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Let u be a super-biharmonic function, that is, Δ2u≥ 0, on the unit disc D in the complex
plane, satisfying certain conditions. Then it has been shown that u has a representation
analogous to the Poisson-Jensen representation for subharmonic functions on D. In the
same vein, it is shown here that a function u on any Green domain Ω in a Riemannian
manifold satisfying the conditions (−Δ)iu ≥ 0 for 0 ≤ i ≤m has a representation analo-
gous to the Riesz-Martin representation for positive superharmonic functions on Ω.
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1. Introduction

Let u be a locally Lebesgue integrable function defined on the unit disc D in the complex
plane. u is called a super-biharmonic function if Δ2u ≥ 0 in the sense of distributions.
Abkar and Hedenmalm [1] consider a super-biharmonic function u on D, satisfying two
conditions which regulate the growth of u near the boundary ∂D. These conditions are
used to split u into its biharmonic Green potential part and its biharmonic part. Using
this decomposition, they show that u can be represented by three measures, one on D and
two on the boundary ∂D. This comes out as a generalization of the Riesz-Poisson integrals
to the super-biharmonic functions on D. However, an extension of this representation in
the case of the unit ball in Rn, n > 2 (or to the case of Δmu≥ 0 with suitable restrictions
on u in the unit disc itself) seems complicated.

In this paper, we consider a set of two other conditions on a function u satisfyingΔ2u≥
0, namely, u ≥ 0 and Δu ≤ 0. These conditions are more appropriate as a generalization
of the positive superharmonic functions. For, suppose u is a locally Lebesgue integrable
function on a bounded domain Ω in Rn, n ≥ 2, such that u ≥ 0, Δu ≤ 0, and Δ2u ≥ 0.
Then u can be represented by three positive measures, one on Ω and two on the Martin
boundary of Ω. Interestingly, the method of proof is general enough to be used in the
case of (−Δ)iu≥ 0, 0≤ i≤m, for any integer m≥ 2, and any domain Ω in Rn on which
the Green function is defined (in particular on any bounded domain Ω in Rn, n ≥ 2);
actually, it goes through in the case of a Riemannian manifold also. Accordingly, we prove
this result in the context of a Riemannian manifold.
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2. Preliminaries

Let R be an oriented Riemannian manifold of dimension ≥ 2, with local coordinates x =
(x1, . . . ,xn) and a C∞-metric tensor gi j such that gi jxix j is positive definite. Denote the

volume element by dx =
√

det(gi j)dx1, . . . ,dxn. Let Δ be the Laplace-Beltrami operator

which, acting on a C2-function f , gives Δ f = div grad f . However, we will assume that Δ
is taken in the sense of distributions. Thus, a locally dx-integrable function f on an open
set ω in R is said to be superharmonic (resp., harmonic) if Δ f ≤ 0 (resp., Δ f = 0) on ω;
a positive superharmonic function u on ω is called a potential if and only if the greatest
harmonic minorant of u on ω is 0, (i.e., if h is harmonic on ω and h≤ u, then h should
be negative).

For each open set ω in R, let H(ω) denote the class of C2-functions u on ω such that
Δu = 0. If ω is a domain, H(ω) has the Harnack property, namely, if hn is an increas-
ing sequence in H(ω) and if h = suphn, then h ∈H(ω) or h ≡∞. We can also solve the
Dirichlet problem on any parametric ball. This means that the set of harmonic functions
H(ω) satisfies the axioms 1, 2, 3 of Brelot [7, pages 13-14]. Consequently, we can use the
results and the terminology of the Brelot axiomatic potential theory in the context of the
Riemannian manifold R.

A domain Ω in R is called a Green domain if the Green function G(x, y) is well defined
on Ω. On a Green domain Ω in R, we can construct the Martin compactification Ω of
Ω as in [8, pages 111–115]. Some of the important points to remember here are the
following: fix a point y0 in a Green domain Ω. If G(x, y) is the Green function on Ω, write
ky(x) = k(x, y) = G(x, y)/G(x, y0) with the convention k(y0, y0) = 1. Then there exists
only one (metrizable) compactification Ω up to homeomorphism such that

(i) Ω is dense open in the compact space Ω;
(ii) ky(x), y ∈Ω, extends as a continuous function of x on Ω;

(iii) the family of these extended continuous functions on Ω separates the points x ∈
Δ=Ω\Ω.

Ω is called the Martin compactification of Ω and Δ=Ω\Ω is called the Martin bound-
ary. A positive harmonic function u > 0 is called minimal if and only if for any harmonic
function v, 0≤ v ≤ u, we should have v = αu for a constant α, 0≤ α≤ 1. It can be proved
that every minimal harmonic function u(y) on Ω is of the form u(y0)k(x, y) for some
x ∈ Δ, and the points x ∈ Δ corresponding to these minimal harmonic functions are
called the minimal points of Δ, and the set of minimal points of Δ is denoted by Δ1,
called the minimal boundary.

With these remarks, we can state the Martin representation theorem: for any harmonic
function u≥ 0 on Ω, there exists a unique Radon measure μ≥ 0 on Δ with support in the
minimal boundary Δ1 ⊂ Δ such that u(y)= ∫Δ1

k(x, y)dμ(x).
In the particular case of R= Rn, n≥ 2, and Ω= B(0,1) the unit ball, taking the fixed

point y0 as the centre 0, we have the following: the Martin boundary Δ=Ω\Ω is homeo-
morphic to the unit sphere S and k(x, y) is the Poisson kernel; also Δ1 = Δ= S. Then the
Martin representation gives the familiar result (see, e.g., Axler et al. [4, page 105]): if u is
positive and harmonic on B, then there exists a unique positive Borel measure on S such
that u(x)= ∫S p(x, y)dμ(y), where p(x, y), x ∈ B, y ∈ S, is the Poisson kernel.
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3. Riesz-Martin representation for positive super-biharmonic functions

Let Ω be a Green domain in a Riemannian manifold R, with the Green function G(x, y)
which is a symmetric function and for fixed y, Gy(x) = G(x, y) is a potential on Ω; we
have also ΔGy(x)=−δy(x), after a normalization.

Definition 3.1. A Green domain Ω in R called a biharmonic Green domain if for a pair
of points x and y in Ω, G2(x, y)= ∫ΩG(x,z)G(z, y)dz is finite. Then G2(x, y) is called the
biharmonic Green function of Ω.

The above definition is given in Sario [10] when Ω = R, a hyperbolic manifold. On
an arbitrary hyperbolic Riemannian manifold R, the biharmonic Green function may
or may not exist. It is shown in [2, Theorem 3.2] that the biharmonic Green function
G2(x, y) can be defined on a hyperbolic Riemannian manifold R if and only if there exist
two positive potentials p and q on R such that Δq =−p.

Consequently, any relatively compact domain Ω in a Riemannian manifold R is a
biharmonic Green domain, whether R is hyperbolic or parabolic. Note that if Ω is a
biharmonic Green domain in R, then u(x) = G2(x, y) is a potential on Ω, for fixed y;
and Δu(x)= ΔxG2

y(x)=−Gy(x) so that Δ2u(x)= δy(x).
Given a Radon measure μ ≥ 0 on Ω, if we set p(x) = ∫ΩG(x, y)dμ(y), then we know

that p ≡∞ or p(x) is a potential such that Δp =−μ. Let now q(x)= ∫ΩG2(x, y)dμ(y) be
finite at some point x0 ∈Ω. Then,

∞ >
∫

Ω

(∫

Ω
G
(
x0,z

)
G(z, y)dz

)
dμ(y)=

∫

Ω
G
(
x0,z

)[∫

Ω
G(z, y)dμ(y)

]
dz. (3.1)

Hence p(z)=∫ΩG(z,y)dμ(y) �≡∞, so that p(z) is a potential onΩ, and q(x)=∫ΩG(x,z)p(z)dz,
which shows that q(x) is a potential on Ω and Δq(x)=−p(x)=−∫ΩG(x, y)dμ(y).

Let Ω be the Martin compactification of Ω, Δ = Ω\Ω the Martin boundary, and Δ1

the minimal boundary ⊂ Δ. Let k(x, y) be the Martin kernel, (x, y)∈Ω×Ω.

Notation 3.2. (1) Let π2 denote the set of positive Radon measures μ on Ω such that
q(x)= ∫ΩG2(x, y)dμ(y) is a potential on Ω.

(2) Let ∧0 denote the set of positive Radon measures v on Δ, with supp v ⊂ Δ1.
(3) Let ∧1 denote the positive Radon measures v ∈ ∧0 such that u(x) = ∫ΩG(x,

y)[
∫
Δ1
k(X , y)dv(X)]dy is a potential onΩ. In that case,Δu(x)=−∫Δ1

k(X ,x)dv(X) which
is harmonic, so that u(x) is also a biharmonic function on Ω. (Remark that ∧1 can be
empty as in the case of Ω = Rn.) If v ∈ ∧1, we will write k1(X ,x) = ∫ΩG(x, y)k(X , y)dy
for X ∈ Δ1, and x ∈ Ω, so that u(x) = ∫ΩG(x, y)[

∫
Δ1
k(X , y)dv(X)]dy can be more ele-

gantly represented as u(x)= ∫Δ1
k1(X ,x)dv(X).

Lemma 3.3. Let μ ≥ 0 be a Radon measure on an open set ω in a Riemannian manifold
R, hyperbolic or parabolic. Then there exists a superharmonic function s on ω with μ as the
associated measure in a local Riesz representation.

Proof. The statement means that for every point x0 ∈ ω, there is a neighborhood δ,
x0 ∈ δ ⊂ δ ⊂ ω, with the Green function Gδ(x, y) such that s(x) = ∫δ Gδ(x, y)dμ(y) +
(a harmonic function h(x)) in δ.
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For the construction of s in Rn, we refer to Brelot [6]. A similar method, with the use
of an approximation property given in Bagby and Blanchet [5, Theorem 3.10], proves the
result in a Riemannian manifold. (For a more general discussion of this result, see [3,
Section 2].) �

By Definition 3.1, a Green domain Ω in a Riemannian manifold R (whether hyper-
bolic or parabolic) is a biharmonic Green domain if and only if G2(x, y) �≡ ∞ on Ω. Note
that u(x)= G2

y(x) > 0, Δu(x)= Gy(x) < 0, and Δ2u(x)= δy(x)≥ 0 on Ω. Hence on a bi-
harmonic Green domain Ω, functions v of the type v > 0, Δv ≤ 0, and Δ2v ≥ 0 exist. The
following theorem gives an integral representation for such functions.

Theorem 3.4. Let Ω be a biharmonic Green domain in a Riemannian manifold R (whether
R is hyperbolic or parabolic) and let v be a locally dx-integrable function on Ω. Then the
following are equivalent.

(a) v ≥ 0, Δv ≤ 0, and Δ2v ≥ 0 on Ω.
(b) v(x)= ∫ΩG2(x, y)dμ(y) +

∫
Δ1
k1(X ,x)dv1(X) +

∫
Δ1
k(X ,x)dv0(X) a.e. on Ω, where

(μ,v1,v0)∈ π2×∧1×∧0 is uniquely determined.

Proof. (b)⇒(a). Let

u(x)=
∫

Ω
G2(x, y)dμ(y) +

∫

Δ1

k1(X ,x)dv1(X) +
∫

Δ1

k(X ,x)dv0(X), (3.2)

where μ ≥ 0 is a Radon measure on Ω, and v0, v1 are positive Radon measures on Δ1.
Then u(x)= v(x) a.e. on Ω by the assumption. Hence u �≡ ∞.

(i) Let u1(x) = ∫ΩG2(x, y)dμ(y). Then u1 ≥ 0 is a potential on Ω, such that Δu1(x) =
−∫ G(x, y)dμ(y) and Δ2u1 = μ.

(ii) Let

u2(x)=
∫

Δ1

k1(X ,x)dv1(X)=
∫

Ω
G(x, y)

[∫

Δ1

k(X , y)dv1(X)
]
dy. (3.3)

Then u2 ≥ 0 is a potential on Ω, such that Δu2(x)=−∫Δ1
k(X ,x)dv1(X)=−h1(x), where

h1(x) is a positive harmonic function on Ω, so that Δu2 ≤ 0 and Δ2u2 ≡ 0.
(iii) Let u3(x)= ∫Δ1

k(X ,x)dv0(X).
Then u3 ≥ 0 is harmonic on Ω, so that Δu3 ≡ 0 and Δ2u3 ≡ 0.
Consequently, u = u1 + u2 + u3 ≥ 0 on Ω such that Δu ≤ 0 and Δ2u ≥ 0 on Ω. Since

u= v a.e., the statement (a) is proved.
(a)⇒(b). Since Δ2v ≥ 0, Δ2v = μ, where μ is a positive Radon measure on Ω. Since

Δ(Δv) = μ, Δv is a subharmonic function on Ω. Since Δv ≤ 0 by hypothesis, −Δv is a
positive superharmonic function on Ω. Hence by the Riesz representation theorem,

−Δv(x)=
∫

Ω
G(x, y)dμ(y) +h(x), (3.4)

where h(x) is a positive harmonic function on Ω.
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Let us choose (using the lemma above) two superharmonic functions q(x) and H(x)
on Ω such that

Δq(x)=−
∫

Ω
G(x, y)dμ(y),

ΔH(x)=−h(x).
(3.5)

Then from (3.4),

v(x)= q(x) +H(x) +
(
a harmonic function h1

)
on Ω. (3.6)

Since v ≥ 0 on Ω, q(x)≥−H(x)−h1(x); that is, q(x) has a subharmonic minorant on Ω.
Hence q(x) has the greatest harmonic minorant h2(x) on Ω, and by the Riesz representa-
tion theorem,

q(x)=
∫

Ω
G(x, y)

(−Δq(y)
)
dy +h2(x) on Ω

=
∫

Ω
G(x,z)

[∫

Ω
G(z, y)dμ(y)

]
dz+h2(x)

=
∫

Ω
G2(x, y)dμ(y) +h2(x).

(3.7)

Similarly, dealing with the superharmonic function H(x) and its greatest harmonic
minorant h3(x) on Ω, we can write

H(x)=
∫

Ω
G(x, y)

(−ΔH(y)
)
dy +h3(x) on Ω

=
∫

Ω
G(x, y)h(y)dy +h3(x)

=
∫

Ω
G(x, y)

(∫

Δ1

k(X , y)dv1(X)
)
dy +h3(x),

(3.8)

by using the Martin representation for the positive harmonic function h on Ω. Note that
v1 ∈∧1 and is uniquely determined. Consequently,

H(x)=
∫

Δ1

k1(X ,x)dv1(X) +h3(x). (3.9)

Now, using (3.6), (3.7), and (3.9), we write

v(x)=
∫

Ω
G2(x, y)dμ(y) +

∫

Δ1

k1(X ,x)dv1(X) +h0(x), (3.10)

where h0 = h1 +h2 +h3 is harmonic on Ω.
Now by hypothesis v ≥ 0, so that

−h0(x)≤
∫

Ω
G2(x, y)dμ(y) +

∫

Δ1

k1(X ,x)dv1(X) on Ω. (3.11)
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Now the two terms on the right side are potentials on Ω and hence their sum also is a
potential on Ω. This means that the harmonic function −h0 is majorized by a potential
on Ω, so that −h0 ≤ 0. Thus h0 is a positive harmonic function Ω. Use the Martin repre-
sentation to conclude that there exists a unique measure v0 on the Martin boundary with
support in Δ1, such that

h0(x)=
∫

Δ1

k(X ,x)dv0(X). (3.12)

Thus, from (3.10) and (3.12), we finally arrive at the representation for v(x) on Ω:

v(x)=
∫

Ω
G2(x, y)dμ(y) +

∫

Δ1

k1(X ,x)dv1(X) +
∫

Δ1

k(X ,x)dv0(X), (3.13)

where (μ,v1,v0)∈ π2×∧1×∧0 is uniquely determined. �

4. Representation for positive super-polyharmonic functions

By induction, we can extend Theorem 3.4 to obtain the Riesz-Martin representation for
positive super-polyharmonic functions.

Let Ω be a Green domain in a Riemannian manifold R, with G(x, y) as the Green
function of Ω. For an integer m≥ 2, we will denote

Gm(x, y)=
∫
G
(
x,zm−1

)
G
(
zm−1,zm−2

)···G(z1, y
)
dz1 ···dzm−1 (4.1)

and say that a positive Radon measure μ on Ω is in πm if u(x)= ∫ΩGm(x, y)dμ(y) �≡ ∞ on
Ω, in which case u(x) is a potential on Ω and (−Δ)mu= μ; also (−Δ) ju≥ 0 for 0≤ j ≤m.
When such a function u(x) exists on Ω, we say that Ω is an m-harmonic Green domain
in R, whether R is hyperbolic or parabolic.

Let Ω be the Martin compactification of Ω and let k(x, y) be the Martin kernel. For
any i, 1≤ i≤m− 1, let∧i denote the set of positive Radon measures vi on Δ=Ω\Ω with
support in the minimal boundary Δ1, such that

vi(x)=
∫
G
(
x,zi

)
G
(
zi,zi−1

)···G(z2,z1
)[∫

Δ1

k
(
X ,z1

)
dv(X)

]
dz1 ···dzi �≡ ∞. (4.2)

In that case, vi(x) is a potential on Ω, (−Δ)ivi ≡ 0; also (−Δ) jvi ≥ 0 for 0 ≤ j ≤ i. Let
us write for X ∈ Δ1 and x ∈Ω,

ki(X , y)=
∫
G
(
x,zi

)···G(z2,z1
)
k
(
X ,z1

)
dz1 ···dzi. (4.3)

Then, if v ∈∧i, vi(x)= ∫Δ1
ki(X ,x)dv(X) is well defined on Ω with the above properties.

As before, let∧0 denote the set of positive Radon measures v on Δ, with support in Δ1.
Then, the proof of Theorem 3.4 can be extended by using the method of induction to

arrive at the following result.

Theorem 4.1. Let Ω be an m-harmonic Green domain in a Riemannian manifold R and
let v be a locally dx-integrable function on Ω. Let m ≥ 1 be an integer. Then the following
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are equivalent.
(a) (−Δ)iv ≥ 0 on Ω for 0≤ i≤m.
(b) There exist unique measures μ∈ πm and vi ∈∧i for 0≤ i≤m− 1 such that

v(x)=
∫

Ω
Gm(x, y)dμ(y) +

m−1∑

i=0

∫

Δ1

ki(X ,x)dvi(X) a.e. on Ω. (4.4)

5. Integral representations in a Riemann surface

We are not in a position to say that the above integral representation theorems in a
Riemannian manifold R are automatically valid in a Riemann surface S. For, we have used
the Laplace-Beltrami operator Δ on R to define polyharmonic-superharmonic functions
on R and also to obtain some of their properties. But the Laplacian is not invariant un-
der a parametric change in an abstract Riemann surface S. Hence there is a problem. We
indicate in this section how to get over this difficulty.

Let S be a Riemann surface. Let μ ≥ 0 be a Radon measure defined on an open set ω
in S. Then, using an approximation theorem of Pfluger [9, page 192], we can show that
there exists a superhamonic function s on ω with associated measure μ in a local Riesz
representation as explained in Lemma 3.3 (see [3, Theorem 2.3]). Let us symbolically
denote this relation between s and μ by Ls=−μ on ω.

Let now dσ denote the surface measure on S. Then, given any locally dσ-integrable
function f on an open set ω, let λ be the signed measure on ω defined by dλ = f dσ .
Construct as above two superharmonic functions s1 and s2 on ω, such that Ls1 =−λ+ and
Ls2 =−λ−. Let us denote this relation between the δ-superharmonic function s= s1− s2

and the locally dσ-integrable function f by Ls=− f .
We will say that s= (sm,sm−1, . . . ,s1) is a polyharmonic-superharmonic function of or-

der m in an open set ω, if s1 is superharmonic on ω and Lsi = −si−1 for 2 ≤ i ≤m. We
will say that s ≥ 0 if each si ≥ 0. If there exists a polyharmonic-superharmonic function
s = (sm,sm−1, . . . ,s1) ≥ 0, si �≡ 0 for any i, on a domain Ω in S, we say that Ω is an m-
harmonic Green domain in S.

Let now Ω be a Green domain in a Riemann surface S. As before, let Ω be the Martin
compactfication of Ω, let Δ =Ω\Ω be the Martin boundary, and let Δ1 be the minimal
boundary. Then, with the notations as in Section 4, we can prove the following.

Theorem 5.1. Let Ω be an m-harmonic Green domain in a Riemann surface S. Let m≥ 1
be an integer. Then, the following are equivalent.

(a) s = (sm,sm−1, . . . ,s1) ≥ 0 is a polyharmonic-superharmonic function of order m in
Ω.

(b) For any j, 1 ≤ j ≤m, there exist unique measures μ ∈ πj and vi ∈ ∧i for 0 ≤ i ≤
j− 1 such that

s j(x)=
∫

Ω
Gj(x, y)dμ(y) +

j−1∑

i=0

∫

Δ1

ki(X ,x)dvi(X) a.e. on Ω. (5.1)

(c) The above property (b) is satisfied for j =m.
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Proof. (a)⇒(b). Fix j, 1≤ j ≤m. Then (s j ,s j−1, . . . ,s1) is a j-superharmonic function on
Ω, since (−L)si+1 = si for 1≤ i≤ j− 1 and s1 is superharmonic. Moreover, since (−L)si+1

≥ 0, each si is a positive superharmonic function. Write s1 = p1 +h1 as the unique sum of
a potential p1 and a positive harmonic function h1. Let (−L)p∗1 = p1 and (−L)h∗1 = h1.
Then p∗1 and h∗1 are superharmonic on Ω and

(−L)s2 = p1 +h1 = (−L)p∗1 + (−L)h∗1 . (5.2)

That is, s2 = p∗1 + h∗1 + (a harmonic function) on Ω. Since s2 ≥ 0, p∗1 has a subharmonic
minorant on Ω and hence p∗1 = (a potential p2) + (the greatest harmonic minorant of
p∗1 , which may not necessarily be positive).

Then s2 = p2 +u2, where u2 is superharmonic on Ω. Since s2 ≥ 0, p2 ≥−u2. Since p2 is
a potential and −u2 is subharmonic, −u2 ≤ 0. Hence s2 = p2 +u2, where p2 is a potential
on Ω such that (−L)p2 = p1 and u2 ≥ 0 is superharmonic such that (−L)u2 = h1.

Thus proceeding, we can write

(
s j , . . . ,s2,s1

)= (pj , . . . , p2, p1
)

+
(
uj , . . . ,u2,h1

)
, (5.3)

where (−L)pi+1 = pi for 1 ≤ i ≤ j − 1, and p1, . . . , pj are all potentials; (−L)ui+1 = ui for
2≤ i≤ j− 1 and (−L)u2 = h1.

Now take (uj , . . . ,u2,h1) and proceed as before. Note now h1 is positive harmonic, so
that we can write

(
uj , . . . ,u2,h1

)= (qj , . . . ,q2,h1
)

+
(
f j , . . . , f3,h2,0

)
, (5.4)

where (−L)qi+1 = qi for 2≤ i≤ j − 1, (−L)q2 = h1, and each qi is a potential; (−L) fi+1 =
fi ≥ 0 for 3≤ i≤ j− 1, (−L) f3 = h2, and (−L)h2 = 0, so that h2 is positive harmonic.

Then take ( f j , . . . , f3,h2,0) and follow the same procedure, so that

(
f j , . . . , f3,h2,0

)= (r j , . . . ,r3,h2,0
)

+
(
gj , . . . ,g4,h3,0,0

)
, (5.5)

where (−L)ri+1 = ri for 3 ≤ i ≤ j − 1, (−L)r3 = h2 and each ri is a potential; (−L)gi+1 =
gi ≥ 0 for 4≤ i≤ j− 1, (−L)g4 = h3 and (−L)h3 = 0, so that h3 is harmonic ≥ 0.

Thus proceeding, we finally arrive at the decomposition

(
s j , . . . ,s1

)= (pj , . . . , p1
)

+
(
qj , . . . ,q2,h1

)
+
(
r j , . . . ,r3,h2,0

)
+ ···+

(
hj ,0, . . . ,0

)
. (5.6)

Let (−L)p1 = μ; let vi (1≤ i≤ j) be the positive Radon measure on Δ with support in Δ1,
associated with the positive harmonic function hi in the Martin representation.

Then s j = pj + qj + r j + ···+hj has the integral representation

s j(x)=
∫

Ω
Gj(x, y)dμ(y) +

j−1∑

i=0

∫

Δ1

ki(X ,x)dvi(X) a.e. on Ω. (5.7)

(b)⇒(c). j =m is a particular case of (b).
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(c)⇒(a). By the assumption,

sm(x)=
∫

Ω
Gm(x, y)dμ(y) +

m−1∑

i=0

∫

Δ1

ki(X , y)dvi(X) a.e. (5.8)

Hence we can express sm in the form sm(x) = pm(x) +
∑m−1

j=0 qj(x). We can calculate to
find that (−L)i pm is a potential for 1 ≤ i ≤ m− 1 and (−L)mpm = μ, a positive Radon
measure; and (−L)iq j is a potential for 1≤ i≤ j− 1 and (−L) jq j = 0.

Write now (−L)sm = sm−1, (−L)sm−1 = sm−2, . . . , (−L)s2 = s1. We can see that each si
(1≤ i≤m) is a positive superharmonic function and (−L)si+1 = si for 1≤ i≤m− 1.

Hence s= (sm,sm−1, . . . ,s1)≥ 0 is a polyharmonic-superharmonic function of order m.
�
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