrum) of Hω, then Σpp = σpp, Σac = σac, and Σsc = σsc with
probability one.

It is convenient to study Hω as a perturbation of some background operator. For this,
we set

(
H0ψ

)
(n)= 2dψ(n)−

∑

|m−n|=1

ψ(m) +Wper(n)ψ(n). (1.5)

As Wper(·) is periodic, H0 is a selfadjoint local periodic operator on l2(Zd).
Schrödinger operators with periodic potentials on Rd are the subject of the well-

known Floquet-Bloch theory [16]. Modifications needed to extend the theory to our sit-
uation are brought in [4, Section 2]. We refer the reader to [3, 4] for more details on the
theory of discrete periodic operators. We recall the following result concerning the band
gap structure of the spectrum σ0 of H0.

Theorem 1.1 [4]. The spectrum σ0 of H0 consists of a finite number n0 of intervals (bands),
namely,

σ0 =
⋃

1≤i≤n0−1

[
E2i, E2i+1

]
, E2i ≤ E2i+1, 1≤ i≤ n0− 1. (1.6)

Remark 1.2. (i) There are many discrete models constructed with open spectral gaps
[3, 4]. For instance, letWper = aw, with a is a positive constant andw is the operator of the
multiplication by a real, periodic nonconstant function w(x). As the discrete Laplacian is
a bounded operator, it is clear that H0 has gaps in the spectrum when the constant a is
large enough.

(ii) Even if one supposes thatWper = 0, it is still possible thatHω exhibits spectral gaps,
this is when there are gaps in the support of μ [18].

The periodic operator H0 has an IDS which will be denoted by n. The behavior of n at
a band edge 0 is said to be nondegenerate if

lim
ε→0+

log
∣
∣n(ε)−n(0)

∣
∣

logε
= d

2
. (1.7)

Remark 1.3. It is proven in [9] that (1.7) is equivalent to saying that the Floquet eigen-
values reaching the band edge 0 have only nondegenerate quadratic extrima at that edge.
That is, if θ0 is such that En(θ0) = 0, then θ0 is a nondegenerate quadratic extremum of
En. Here En is a Floquet eigenvalue of H0.

As we study the behavior of the IDS at the internal band edges we will just assume the
existence of gaps in the spectrum of H0 and Hω.

As the operator is bounded, without loss of generality we can assume that 0 is an
internal band edge of H0; the thing that we do in the following.



4 Internal Lifshitz tails for discrete Schrödinger operators

More precisely
(A.1) There exists δ > 0 such that σ0∩ [0,δ)= [0,δ), and for any t ∈ [0,1], σ(H0 + t)∩

(−δ,0]=∅.
We note that if the support of Pω0 is connected, the assumption (A.1) can be

replaced by the following.
(A.1.bis) There exists δ′ > 0 such that Σ∩ [−δ′,0)=∅.

By adding a disorder parameter λ in the equation which defines Hω, that is,

(
Hωψ

)
(n)= 2dψ(n)−

∑

|m−n|=1

ψ(m) +Wper(n)ψ(n) + λVω(n)ψ(n), (1.8)

we can choose λ small enough so that the spectral gap in σ(H0) will not be
closed after the perturbation [4].

(A.2)

limsup
ε→0+

log
∣
∣ logPω0

(
[0,ε]

)∣∣

| logε| = 0. (1.9)

Remark 1.4. Here we allowed the probability distribution to decrease rapidly but at least
not more than exponentially fast at 0. In [11, 17, 18], it is asked that the distribution does
not decrease more than polynomially fast. Precisely it is required that Pω0 ([0,ε]) ≥ Cεl;
for some C and l.

2. Results and discussion

The main result of this note is stated below.

Theorem 2.1. Assume assumptions (A.1) and (A.2) hold, then

(i) liminf
ε→0+

log
∣
∣ log

(
N(ε)−N(0)

)∣∣

logε
≥−d

2
,

(ii) lim
ε→0+

log
∣
∣ log

(
N(ε)−N(0)

)∣∣

logε
=−d

2
⇐⇒ lim

ε→0+

log
(
n(ε)−n(0)

)

logε
= d

2
.

(2.1)

Remark 2.2. (i) The result of Theorem 2.1 is stated for lower band edges. Under adequate
assumptions the corresponding result can be proved for upper band edges.

(ii) We notice that the Lifshitz component is −d/2 only if the IDS of the periodic
operator is nondegenerate. This is the case for the free Schrödinger operators (Wper = 0)
and thus we get already known results in this particular case [11, 17, 18].

2.1. Application. Now we give a possible application of Theorem 2.1. We can use the
result of Theorem 2.1 to get initial estimates to show Anderson localization [4, 21] under
assumptions on the distribution of the random variables weaker than those required in
these references. Indeed if we assume that the probability measure Pω0 has density, then
Hω satisfies a Wegner estimate [4, 21], that is, for some α > 0 and n > 0 for E ∈R for k ≥ 1
and 0 < ε < 1, there exists C(E) > 0 such that one has
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(P2):

P
({

dist
(
σ
(
Hω,Λk

)
, E
)≤ ε})≤ C(E) ·∣∣Λk

∣
∣α · εn. (2.2)

Here Hω,Λk is Hω restricted to the box of size k, Λk.

Theorem 2.3. LetHω defined by (1.1). Assume that (A.1), (A.2), and (P2) hold. There exist
ε0 > 0 such that

(i) Σ∩ [0,ε0]= Σpp∩ [0,ε0],
(ii) an eigenfunction corresponding to an eigenvalue in [0,ε0] decays exponentially.

We will not give the details of the proof of Theorem 2.3 but we notice that the proof
of localization can be based on the use of the method of the multiscale analysis [19].
This method was used for the first time by Fröhlich and Spencer, at the early eighties
[5], and it knew many extensions and simplifications. This analysis makes it possible to
obtain information on the operator in the whole space, starting from information on
the operator restricted to cubes of finished size [21]. The proof of Theorem 2.3 is then
reduced on a simple verification of the so-called initials estimates (P2) and

(P1):

P
({

dist
(
σ
(
Aω,Λkα

)
, E+

)≤ 1
k

})
≤ 1
kp
. (2.3)

To check (P1) one uses the fact that N , the IDS of Hω, decreases exponentially fast at 0
which is the result of Theorem 2.1. This is given in [14, 20]. Indeed, from (P1) we get that
the Green function decreases exponentially fast to define regular boxes.

Remark 2.4. Anderson localization was the subject of many studies. For discrete operators
we mention that the method for proving localization in the multidimensional case is the
fractional moment introduced by Aizenman and Molchanov [1, 6].

3. The proof of Theorem 2.1

To prove Theorem 2.1, we prove lower and upper bounds on N(E)−N(0). The lower
and the upper bounds are proven separately. For the first one is now classic and we just
need the right lower for the probability that Hω,Λ has an eigenvalue in [−ε,ε]. As for the
second it is more technical.

3.1. The lower bound. The lower bound is proved by constructing a large enough num-
ber of orthogonal approximate eigenfunctions of Hω,Λk associated with approximate
eigenvalues in [−ε,ε] for ε < δ (see assumption (A.1)). This will enable us to lower bound
the number of the eigenvalues of Hω,Λ in the interval [0,ε]. By assumption (A.1), there is
a spectral gap below 0 of length at least δ > 0. Thus, for ε < δ′ we have

N(ε)−N(0)=N(ε)−N(−ε). (3.1)

Then, we will lower bound N(ε)−N(−ε). Indeed, for k large, we can show that Hω,Λk

(Hω,Λk is Hω restricted to Λk with Dirichlet boundary conditions) has a large number
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of eigenvalues in [−ε,ε] with a large probability. For this we construct a family of ap-
proximate eigenvectors associated to approximate eigenvalues of Aω,ΛN in [−ε,ε]. These
functions will be constructed from a Floquet eigenvector of H0 associated with 0. Locat-
ing this eigenvector in θ and imposing toVω(n) to be small for n in some well-chosen box
Λkε , for kε fixed below, one obtains an approximate eigenfunction of Hω,ΛN . Locating the
eigenfunction in x in several disjointed places, we get several eigenfunctions two by two
orthogonal. If we denote by N(ε) the number of disjoint boxes Λkε contained in Λk, then
we get

NΛN (ε)−NΛN (−ε)= 1
(2k+ 1)d

E
(
#
{

eigenvalues of Hω,Λk in [−ε,ε]})

≥ N(ε)
(2k+ 1)d

P
{

for any n∈Λkε ∩Zd, Vω(n)∈ (0,ε)
}

= N(ε)
(2k+ 1)d

P
{
Vω(0)∈ (0,ε)

}�(Λkε∩Zd)
.

(3.2)

Here kε = ε−(1/2)s+α with 1/2 > α > 0 small and s < 1 (resp. = 1) if n is degenerate (resp.,
nondegenerate) at 0. Notice as α small one gets that there exists C > 0 such that

N(ε)≥
(
kεs
)d

C
. (3.3)

Taking into account (3.2), (3.3), and assumption (A.2) computing the limit for k to in-
finity, we get

liminf
ε→0+

log
∣
∣ log

(
N(ε)−N(0)

)∣∣

logε
≥−sd

2
. (3.4)

This ends the proof of the lower bound.

3.2. The upper bound. The upper bound is based on the reduction procedure which
consists in decomposing the operatorHω according to various translation-invariants sub-
spaces. The random operators thus obtained are reference operators. They will be used for
the upper bound on the IDS. We prove that for an energy E close to 0, N(E)−N(0) can
be upper bounded by N�0 (E), the IDS of the bounded random operator H0

ω =Π0HωΠ0.
Here Π0 is the spectral projection for H0 on the band starting at 0. So to study the behav-
ior of N(E)−N(0), we investigate the behavior of N�0 (E). Precisely, we use the following
result.

Theorem 3.1. Let Hω be defined by (1.1). Assume that (A.1) and (A.2) hold. There exists
E0 > 0 and C > 1 such that, for 0≤ E ≤ E0,

0≤N(E)−N(0)≤N�0 (C ·E), (3.5)

where N�0 is the IDS of H0
ω =Π0HωΠ0.
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The proof of Theorem 3.1 is based on the use of the technique of periodic approxima-
tions which consists in approaching the density of states of Hω by the density of states of
well-chosen periodic operators.

The periodic approximations. For k ∈N∗. Let Hω,k be the following periodic operator:
(
Hω,kψ

)
(n)= (H0ψ

)
(n) +Vω,k

(
ñ
)
ψ(n). (3.6)

With ñ∈ Zdk = {q ∈ q0Zd; |q| ≤ k} and ñ= n modulo (2k+ 1)q0Zd.
As Hω,k is periodic, the Floquet theory is still valid in this case. The IDS of Hω,k is

denoted by Nω,k. Let dNω,k be the derivative of Nω,k in the distribution sense. As Nω,k

is increasing, dNω,k is a positive measure; it is the density of states of Hω,k. We denote
by dN the density of states of Hω. It is proven [9, 12] that dNω,k converge to dN in the
distribution sense. First we prove an analogous result to Theorem 3.1 for the Floquet
operators. Then, by a simple integration, we get the same result in Theorem 3.1 for the
new periodic operators Hω,k.

We notice that for the upper bound we suppose that the IDS, n is nondegenerate. Now
to prove the upper bound we use Theorem 3.1. Indeed to prove the upper bound, it is
enough to prove the same upper bound on N�0 (defined in Theorem 3.1). To do this, we
show that when n has a nondegenerate behavior at energy E+, then N�0 (and so N) may
be compared to the IDS of some well-chosen, discrete Andreson model (whose behavior
of its IDS is already known). This represents several advantages: first, H0

ω is equivalent to
a random Jacobi matrix acting on L2(T∗)⊗Cn [12]. The second advantage is that while
0 is an interior edge of a gap for Hω, it becomes the bottom of the spectrum for H0

ω.
We prove that when n, the IDS of the periodic operator H0, is nondegenerate at 0, H0

ω is
lower bounded by the usual discrete Schrödinger random operator whose behavior of the
IDS at the edges of the spectral gaps is already known [2, 17, 18]. This lower bound on
the operator immediately yields an upper bound on the density of states. Precisely if n is
nondegenerate at 0, then we get

limsup
ε→0+

log
∣
∣ log

(
N(ε)−N(0)

)∣∣

logε
≤−d

2
. (3.7)

We notice that there exists a constantC > 0 such that the operatorC ·H0
ω is lower bounded

by the same discrete operator as those used in [9, 12].
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