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Let u be a super-biharmonic function, that is, A>u > 0, on the unit disc D in the complex
plane, satisfying certain conditions. Then it has been shown that u has a representation
analogous to the Poisson-Jensen representation for subharmonic functions on D. In the
same vein, it is shown here that a function u on any Green domain () in a Riemannian
manifold satisfying the conditions (—A)‘u > 0 for 0 < i < m has a representation analo-
gous to the Riesz-Martin representation for positive superharmonic functions on Q.
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1. Introduction

Let u be a locally Lebesgue integrable function defined on the unit disc D in the complex
plane. u is called a super-biharmonic function if A%u > 0 in the sense of distributions.
Abkar and Hedenmalm [1] consider a super-biharmonic function u on D, satisfying two
conditions which regulate the growth of u near the boundary dD. These conditions are
used to split u into its biharmonic Green potential part and its biharmonic part. Using
this decomposition, they show that # can be represented by three measures, one on D and
two on the boundary dD. This comes out as a generalization of the Riesz-Poisson integrals
to the super-biharmonic functions on D. However, an extension of this representation in
the case of the unit ball in R”, n > 2 (or to the case of A™u > 0 with suitable restrictions
on u in the unit disc itself) seems complicated.

In this paper, we consider a set of two other conditions on a function u satisfying A>u >
0, namely, u = 0 and Au < 0. These conditions are more appropriate as a generalization
of the positive superharmonic functions. For, suppose u is a locally Lebesgue integrable
function on a bounded domain Q in R”, n > 2, such that u > 0, Au < 0, and A%u > 0.
Then u can be represented by three positive measures, one on (2 and two on the Martin
boundary of Q. Interestingly, the method of proof is general enough to be used in the
case of (—A)'u > 0,0 <i < m, for any integer m > 2, and any domain Q in R” on which
the Green function is defined (in particular on any bounded domain Q in R”, n > 2);
actually, it goes through in the case of a Riemannian manifold also. Accordingly, we prove
this result in the context of a Riemannian manifold.
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2 Riesz-Martin representation
2. Preliminaries

Let R be an oriented Riemannian manifold of dimension > 2, with local coordinates x =
(x',...,x") and a C*-metric tensor g;; such that g;;x'x/ is positive definite. Denote the
volume element by dx = ,/det(g;;)dx',...,dx". Let A be the Laplace-Beltrami operator
which, acting on a C?-function f, gives A f = div grad f. However, we will assume that A
is taken in the sense of distributions. Thus, a locally dx-integrable function fon an open
set w in R is said to be superharmonic (resp., harmonic) if Af <0 (resp., Af =0) on w;
a positive superharmonic function u on w is called a potential if and only if the greatest
harmonic minorant of u on w is 0, (i.e., if & is harmonic on w and h < u, then h should
be negative).

For each open set w in R, let H(w) denote the class of C>-functions u on w such that
Au =0. If w is a domain, H(w) has the Harnack property, namely, if &, is an increas-
ing sequence in H(w) and if & = suphy, then h € H(w) or h = c0. We can also solve the
Dirichlet problem on any parametric ball. This means that the set of harmonic functions
H(w) satisfies the axioms 1, 2, 3 of Brelot [7, pages 13-14]. Consequently, we can use the
results and the terminology of the Brelot axiomatic potential theory in the context of the
Riemannian manifold R.

A domain Q in R is called a Green domain if the Green function G(x, y) is well defined
on Q. On a Green domain Q in R, we can construct the Martin compactification Q of
Q as in [8, pages 111-115]. Some of the important points to remember here are the
following: fix a point y in a Green domain Q. If G(x, y) is the Green function on ), write
ky(x) = k(x,y) = G(x,y)/G(x, yo) with the convention k(yy,yy) = 1. Then there exists
only one (metrizable) compactification Q up to homeomorphism such that

(i) Q is dense open in the compact space Q;
(i) ky(x), y € Q, extends as a continuous function of x on Q;
(iii) the family of these extended continuous functions on Q separates the points x €
A=0\Q.

Q is called the Martin compactification of Q and A = Q\Q is called the Martin bound-
ary. A positive harmonic function u > 0 is called minimal if and only if for any harmonic
function v, 0 < v < u, we should have v = au for a constant &, 0 < a < 1. It can be proved
that every minimal harmonic function u(y) on Q is of the form u(yo)k(x, y) for some
x € A, and the points x € A corresponding to these minimal harmonic functions are
called the minimal points of A, and the set of minimal points of A is denoted by A,
called the minimal boundary.

With these remarks, we can state the Martin representation theorem: for any harmonic
function u > 0 on Q, there exists a unique Radon measure y > 0 on A with support in the
minimal boundary A; C A such that u(y) = [, k(x, y)du(x).

In the particular case of R = R”, n > 2, and Q = B(0, 1) the unit ball, taking the fixed
point yp as the centre 0, we have the following: the Martin boundary A = Q\Q is homeo-
morphic to the unit sphere S and k(x, y) is the Poisson kernel; also A; = A = §. Then the
Martin representation gives the familiar result (see, e.g., Axler et al. [4, page 105]): if u is
positive and harmonic on B, then there exists a unique positive Borel measure on S such
that u(x) = fsp(x,y)dy(y), where p(x,y), x € B, y € S, is the Poisson kernel.
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3. Riesz-Martin representation for positive super-biharmonic functions

Let Q) be a Green domain in a Riemannian manifold R, with the Green function G(x, y)
which is a symmetric function and for fixed y, G,(x) = G(x, y) is a potential on Q; we
have also AG,(x) = —§,(x), after a normalization.

Definition 3.1. A Green domain Q in R called a biharmonic Green domain if for a pair
of points x and y in Q, G*(x,y) = [, G(x,2)G(z, y)dz is finite. Then G*(x, y) is called the
biharmonic Green function of Q

The above definition is given in Sario [10] when Q = R, a hyperbolic manifold. On
an arbitrary hyperbolic Riemannian manifold R, the biharmonic Green function may
or may not exist. It is shown in [2, Theorem 3.2] that the biharmonic Green function
G?(x, y) can be defined on a hyperbolic Riemannian manifold R if and only if there exist
two positive potentials p and g on R such that Ag = —p.

Consequently, any relatively compact domain € in a Riemannian manifold R is a
biharmonic Green domain, whether R is hyperbolic or parabolic. Note that if Q is a
biharmonic Green domain in R, then u(x) = Gz(x, y) is a potential on Q, for fixed y;
and Au(x) = A;Gj(x) = —G)(x) so that A®u(x) = &, (x ).

Given a Radon measure p > 0 on Q, if we set p(x) = [ G( dy( ¥), then we know
that p = o or p(x) is a potential such that Ap = —p. Let now q = [0 G*(x, y)du(y) be
finite at some point xo € Q. Then,

J (J G(x0,2)G(z, )dz)dpz(y J G(x0,2 U GZy)dy(y)]dz (3.1)

Hence p(z) =], G(z,y)du(y) # 0, so that p(z) is a potential on 2, and q(x) = [, G(x,2) p(2)dz,
which shows that g(x) is a potential on Q and Ag(x) = —p(x) = — [ G(x, y)du(y).

Let Q be the Martin compactification of Q, A = Q\Q the Martin boundary, and A,
the minimal boundary C A. Let k(x, y) be the Martin kernel, (x,y) € Q x Q.

Notation 3.2. (1) Let m, denote the set of positive Radon measures ¢ on Q such that
q(x) = [ G*(x, y)du(y) is a potential on Q.

(2) Let Ag denote the set of positive Radon measures v on A, with supp v C A

(3) Let A; denote the positive Radon measures v € A such that u(x) = [, G(

fAl (X, y)dv(X)]dy is a potential on Q. In that case, Au(x) = — fAl k(X, x)dv(X) Wthh
is harmonlc, so that u(x) is also a biharmonic function on Q. (Remark that A; can be
empty as in the case of Q = R™.) If v € Ay, we will write k; (X,x) = [, G(x, »)k(X, y)dy
for X € Ay, and x € Q, so that u(x) = [, G(x, y)[fAl k(X,y)dv(X)]dy can be more ele-
gantly represented as u(x) = fAl ki(X,x)dv(X).

LemMaA 3.3. Let y = 0 be a Radon measure on an open set w in a Riemannian manifold
R, hyperbolic or parabolic. Then there exists a superharmonic function s on w with y as the
associated measure in a local Riesz representation.

Proof. The statement means that for every point xy € w, there is a neighborhood 6,
X0 € § C 8 C w, with the Green function G®(x,y) such that s(x) = [; G (x, y)du(y) +
(a harmonic function h(x)) in 6.
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For the construction of s in R”, we refer to Brelot [6]. A similar method, with the use
of an approximation property given in Bagby and Blanchet [5, Theorem 3.10], proves the
result in a Riemannian manifold. (For a more general discussion of this result, see [3,
Section 2].) O

By Definition 3.1, a Green domain ) in a Riemannian manifold R (whether hyper-
bolic or parabolic) is a biharmonic Green domain if and only if G?(x, y) #  on Q. Note
that u(x) = G} (x) >0, Au(x) = G,(x) < 0, and A’u(x) = §,(x) = 0 on Q. Hence on a bi-
harmonic Green domain Q, functions v of the type v > 0, Av < 0, and A?v > 0 exist. The
following theorem gives an integral representation for such functions.

THEOREM 3.4. Let Q be a biharmonic Green domain in a Riemannian manifold R (whether
R is hyperbolic or parabolic) and let v be a locally dx-integrable function on Q. Then the
following are equivalent.
(a) v=0, Av <0, and A*>v = 0 on Q.
(b) v(x) = [ G*(x, y)du(y) + |5, ki (X,x)dvi(X) + [, k(X,x)dvo(X) a.e. on Q, where
(f,V1,v0) € T2 X A1 X Ag is uniquely determined.

Proof. (b)=(a). Let
=j Gz(x,y)d#(y)+J k1<x,x>dw(x>+j KX 0dn(X),  (3.2)
Q Ay Ay

where ¢ > 0 is a Radon measure on Q, and vy, v, are positive Radon measures on A;.
Then u(x) = V( ) a.e. on Q by the assumption. Hence u # oo.

(i) Let u1(x) = o G*(x, y)du(y). Then uy > 0 is a potential on Q, such that Au;(x) =
- G( x,y)dy(y) and A%uy = p.

(ii) Let

1y (x) = j K (X, %)dv1 (X jcx, U k(X, y)dvi (X )]dy (3.3)

Then u, = 0 is a potential on Q, such that Au,(x) = — fA k(X,x)dvi(X) = —hy(x), where
hi(x)isa posmve harmonic function on €, so that Au, < 0 and A%u, = 0.

(iii) Let u3(x) = [, k(X,x)dvo(X).

Then u; > O is harmonic on , so that Auz = 0 and A?u; =

Consequently, u = u; + 1y + u3 > 0 on Q such that Au <0 and A%u > 0 on Q. Since
u = v a.e., the statement (a) is proved.

(a)=(b). Since A%v > 0, A%y = u, where y is a positive Radon measure on (. Since
A(Av) = p, Av is a subharmonic function on Q. Since Av < 0 by hypothesis, —Av is a
positive superharmonic function on Q. Hence by the Riesz representation theorem,

Av(x J G(x, y)du(y) + h(x), (3.4)

where h(x) is a positive harmonic function on Q.
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Let us choose (using the lemma above) two superharmonic functions g(x) and H(x)
on Q such that

Aaw=—£Gmemw,
AH(x) = —h(x).

(3.5)

Then from (3.4),
v(x) = q(x) + H(x) + (a harmonic function h;) on Q. (3.6)
Since v = 0 on Q, q(x) = —H(x) — h;(x); that is, g(x) has a subharmonic minorant on Q.

Hence g(x) has the greatest harmonic minorant s, (x) on , and by the Riesz representa-
tion theorem,

q(x) = L) G(x,y)(—Aq(y))dy+ha(x) onQ
=J G(x,z)U Gz, y)dy(y)]dz+h2(x) (3.7)
Q Q
_ L} G2 (x, y)du(y) + ha(x).

Similarly, dealing with the superharmonic function H(x) and its greatest harmonic
minorant h3(x) on (), we can write

H(x)=JQG(x,y)(—AH(y))dy+h3(x) on Q
=kawmww+mm (3.8)
_ L} Glx, y)(Ll K(X, y)dv, (X))dy+h3(x),

by using the Martin representation for the positive harmonic function 4 on Q. Note that
v1 € A and is uniquely determined. Consequently,

H(x) = N ki (X,x)dvi(X) + hs3(x). (3.9)

Now, using (3.6), (3.7), and (3.9), we write
v(x) = J G*(x,y)du(y) +J (X, x)dvi (X) + ho(x), (3.10)
Q Ay

where hg = h; + hy + h3 is harmonic on Q.
Now by hypothesis v = 0, so that

ho(x) < L) G2 (x, y)du(y) +L k(X x)dvi (X)  on Q. (3.11)
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Now the two terms on the right side are potentials on Q and hence their sum also is a
potential on Q. This means that the harmonic function —hy is majorized by a potential
on (), so that —hy < 0. Thus hy is a positive harmonic function Q. Use the Martin repre-
sentation to conclude that there exists a unique measure vy on the Martin boundary with
support in Ay, such that

ho(x) = | k(X,x)dvo(X). (3.12)

Ay

Thus, from (3.10) and (3.12), we finally arrive at the representation for v(x) on Q:
X) = J G2 (x, y)du(y) + J oy (X, x)dvy (X) +J k(X x)dvo(X), (3.13)
Q Ay Ay
where (4,v1,v9) € 2 X A1 X Ag is uniquely determined. O

4. Representation for positive super-polyharmonic functions

By induction, we can extend Theorem 3.4 to obtain the Riesz-Martin representation for
positive super-polyharmonic functions.

Let Q be a Green domain in a Riemannian manifold R, with G(x, y) as the Green
function of Q. For an integer m > 2, we will denote

G"(x,y) = JG(x:Zm—l)G(Zm—I:Zm—Z) -Gz, y)dz - - - dzm (4.1)

and say that a positive Radon measure g on Q is in 7, if u(x) = [, G"(x, y)du(y) # % on
Q, in which case u(x) is a potential on Q and (—A)"u = y; also (=A)u=0for0<j<m.
When such a function u(x) exists on (), we say that Q is an m-harmonic Green domain
in R, whether R is hyperbolic or parabolic.

Let Q be the Martin compactification of Q and let k(x, y) be the Martin kernel. For
anyi, 1 <i<m—1,let A; denote the set of positive Radon measures v; on A = Q\Q with
support in the minimal boundary A, such that

x) = JG(x,z,-)G(zi,z,-,l) -+ Gl(z,21) [L k(X,zl)dv(X)]dzl coedzi EF 0. (4.2)

In that case, vi(x) is a potential on Q, (—A)v; = 0; also (=A)/v; > 0 for 0 < j < i. Let
us write for X € A; and x € Q,

ki(X,y) = jG(x,zi) o Glaa 2 )k(X,21)dzr - - - dzi. (4.3)

Then, if v e Ay, vi(x) = fA (X, x)dv(X) is well defined on Q with the above properties.
As before, let Ao denote the set of positive Radon measures v on A, with support in A;.
Then, the proof of Theorem 3.4 can be extended by using the method of induction to

arrive at the following result.

THEOREM 4.1. Let Q be an m-harmonic Green domain in a Riemannian manifold R and
let v be a locally dx-integrable function on Q. Let m = 1 be an integer. Then the following
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are equivalent.
(@) (-A)v=00nQfor0<i<m.
(b) There exist unique measures y € 1, and v; € A for 0 < i < m — 1 such that

m—1
y(x) = JQ G" (o y)du(y) + S L k(X x)dvi(X) a.e. on Q. (4.4)
i—0 I

5. Integral representations in a Riemann surface

We are not in a position to say that the above integral representation theorems in a
Riemannian manifold R are automatically valid in a Riemann surface S. For, we have used
the Laplace-Beltrami operator A on R to define polyharmonic-superharmonic functions
on R and also to obtain some of their properties. But the Laplacian is not invariant un-
der a parametric change in an abstract Riemann surface S. Hence there is a problem. We
indicate in this section how to get over this difficulty.

Let S be a Riemann surface. Let g > 0 be a Radon measure defined on an open set w
in S. Then, using an approximation theorem of Pfluger [9, page 192], we can show that
there exists a superhamonic function s on w with associated measure y in a local Riesz
representation as explained in Lemma 3.3 (see [3, Theorem 2.3]). Let us symbolically
denote this relation between s and ¢ by Ls = —p on w.

Let now do denote the surface measure on S. Then, given any locally do-integrable
function f on an open set w, let A be the signed measure on w defined by dA = fdo.
Construct as above two superharmonic functions s; and s, on w, such that Ls; = —A* and
Ls; = —A~. Let us denote this relation between the §-superharmonic function s = s; — s,
and the locally do-integrable function f by Ls = — f.

We will say that s = (s, Sm-1,...,51) is a polyharmonic-superharmonic function of or-
der m in an open set w, if s; is superharmonic on w and Ls; = —s;_; for 2 <i < m. We
will say that s > 0 if each s; > 0. If there exists a polyharmonic-superharmonic function
S = (Sm>Sm—1,---,81) = 0, s; # 0 for any i, on a domain Q in S, we say that Q is an m-
harmonic Green domain in S.

Let now Q be a Green domain in a Riemann surface S. As before, let Q be the Martin
compactfication of Q, let A = Q\Q be the Martin boundary, and let A; be the minimal
boundary. Then, with the notations as in Section 4, we can prove the following.

THEOREM 5.1. Let Q) be an m-harmonic Green domain in a Riemann surface S. Let m > 1
be an integer. Then, the following are equivalent.
(@) s = (Sm>Sm—15--.,51) = 0 is a polyharmonic-superharmonic function of order m in
Q.
(b) For any j, 1 < j < m, there exist unique measures y € 71; and v; € A; for 0 < i <
j — 1 such that

j-1
si(x) = J;) G/ (x,y)du(y) + ,-:z(:) Ll ki(X,x)dvi(X) a.e.onQ. (5.1)

(c) The above property (b) is satisfied for j = m.
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Proof. (a)=(b). Fix j, 1 < j < m. Then (sj,s;_1,...,51) is a j-superharmonic function on
Q, since (—L)si4; = s;for 1 <i < j—1and s, is superharmonic. Moreover, since (—L)si+1
> 0, each s; is a positive superharmonic function. Write s; = p; + by as the unique sum of
a potential p; and a positive harmonic function h;. Let (—L)p{ = p1 and (—L)h] = hy.
Then pj and hf are superharmonic on Q) and

(=L)s; = pr+h = (—L)pf + (—L)hf. (5.2)

That is, s; = p;* + h{ + (a harmonic function) on Q. Since s; > 0, p;* has a subharmonic
minorant on Q) and hence p{ = (a potential p,) + (the greatest harmonic minorant of
P> which may not necessarily be positive).

Then s, = p, + uy, where u, is superharmonic on Q. Since s, = 0, p> = —u,. Since p; is
a potential and —u; is subharmonic, —u, < 0. Hence s, = p, + u,, where p, is a potential
on Q such that (—=L)p, = py and u, > 0 is superharmonic such that (—L)u, = h;.

Thus proceeding, we can write

(Sj,...,Sz,Sl) = (pj,...,pz,pl) + (Uj,...,uz,hl), (5.3)
where (=L)piy1 = pi for 1 <i< j—1,and py,...,p; are all potentials; (—L)u;s1 = u; for
2<i<j-—Tland (-L)u, = hy.

Now take (uj,...,u,h1) and proceed as before. Note now h; is positive harmonic, so
that we can write

(l/lj,...,uz,hl) = (q;‘>~-->(Z2>h1) + (f:j,...,fg,hz,O), (54)
where (=L)git1 = qi for2 <i< j—1,(-L)g2 = h;, and each g; is a potential; (=L) fi;; =

i >0for3<i<j—1,(—L)fs = hy,and (—L)h, = 0, so that h;, is positive harmonic.
J p
Then take (fj,..., f3,h2,0) and follow the same procedure, so that

(fj,...,f3,l’l2,0) = (7‘]‘,...,7’3,1’12,0) + (g]‘,...,g4,h3,0,0), (5.5)
where (=L)riyy =rifor 3<i<j—1,(—L)rs = hy and each r; is a potential; (—L)gi+1 =

gi=0for4<i<j—1,(—L)g = hsand (—L)hs = 0, so that h3 is harmonic > 0.
Thus proceeding, we finally arrive at the decomposition

(Sj,...,Sl) = (pj:---:Pl) + (qj,...,qz,hl) + (rj,...,r3,h2,0) + -t (hj,O,...,O). (56)
Let (—L)p1 = w; let v; (1 < i < j) be the positive Radon measure on A with supportin A,

associated with the positive harmonic function 4; in the Martin representation.
Thens; = p;+q;+rj+---+h; has the integral representation

j-1
5i(x) = L} G (x, y)du(y) + ;0 Ll k(X,x)dvi(X) ace. on Q. (5.7)

(b)=(c). j = mis a particular case of (b).
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(c)=(a). By the assumption,
m—1
sm(x) = L}G 0+ 3 Ll k(X p)dvi(X) ae. (5.8)

Hence we can express s, in the form s,,(x) = pn(x) + Z']?:Ol g;(x). We can calculate to
find that (—L)'p,, is a potential for 1 <i <m —1 and (—L)"p,, = y, a positive Radon
measure; and (—L)iqj is a potential for 1 <i < j—1and (—L)jqj =0.
Write now (=L)s;, = Sp-1, (—=L)Sm-1 = Sm_2,..., (—L)sy = s;. We can see that each s;
(1 =i < m)isa positive superharmonic function and (—L)sis; =s;for 1 <i<m— 1.
Hence s = ($y>Sm-1,-..,51) = 0 is a polyharmonic-superharmonic function of order m.
]
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