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We give some necessary and sufficient conditions for p.p.-rings without identity to be
reduced. Our results strengthen and extend the results of Fraser and Nicholson as well as
some recent results we obtained on reduced p.p.-rings with identity.
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1. Introduction

Throughout this paper, the ring R is not necessarily with an identity. We denote the set
of all idempotents of R by E(R). Also, for a subset X ⊆ R, we denote the right (resp., left)
annihilator of X in R by annr(X) (resp., ann�(X)).

Now, according to Fraser and Nicholson in [5], we call a ring R a left p.p.-ring, in
brevity, l.p.p.-ring, if for all x ∈ R, there exists an idempotent e such that ann�(x) =
ann�(e) and ex = x. Dually, we may define a right p.p.-ring. Naturally, we call a ring R
a p.p.-ring if it is both an l.p.p.-ring and an r.p.p.-ring. Clearly, if the ring R has an iden-
tity, the above (left; right) p.p.-rings coincide with the (left; right) p.p.-rings discussed
in [6]. It can be observed that the class of p.p.-rings contains the classes of regular (von
Neumann) rings, hereditary rings, Baer rings, and semi-hereditary rings as its proper
subclasses. In the literature, p.p.-rings have already been studied by many authors (see
[1, 2, 5–9, 11]). It is noteworthy that the definition of p.p.-rings has been extended to
semigroups; in particular, Fountain [4] has introduced the concept of abundant semi-
groups which are both l.p.p.- and r.p.p.- semigroups. Similar to p.p.-rings, the class of
abundant semigroups contains the class of regular semigroups as its proper subclass. An
r.p.p.-semigroup in which every idempotent is central is called a C-r.p.p.-semigroup. In
1977 Fountain [3] first proved that a C-r.p.p.-monoid can be expressed as a strong semi-
lattice of left cancellative monoids. This shows that a C-r.p.p.-monoid does not contain
any nonzero nilpotent element and hence it is a reduced semigroup.

On the other hand, Cornish and Stewart [2] called a ring R reduced if it contains no
nonzero nilpotent elements. Obviously, the left annihilator ann�(X) of X in a reduced
ring R is always a two-sided ideal of R. Moreover, if R is a reduced ring, then e f = 0 if and
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only if f e = 0 for any nonzero idempotents e, f ∈ R. By using the concept of a reduced
ring, Fraser and Nicholson [5] obtained an analogous result of Fountain’s [4] that a ring R
is a reduced p.p.-ring if and only if R is a (left; right) p.p.-ring in which every idempotent
is central.

In view of the above result, one would naturally ask whether we can give some neces-
sary and sufficient conditions for a p.p.-ring to be reduced. In this aspect, the authors [6]
have recently given some characterization theorems for reduced p.p.-rings with identity.
In this paper, we further investigate this question for p.p.-rings without identity by using
the properties of abundant semigroups. Some new characterization theorems for a p.p.-
ring without identity to be reduced are obtained. Our results strengthen and extend the
results obtained by Fraser and Nicholson [5] and those by the authors in [6]. The concept
of perpetual ideals in p.p.-rings is also introduced.

2. Preliminaries

We first cite some known results of abundant semigroups which will be used in the sequel.
Let �∗ and �∗ be the left and right Green starred relations on an abundant semigroup

S, as described by Fountain in [3, 4]. Then we have the following lemma.

Lemma 2.1 [4]. Let S be a semigroup. Then, for any elements a,b ∈ S, a�∗b [a�∗b] if and
only if ax = ay⇔ bx = by [xa= ya⇔ xb = yb], for all x, y ∈ S1, where S1 is the semigroup
S adjoined with an identity 1.

As an easy but useful consequence, we have the following corollary.

Corollary 2.2 [4]. Let S be a semigroup. Then a�∗e [a�∗e] if and only if a= ae [a= ea]
and ax = ay⇒ ex = ey [xa= ya⇒ xe = ye], for all idempotents e ∈ S and x, y ∈ S1.

In view of the above corollary, we call an element a ∈ S a right abundant element if
there exists an idempotent e ∈ E(S) such that e�∗a. Dually, we call an element a ∈ S a
left abundant element if there exists an idempotent f ∈ E(S) such that f �∗a. An element
is called abundant if it is both left and right abundant. A semigroup S is called abundant
if every element of S is abundant.

The following lemma was due to Lawson [10].

Lemma 2.3 [10]. Let S be an abundant semigroup and e2 = e ∈ S. Then eSe is an abundant
subsemigroup of S.

Lemma 2.4. The following statements hold on a ring R.
(1) If R has an identity, then R is a p.p.-ring if and only if the multiplicative semigroup

(R,•) of R is an abundant semigroup.
(2) If R is a p.p.-ring, then the multiplicative semigroup (R,•) is an abundant semigroup.

Proof. (1) This part is trivial. (2) Assume that R is a p.p.-ring. Let a∈ R and u,v ∈ (R,•)1

with ua = va. Then because R is a p.p.-ring, there exists e ∈ E(R) such that ann�(a) =
ann�(e) and ea= a. We consider the following two cases.
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(i) u,v ∈ R. Then (u− v)a= 0 and so (u− v)e = 0, that is, ue = ve.
(ii) One of u and v does not lie in R; say v /∈ (R,•). Then, in this case, v = 1 and

hence we have ua= a. Since ea= a, we have (u− e)a= 0 and thereby, (u− e)∈
ann� a= ann� e, that is, ue = e.

Thus a�∗e and hence (R,•) is a left abundant semigroup. Dually, we can similarly prove
that (R,•) is a right abundant semigroup. Therefore (R,•) is an abundant semigroup. �

It is well known that the Green starred relations �∗ and �∗ are congruences on an
abundant semigroup S. Now, following Fountain [4], we define �∗ as the intersection
of the congruences �∗ and �∗ on a semigroup S. Then, we call a semigroup S a su-
perabundant semigroup if each �∗-class of S contains an idempotent in S. The structure
of superabundant semigroups has recently been studied by Ren and Shum in [12]. Of
course, a superabundant semigroup is always abundant.

By a band we mean a semigroup B whose elements are idempotents. In addition, if a
band B is commutative, then we call B a semilattice.

As in [6], we now denote the 2× 2 upper triangular matrix rings over Z and Zp by
UTM2(Z) and UTM2(Zp), respectively.

The following result for reduced p.p.-rings with identity was proved in [6].

Lemma 2.5 [6]. Let R be a p.p.-ring with an identity. Then R is reduced if and only if R has
no subrings which are isomorphic either to UTM2(Z) or to UTM2(Zp), where p is a prime.

3. Characterization theorems

By using the results cited in the above section, we now establish some new characteriza-
tion theorems for reduced p.p.-rings possibly without an identity.

Theorem 3.1. The following statements are equivalent for a p.p.-ring R:
(1) R is reduced;
(2) E(R) is central in R;
(3) (E(R),•) is a semilattice;
(4) (E(R),•) is a band;
(5) for all e, f ∈ E(R), e f = 0, if and only if f e = 0.

Proof. We only need to prove that (1)⇒(2) and (2)⇒(1). This is because that (2)⇒(3)⇒(4)
⇒(5)⇒(2) is easy to see.

For (1)⇒(2), we suppose that the ring R is reduced. Then ex = exe since (ex− exe)2 =
0, for all e ∈ E(R) and x ∈ R. Similarly, xe = exe. Thus ex = xe, for all e ∈ E(R) and x ∈ R.
That is, (2) holds.

For (2)⇒(1), we suppose that every element of E(R) is central in R. In order to prove
(1), it suffices to prove that for all x ∈ R, x2 = 0 implies that x = 0. Since (R,•) is an abun-
dant semigroup, there exists e ∈ E(R) such that e�∗x, and hence xe = x by Corollary 2.2.
Now, by Lemma 2.1, we see that x2 = 0 implies that ex = 0, hence by (2), xe = x = 0. �

Theorem 3.2. Let R be a p.p.-ring. Then R is a reduced ring if and only if (R,•) is a super-
abundant semigroup.
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Proof

Necessity. If R is reduced, then E(R) is central in R. By a result of Fountain in [3], (R,•)
is a strong semilattice of cancellative monoids and by a result of Fountain in [4], (R,•) is
a superabundant semigroup.

Sufficiency. Suppose that (R,•) is a superabundant semigroup. To verify thatR is reduced,
we need only to prove that x2 = 0 implies that x = 0 for all x ∈ R. Because (R,•) is a super-
abundant semigroup, there exists a unique idempotent e ∈ E(R) such that x�∗e. Hence,
we have ex = x by Corollary 2.2. Now, by Lemma 2.1, x2 = 0 implies that ex = 0, and so
we have x = ex = 0, as required. �

We now introduce a new definition.

Definition 3.3. A ring R is said to be locally reduced if the subring eRe of R is reduced for
every e ∈ E(R) \ {1}.

Clearly, a locally reduced ring is not necessarily reduced. For example, if we consider
the matrix ring

M2(Z)=:

{(
x y
0 0

)
: x, y ∈ Z

}
, (3.1)

then M2(Z) is not reduced because
(

0 1
0 0

)2 = (0 0
0 0

)
. On the other hand, if the nontrivial

idempotents in E(R) \ {1} are ex =
(

1 x
0 0

)
, then(

1 x
0 0

)(
a b
0 0

)(
1 x
0 0

)
=
(
a ax
0 0

)
. (3.2)

Now, since
(
a ax
0 0

)2

=
(
a2 a2x
0 0

)
= 0⇐⇒ a2 = 0⇐⇒ a= 0, (3.3)

we can see that every subring eRe of R is a reduced ring, and hence the ring R itself is
locally reduced.

However, if the p.p.-ring R does not have an identity, then a locally reduced ring and a
reduced ring are the same, as the following theorem shows.

We now give the following interesting theorem.

Theorem 3.4. Let R be a p.p.-ring without identity. Then R is a reduced ring if and only if
R is a locally reduced ring.

Proof. Obviously, a reduced ring is locally reduced. To prove the converse part, we sup-
pose that the ring R is locally reduced, that is, eRe is a reduced ring for all e ∈ E(R). Then,
we can let e, f ∈ E(R) such that e f = 0. Denote g = e− f e. It is now easy to check from
the fact e f = 0 that g ∈ E(R) and f g = g f = 0. This leads to u= f + g ∈ E(R). By using
e f = 0 and f g = 0 again, we have eu= e = ue and f u= f = u f . That is, e, f ∈ uRu. On
the other hand, by Lemma 2.3, (uRu,•) is an abundant semigroup. Since the ring uRu is
reduced, f e = 0. Thus, by Theorem 3.1, R is a reduced ring. �
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The following corollary is a generalized version of the main result in [6].

Corollary 3.5. Let R be a p.p.-ring without identity. Then R is a reduced ring if and only
if R has no subrings which are isomorphic either to UTM2(Z) or to UTM2(Zp), where p is
a prime.

4. Perpetual ideals and reduced p.p.-rings

In this section, we define the (left; right) perpetual ideal and we characterize the reduced
p.p.-rings by using the (right; left) perpetual ideals.

Definition 4.1. Let R be a ring and I a right ideal of R. Then, I is called a right perpetual
ideal ofR if for all x ∈ I , the set {r ∈ R : ann�(x)⊆ ann�(r) and ux = x⇒ ur = r for all u∈
R} is contained in I .

Evidently, every ring R has two right perpetual ideals {0} and R. Dually, we can also
define left perpetual ideals. By a perpetual ideal of R, we mean an ideal of R which is a both
left and right perpetual ideal. It is easy to see that the intersection of left (right) perpetual
ideals of R is still a left (right) perpetual ideal of R. Consequently, there exists the smallest
(left; right) perpetual ideal of R containing X for all X ⊆ R. We usually call this smallest
(left; right) perpetual ideal of R the (left; right) perpetual ideal generated by X and denote
it by (L∗(X); R∗(X)) J∗(X). If X = a, then we write L∗(X)= L∗(a), R∗(X)= R∗(a) and
J∗(X) = J∗(a). Also, we simply call the (left; right) perpetual ideal generated by a the
principal (left; right) perpetual ideal generated by a.

The following proposition describes the construction of R∗(a) by a∈ R.

Lemma 4.2. Let R be a ring with identity. Then R∗(x)= annr(ann�(x)), for any x ∈ R.

Proof. We can easily check that annr(ann�(x)) is a right ideal of R. Now let u ∈ R and
a ∈ annr(ann�(x)) such that ann�(a) ⊆ ann�(u). Then, since (ann�(x))a = 0, we have
(ann�(x))u= 0, that is, u∈ annr(ann�(x)). Now, we have

ux = x⇐⇒ (u− 1)x = 0⇐⇒ u− 1∈ ann�(x). (4.1)

Therefore, annr(ann�(x)) is indeed a right perpetual ideal of R. Now let I be a right per-
petual ideal of R containing x. Then {u ∈ R : ann�(x) ⊆ ann�(u)} ⊆ I. Since ann�(x) ⊆
ann�(u) if and only if (ann�(x))u= 0 if and only if u∈ annr(ann�(x)), we can easily ob-
serve that annr(ann�(x))⊆ I . Thus annr(ann�(x)) is the smallest right perpetual ideal of
R containing x, whence R∗(x)= annr(ann�(x)). �

By using the above result, we obtain the following lemma.

Lemma 4.3. Let (R,+,•) be a ring. Now denote the semigroup (R,•) by R. Then the following
statements hold:

(1) if e ∈ E(R), then R∗(e)= eR;
(2) if x ∈ R,e ∈ E(R) and x�∗e, then R∗(x)= eR.

Proof. (1) We need only to show that eR is a right perpetual ideal of R. Obviously, eR is
a right ideal of R. Now let y ∈ R such that ann�(x) ⊆ ann�(y) and u(ex) = ex⇒ uy = y
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for all u∈ R. Then, since e(ex)= ex, we have ey = y ∈ eR. This means that eR is a right
perpetual ideal of R. Thus R∗(e)= eR.

(2) By Lemma 2.1, e ∈ R∗(x) and eR ⊆ R∗(x). On the other hand, since ex = x, we
have x ∈ eR. But eR is a right perpetual ideal of R (by (1)); by the minimality of R∗(x),
we obtain that R∗(x)⊆ eR. Thus R∗(x)= eR. �

Finally, we obtain the main result of this section.

Theorem 4.4. The following statements are equivalent for a p.p.-ring R without identity:
(1) R is reduced;
(2) R is a locally reduced ring;
(3) every left perpetual ideal of R is a right perpetual ideal of R;
(4) every right perpetual ideal of R is a left perpetual ideal of R;
(5) for all a∈ R, L∗(a) is a right perpetual ideal of R;
(6) for all a∈ R, R∗(a) is a left perpetual ideal of R;
(7) for all a∈ R, L∗(a)= R∗(a).

Proof. We have already proved that (1) and (2) are equivalent. We only to need prove
that (1)⇒(3)⇒(5)⇒(1)⇒(7)⇒(1) because (1)⇒(4)⇒(6)⇒(1)⇒(7)⇒(1) can be similarly
proved.

(1)⇒(3). Assume that the ring R is reduced. Then, by Theorem 3.1, E(R) is central
in R. Let I be a left perpetual ideal of R. Then I = ⋃a∈I L∗(a). By Theorem 3.2, (R,•)
is a superabundant semigroup and hence we have e ∈ E(R) such that a�∗e. Moreover,
by Lemmas 2.1 and 4.3, L∗(a)= Re = eR= R∗(a). Thus I =⋃a∈I Re =

⋃
a∈I eR is a right

ideal of R. By observing that I =⋃a∈I L∗(a) =⋃a∈I R∗(a), we can easily see that I is a
right perpetual ideal of R.

(3)⇒(5). This part is trivial.
(5)⇒(1). Assume that (5) holds. Then for all e ∈ E(R), L∗(e) = Re is a right ideal of

R. But e ∈ Re, so we have eR⊆ Re. If f ∈ E(R), then e f = xe = e f e, where x ∈ R, hence
e f = (e f )2. This means that E(R) is a band. By Theorem 3.1, R is reduced.

(1)⇒(7). Assume that R is reduced. Then, by (6), R∗(a) is a left perpetual ideal of R, for
all a ∈ R. But a ∈ R∗(a), we have L∗(a) ⊆ R∗(a). Dually, we have R∗(a) ⊆ L∗(a). Thus,
R∗(a)= L∗(a).

(7)⇒(1). If (7) holds, then by Lemma 4.3 we have Re = L∗(e) = R∗(e) = eR, for all
e ∈ E(R). By the proof of (5)⇒(1), we can prove that R is indeed reduced. �
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