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Two disjoint topological spaces X , Y are mutually compactificable if there exists a com-
pact topology on K = X ∪Y which coincides on X , Y with their original topologies such
that the points x ∈ X , y ∈ Y have disjoint neighborhoods in K . The main problem un-
der consideration is the following: which spaces X , Y are so compatible such that they
together can form the compact space K? In this paper we define and study the classes
of spaces with the similar behavior with respect to the mutual compactificability. Two
spaces X1, X2 belong to the same class if they can substitute each other in the above con-
struction with any space Y . In this way we transform the main problem to the study of
relations between the compactificability classes. Some conspicuous classes of topologi-
cal spaces are discovered as the classes of mutual compactificability. The studied classes
form a certain “scale of noncompactness” for topological spaces. Every class of mutual
compactificability contains a T1 representative, but there are classes with no Hausdorff

representatives.
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1. The notation and terminology

By a space we always mean a topological space. Throughout the paper we mostly use the
standard topological notions as in [1] with the exception that all spaces are assumed with-
out any separation axioms in general. Especially compactness and its modifications are
understood without Hausdorff. Regarding the notions related to the Wallman compact-
ification, our main source was [2]. Finally, we take from [3, 4] the terminology related
to θ-regularity. Let S be a set. We denote by |S| the cardinality of S. We will usually de-
note by τ or τX a topology of a space X (in case that we will work simultaneously with
more topological spaces). In a space X a point x ∈ X is in the θ-closure of a set A ⊆ X
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(x ∈ clθ A) if every closed neighborhood of x intersects A. The point x belongs to the
θ-interior of A (x ∈ intθ A) if x has a closed neighborhood G ⊆ A. The filter base Φ θ-
converges to its θ-limit x if for every closed neighborhood H of x there is F ∈ Φ such
that F ⊆H . A net ϕ(B,�) has a θ-cluster point (a θ-limit) x ∈ X if x is a θ-cluster point
(a θ-limit) of the derived filter base {{ϕ(α) | α � β} | β ∈ B}. We say that a space X is
(countably) θ-regular if every (countable) filter base in X with a θ-cluster point has a
cluster point. For more detailed characterization of θ-regularity, the reader is referred to
[3, 4]. Recall that the preorder of specialization is a reflexive and transitive binary rela-
tion on X defined by x � y if and only if x ∈ cl{y}. This relation is antisymmetric and
hence is a partial ordering if and only if X is a T0 space. The points x, y in a space X are
T0-separable if there is an open set containing only one of the points x, y. The points x, y
are T2-separable if they have open disjoint neighborhoods. In this notation, the space X
is said to be S2 [2] if every two T0-separable points of X are T2-separable. We say that the
space X is R1 [3] if for every x, y ∈ X satisfying cl{x} �= cl{y} the sets cl{x}, cl{y} have
disjoint neighborhoods. Obviously, the separation axioms R1 and S2 are equivalent and
slightly weaker than Hausdorff. Let X be a space. Two disjoint sets A,B ⊆ X are said to be
pointwise separated in X if every x ∈ A, y ∈ B are T2-separable in X . In this paper we say
that a space is (strongly) locally compact if its every point has a compact (closed) neigh-
borhood. We denote by Slc the class of strongly locally compact spaces. A filter in a space
X is said to be ultraclosed (ultraopen, resp.) if it is maximal among all filters in X hav-
ing a base consisting of closed (open, resp.) sets [2]. By the Wallman compactification of
X we mean that the set ωX = X ∪{y | y is a nonconvergent ultraclosed filter in X}. The
sets �(U) = U ∪ {y | y ∈ ωX �X , U ∈ y}, where U is open in X , constitute an open
base of ωX (see [2]).

2. Preliminaries and introduction

The class of compact Hausdorff spaces is widely accepted as one of the most impor-
tant and best investigated classes of topological spaces. However, the situation completely
changes if the Hausdorff separation axiom is omitted. Some topologists hold the view that
non-Hausdorff spaces are less interesting—perhaps because some traditional mathemat-
ical disciplines, such as geometry or mathematical and functional analyses, very rarely
offer important examples of non-Hausdorff topologies. But there is also another reason,
sometimes acknowledged with some hesitation and reluctance. It is extremely difficult to
handle a topological space, even with a compact one, and derive some deep results about
it, if no separation is available. However, the latest developments in computer science mo-
tivated topology, domain theory, and also in modern physics lying beyond the standard
model witness the importance of this way, apart from how difficult and troublesome it
can sometimes be.

The interesting paper of Herrlich [5] is one of the opening papers which systematically
studies the notion of non-Hausdorff compactness and contains really nontrivial results.
In this paper, Herrlich introduces a useful gradation of compactness. A space X is said
to be k-complete provided that any filter on X , which contains an element of each cover
of X by less than k + 1 open sets, converges in X , where k = 1,2, . . . ,ω. It is not difficult
to show that every compact Hausdorff space is 2-complete and the compactness itself is
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equivalent to ω-completeness. In this way the compact spaces may be classified by their
“degree of compactness,” represented by k-completeness. The study of the properties of
compactifications (and, of course, of k-completions of [5]) touches the problem from an-
other side. For instance, in [6], Hušek proved that the well-known reflection properties
of the Čech-Stone compactification have no analogue in the realm of non-Hausdorff

spaces—there exist spaces having no (weak) reflection in compact spaces (for the pre-
cise definition, see [6] or [7]). This result was improved and generalized in [7]: a space
has a weak reflection in compact spaces if and only if its growth in the Wallman compact-
ification is finite. The properties of the growth of a noncompact space in some compacti-
fication may carry important information about the space and “how far” it is from com-
pactness. Besides this, there exist scientific papers which study a rather fascinating ques-
tion: when is it possible to replace a growth of a space in some compactification by another
space? Some preliminary results are well known and reader can find a brief introduction
to this topic, at least for locally compact spaces, for instance, in [1]. Unfortunately, the
role of a space and its growth is strongly nonsymmetric, which sometimes may be viewed
as a disadvantage. Therefore, it is very natural to study also the symmetrical case.

In this paper we will continue evolving the idea of mutual compactificability, intro-
duced in the previous paper [8]. The following simple fact, proved already in [9], was
the main source of inspiration for writing the paper [8]: if X is a θ-regular space, then
X and ωX �X are pointwise separated in ωX . Then X may be considered as a fragment
of some compact space. But the things also work in the reverse way: let K = X ∪ Y be
a compact space, which is a disjoint union of subspaces X , Y , such that every two points
x ∈ X , y ∈ Y have open disjoint neighborhoods in K . Then both X and Y are θ-regular.
An alternative approach to θ-regularity is to consider it as a special kind of a separation
axiom—the points can be separated from the closed filter bases having no cluster point by
open disjoint neighborhoods [4]. Thus taking θ-regularity as a tool for investigating the
non-Hausdorff compactness is a certain compromise between the requirement of a suffi-
cient level of generality and the convenience of leaving some kind of separation, latently
contained in every compact space, still as a part of the game.

Now, let us recall the precise definition of mutual compactificability.

Definition 2.1. Let X , Y be spaces with X ∩Y =∅. The space X is said to be compactifi-
cable by the space Y or, in other words, X , Y are called mutually compactificable if there
exists a compact topology on K = X ∪Y extending the topologies of X and Y such that
the setsX ,Y are pointwise separated inK . LetX andY be disjoint and mutually compact-
ificable. Then any compact topology on K = X ∪Y which induces the original topologies
on X , Y such that X , Y are in K pointwise separated is called �-acceptable for the spaces
X , Y .

Note that taking some additional conditions for the topology of the space K in
Definition 2.1 we can modify the notion of mutual compactificability in a natural and
sensible way. For instance, we may request K to be Hausdorff, connected, manifold, and
so forth. In this way we can obtain the notions of T2-mutually compactificable spaces,
connectedly mutually compactificable spaces, manifold mutually compactificable spaces,
and so forth. The reader can find in a few theorems and examples of [8] some very initial
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comparison of the properties of the mutual compactificability and its T2 modification.
However, a more detailed and complex study of these modifications will be presented in
some future paper(s). Now, let us summarize some of the most important results of [8]
and take them as our starting point. For the proofs, the reader is referred to [8].

Theorem 2.2 (see [8]). The following statements hold.
(i) For a space X there exists a space Y such that X , Y are mutually compactificable if

and only if X is θ-regular.
(ii) If X is a regular space on which every continuous real-valued function is constant,

then X is compactificable by no S2 space.
(iii) Any two disjoint strongly locally compact spaces are mutually compactificable.
(iv) If X is compactificable by some compact space Y , then X is strongly locally compact.

Note that the class of spaces considered in (ii) yields another argument for studying θ-
regular spaces and the mutual compactificability. Regular spaces, as well as the properties
of various compactifications and their growths, are widely accepted as legitimate objects
of study. Thus consider Y = ωX �X , where X belongs to class mentioned above. It is a
θ-regular space which is not regular, and, moreover, it can be replaced by no Hausdorff

or regular space. This fact is completed by two other observations, recapitulated in the
following example.

Example 2.3 (see [8]). The following statements hold.
(i) There exists a regular non-T3.5 space which is compactificable by the infinite

countable discrete space.
(ii) There exists a nonlocally compact space T2-compactificable by a strongly locally

compact space.

3. The classes of mutual compactificability

Having two general topological spaces, it might be a difficult problem to determine
whether their disjoint union admits any �-acceptable topology (we already know that
in such a case, both of the spaces must be at least θ-regular). However, the situation could
be easier if we know that the behavior of these spaces is, in some way, similar to that of
the spaces which are more familiarly known, which can be simply constructed, and which
satisfy, if possible, some stronger separation axioms. This considerations naturally lead to
the following definition.

Definition 3.1. Let Top be the class of all topological spaces. For any X ,Z ∈ Top, define
X ∼ Z if for every nonempty space Y ∈ Top disjoint from the spaces X , Z the space X is
compactificable by Y if and only if Z is compactificable by Y . It can be easily seen that ∼

is reflexive, symmetric, transitive, and hence it is an equivalence relation. Denote by �(X)
the equivalence subclass of Top with respect to ∼ containing X and call it the compact-
ificability class of X . Now, for any X ,Z ∈ Top, put �(X) � �(Z) if for every nonempty
space Y ∈ Top, the following holds: if the space X is compactificable by Y disjoint from
the spaces X , Z, then Z is compactificable by Y . Obviously, the relation � is reflexive, an-
tisymmetric, transitive, and hence it is an order relation between the compactificability
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classes. If for some X ,Z ∈ Top it holds �(X) � �(Z) but �(X) �= �(Z), write �(X) �
�(Z).

One of the aims of the presented theory is to give a description of the compactificability
classes of spaces which are relatively familiar—for example, the spaces constructed from
the real line, the Cantor and Tykhonov cubes, and so forth. But to be able to do it, we
need some more general results, which we will present in the current paper. The author
will present the results which are more specific and concern the spaces mentioned above,
in the next two forthcoming papers.

The following theorem is quite clear and so we can omit its proof.

Theorem 3.2. The spaces X , Z are mutually compactificable if and only if any two repre-
sentatives P ∈ �(X), Q ∈ �(Z) are mutually compactificable. In particular, the space X is
compactificable by a copy of itself if and only if the class �(X) contains two mutually com-
pactificable representatives.

In this connection we can speak about mutually compactificable classes. The fact men-
tioned in the following example is an immediate consequence of (iii) of Theorem 2.2.

Example 3.3. For any two strongly locally compact spaces X , Z, the classes �(X), �(Z)
are mutually compactificable.

Remark that the analogous notions of T2-compactificability classes, connected com-
pactificability classes, or manifold compactificability classes may be also very naturally
defined and studied. It is an important question whether there exists more than one dif-
ferent classes and whether at least one of the classes contains more than one homeomor-
phism subclasses. To prove it, the following lemma will be useful.

Lemma 3.4. Let X be a θ-regular space. Suppose that there exists a space Z with �(X) �
�(Z). Then for every z ∈ Z, there is a compact set Kz ⊆ X such that X =⋃z∈Z Kz.

Proof. Let C be any compactification of X such that X and F = C�X are pointwise sepa-
rated in C. Since X is θ-regular, such compactification always exists; one can take C = ωX
for example. Denote J = [0,1] and J0 = [0,1) and consider these real intervals with the
Euclidean topology. We put K = J ×C, Y = K � ({1}×X). The spaces Y and {1}×X are
pointwise separated and {1} ×X is homeomorphic to X . Hence, the product topology
τK on K is �-acceptable for the spaces {1}×X and Y . For every x ∈ X , t ∈ J0, we define
ζx(t) = (t,x). Consider the net ζx(J0,�). It converges to (1,x) for every x ∈ X , but it has
no cluster point in Y since the spaces {1}×X and Y are pointwise separated.

Without loss of generality, we may assume that Y ∩Z =∅ (otherwise, one can take
another homeomorphic copy of Z disjoint from Y). Since �(X) � �(Z) by the assump-
tion, there exists some �-acceptable topology τL on L = Y ∪Z. For every z ∈ Z, we put
Mz = {x | x ∈ X , ζx has a cluster point z in L}. Notice that

X =
⋃

z∈Z
Mz, (3.1)

since for every x ∈ X the net ζx has a cluster point in the compact space L. We will show
that every Mz is has a compact closure in X .
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Suppose that there exists a net ϕ(A,�) with values in Mz and a cluster point l ∈ F. Let
WL ∈ τL be any open neighborhood of (1, l) ∈ Y . The set WL ∩Y is open in Y and so
there exists WK ∈ τK such that WL∩Y =WK ∩Y . Since K = J ×C there are (a,1]∈ τJ ,
U ∈ τC such that (1, l) ∈ (a,1]×U ⊆WK . It follows that there exists some β ∈ A such
that ϕ(β) ∈ U . Now, let V ∈ τL be such that z ∈ V . We put x = ϕ(β). Then x ∈Mz and
so ζx(J0,�) has a cluster point z. Obviously, there exists t ∈ J0 such that t > a and ζx(t)∈
V . But ζx(t) = (t,ϕ(β)) ∈ (a,1]×U ⊆WK . On the other hand, ζx(t) ∈ Y and so ζx(t) ∈
WK ∩Y =WL ∩Y ⊆WL. It follows that WL ∩V �=∅. Hence, the points (1, l) ∈ Y and
z ∈ Z have no disjoint neighborhoods in L, which contradicts to the assumption that the
topology τL is �-acceptable. Hence, no net with values in Mz has a cluster point in F,
which implies that clCMz ⊆ X and obviously, Kz = clXMz = clCMz is compact. �

Theorem 3.5. Let X , Z be infinite discrete spaces with the cardinalities |Z| < |X|. Then
�(Z)��(X).

Proof. Without loss of generality, we may assume that Z � X . Firstly, suppose that there
is some space P �=∅, P ∩X =∅ which is compactificable by Z. Then there exists a �-
acceptable topology on M = P∪Z, say τM . We denote S = X �Z. Let p ∈ P be a point
and let σ be a family consisting exactly of the following sets:

(1) U ∈ τM for p /∈U ,
(2) U ∪ (S�F) for p ∈U ∈ τM and F ⊆ S finite,
(3) {x} for x ∈ S.

We will show that σ is a base of some �-acceptable topology on N = P ∪X . One can
easily check that σ is closed under finite intersections and covers N , so it is a base of
some compact topology τN on N . Obviously, the sets P and X are pointwise separated,
the topology on M induced from N coincides with τM and the singletons of S are open
in τN . Let x ∈ Z. Since P and Z are pointwise separated, there is some U ∈ τM such that
x ∈ U but p /∈ U . Then U ∈ τN and hence, {x} = U ∩X is open in the topology of X
induced from N . Hence, the induced topology of X is discrete, which means that τN is �-
acceptable for the spaces P, X . Then �(Z) � �(X). Now, suppose that also �(X) � �(Z).
In the notation of Lemma 3.4, the sets Kz are finite since τX is discrete. Then X is covered
by |Z|many finite sets, which is impossible. Hence, it follows �(Z)��(X). �

Corollary 3.6. The compactificability classes do not form a set.

The next two results are immediate or easy consequences of Theorem 2.2. However, we
should state them because of completeness. At least, they can point out that there exist
compactificability classes containing more than one homeomorphism subclasses.

Theorem 3.7. Non-θ-regular spaces form a compactificability class.

We call the class of non-θ-regular spaces improper because no element of that class is
compactificable by any space, wherefore this theory can say nothing more regarding such
spaces. We will call other classes proper. Another important compactificability class is the
class Comp of all compact spaces.

Theorem 3.8. The class Comp forms a class of compactificability.



Martin Maria Kovár 7

Proof. Indeed, let X be compact and suppose that X is compactificable by some space Z.
Then Z is strongly locally compact by Theorem 2.2(iv). If Y is a strongly locally compact
space, then by Theorem 2.2(iii), Y is compactificable by Z. Hence, �(X) � �(Y). In par-
ticular, for a compact space Y , it follows �(X)=�(Y). �

Theorem 3.9. Let Z be a noncompact θ-regular space. Then �(Z) �� Comp. If Z is in
addition locally compact, then Comp��(Z).

Proof. Since Z is θ-regular, Z and ωZ � Z are pointwise separated (see [9] or [8]). Let
I = [0,1], J = (0,1]. We put L = I × ωZ, Y = L� ({0} × Z). Then Y and {0} × Z are
pointwise separated and �(Z)=�({0}×Z). Suppose that �(Z) � �(X) for some com-
pact X disjoint from Y . Then there exists a �-acceptable topology on K = X ∪Y , say τK .
Let ϕ(A,�) be a net in Z with a limit z ∈ ωZ � Z. For every α ∈ A, t ∈ J , let ψα(t) =
(t,ϕ(α)). It is clear that (0,ϕ(α)) is a limit of the net ψα(J ,≤). Since Y and {0}×Z are
pointwise separated, it follows that ψα(J ,≤) has no cluster point in Y . Since K is compact,
ψα(J ,≤) has a cluster point ξ(α)∈ X . ButX is compact and so the net ξ(A,�) has a cluster
point x ∈ X . Since X and Y are pointwise separated, there are U ,V ∈ τK such that x ∈U ,
(0,z) ∈ V , and U ∩V =∅. The set V ∩Y is open in Y and so there exists W ∈ τL such
that V ∩Y =W ∩Y . Then (0,z)∈W and hence, there is some α∈ A such that for every
β� α, we have (0,ϕ(β))∈W . Then, there exists tβ ∈ J such that for 0 < t ≤ tβ, it follows
ψβ(t) ∈W ∩Y ⊆ V . Choose β ∈ A, β � α such that ξ(β) ∈ U . There is some t ∈ (0, tβ]
with ψβ(t)∈U . Then ψβ(t)∈U ∩V , which is a contradiction. It follows �(Z) �� �(X).

Let Z be locally compact. Then Z is strongly locally compact since it is θ-regular. Using
the same consideration as in the proof of the previous theorem, we obtain �(X) � �(Z).
Hence, �(X)��(Z). �

Corollary 3.10. The class Comp is a maximal element in � among all proper classes of
compactificability.

On proper classes, the relation � can be interpreted as a scale for various kinds of
“noncompactness.” If �(X) � �(Z) for θ-regular spaces X , Z, then the space X can be
considered to be closer to be compact than the space Z. This works best for strongly
locally compact spaces since among their classes the class Comp is the greatest element.
The compactificability class of a nonstrongly locally compact space may be incomparable
with Comp.

Lemma 3.11. Let C be a compact T2 space containing a dense nonopen subspace X ⊆ C.
Then �(X) and �(Z) are comparable for no strongly locally compact Z.

Proof. We putK = I ×C, where I = [0,1] has the Euclidean topology, Y = K � ({0}×X).
Suppose that Z is a strongly locally compact space such that Y ∩ Z = ∅ and �(X) �
�(Z). The space {0}×X is homeomorphic toX , so we also have �({0}×X) � �(Z). The
product topology τK on K is �-acceptable for the spaces {0}×X , Y since K is Hausdorff.
Then there exists also some �-acceptable topology on L = Y ∪Z, say τL. We will show
that {0}× (C�X)⊆ clLZ�Z.

Let y ∈ C�X . Since X is dense in C, there is a net ϕy(A,�) with values in X converg-
ing to y. Denote J = (0,1]. For every α∈ A, t ∈ J , let ψα(t)= (t,ϕy(α)). The net ψα(J ,≤)
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has a limit (0,ϕy(α))∈ {0}×X which is its unique cluster point in the Hausdorff spaceK .
In particular, ψα(J ,≤) has no cluster point inY . Since L is compact, it follows that ψα(J ,≤)
has a cluster point ζ(α)∈ Z. Let z ∈ Z be a cluster point of the net ζ(A,�). Suppose that
z �= (0, y). Since Y is T2, (0, y) ∈ Y , and Y , Z are pointwise separated in L, there exist
U ,V ∈ τL such that z ∈U , (0, y)∈V and U ∩V ∩Y =∅. The set V ∩Y is open in Y , so
there is W ∈ τK such that V ∩Y =W ∩Y . Then (0, y)∈W , which implies that there ex-
ists α∈ A such that (0,ϕy(β))∈W for every β� α. But then there exists tβ ∈ J such that
for every 0 < t ≤ tβ, it follows ψβ(t)∈W ∩Y =V ∩Y . Let us take β ∈ A, β� α such that
ζ(β)∈U . There exists t ∈ (0, tβ] such that ψβ(t)∈U , which contradicts U ∩V ∩Y =∅.
Hence, z = (0, y) and so, (0, y)∈ clLZ�Z. It follows {0}× (C�X)⊆ clLZ�Z.

It follows that Z and clLZ�Z are pointwise separated in the compact space clLZ. Since
Z is strongly locally compact, it follows that Z is an open subspace of clLZ, clLZ �Z is
closed in clLZ and hence compact. Further, one can easily check that {0}× (C�X) is a
closed subspace of Y . Because {0}× (C�X)⊆ clLZ�Z ⊆ Y , it follows that {0}× (C�

X) is a closed subspace of clLZ �Z and hence compact. Then C�X is compact as well
and, consequently, closed in the Hausdorff space C. Then X is an open subspace of C,
which is a contradiction. Hence, �(X) �� �(Z). Suppose that �(Z) � �(X). Then X is
compactificable by a singleton, which is impossible since X is not locally compact. It
follows �(Z) �� �(X) as well. �

As an immediate consequence of the previous lemma, we obtain the following theo-
rem.

Theorem 3.12. Let X be a T3.5 space which is not locally compact and let Z be a strongly
locally compact (not necessarily T2) space. Then �(X) and �(Z) are not comparable in the
order �.

The study of some compactificability class could be easier if the class contains a repre-
sentative satisfying some separation axiom. Unfortunately, there exist compactificability
classes with no Hausdorff representatives. As we already mentioned above, the next result
follows directly from Theorem 2.2(ii).

Corollary 3.13. Let X be a regular space on which every continuous real-valued function
is constant. Then �(ωX �X) contains no Hausdorff representative.

On the other hand, it can be proved that every proper compactificability class contains
a T1 representative. Of course, the improper class contains even Hausdorff representatives
—the T2 spaces which are not regular. Let X be a space. We say that Y ⊆ X is a minimal
subspace of X , if every element of Y is minimal in the preorder of specialization of X and
every element of X is comparable with some element of Y . More precisely, Y ⊆ X is a
minimal subspace of X if and only if the following conditions are satisfied.

(1) If y ∈ Y and x� y for some x ∈ X , then y � x.
(2) If x ∈ X , then there is y ∈ Y with y � x.

It can be easily seen that if X is T0 and Y is a minimal subspace of X , then every sin-
gleton {y}, where y ∈ Y , is closed in X and, consequently, Y is T1 in the induced topol-
ogy.
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Lemma 3.14. Let X be a θ-regular space. Then X contains a minimal subspace which is T1

in the induced topology.

Proof. At first, suppose that X is T0. Then the preorder � of specialization of X is an-
tisymmetric and hence is an order on X . Let M ⊆ X be any linearly ordered chain with
respect to �. Pick some fixed element x ∈M and take any closed neighborhood G of x.
For any y ∈M, y � x, it follows y ∈ cl{x} ⊆ G. Hence, the net idM(M,�) θ-converges
to x. Since X is θ-regular, idM(M,�) has a cluster point, say z ∈ X . Let U be an open
neighborhood of z and t ∈M. There is some s ∈M such that s� t and s ∈ U since z is
a cluster point of idM(M,�). Since s∈ cl{t}, we have t ∈U , which means that z ∈ cl{t}.
Hence, z� t. Therefore, z is a lower bound of M. By Zorn’s lemma, every element of X is
comparable with some minimal element with respect to �. Let Y be the set of all minimal
elements of X . Then Y is a minimal subspace of X , which is T1 in the induced topology.

If X is not T0, we put x ∼ y if and only if x � y and y � x for every x, y ∈ X . The
relation ∼ is an equivalence relation on X . Let X0 ⊆ X be a subspace of X such that the
intersection ofX0 with every equivalence class is a singleton. The points that belong to the
same equivalence class have the same open neighborhoods in X . Hence, X0 is θ-regular
and is T0, so by the previous paragraph, there is a minimal subspace Y of X0 which is T1

in the induced topology. It is easy to check that Y is also a minimal subspace of X . �

Theorem 3.15. Every proper compactificability class contains a θ-regular T1 representative.

Proof. Let X belong to some proper compactificability class. Then X is θ-regular and
by Lemma 3.14, there exists a minimal T1 subspace X1 ⊆ X . We will show that �(X) =
�(X1).

Suppose that there is some Y with X ∩Y =∅ which is compactificable by X1. Let τK1

be any �-acceptable topology on K1 = X1∪Y with respect to X1, Y . We put K = X ∪Y
and τK = {W |W ⊆ K ,W ∩K1 ∈ τK1 ,W ∩X ∈ τX}. It is easy to check that τK is a topol-
ogy onK . Let τK/X , τK/K1 , and τK/Y be the corresponding induced topologies onX ,K1, and
Y . It is clear that τK/X ⊆ τX and τK/K1 ⊆ τK1 . Conversely, let U ∈ τK1 . Then U ∩X1 ∈ τX1

and so there exists V ∈ τX such that U ∩X1 = V ∩X1. We put W = (U ∩Y)∪V . Then
W ∩K1 = (U ∩Y ∩K1)∪ (V ∩K1) = (U ∩Y)∪ (V ∩X ∩K1) = (U ∩Y)∪ (V ∩X1) =
(U ∩ Y)∪ (U ∩ X1) = U ∩ (Y ∪ X1) = U ∩ K1 = U ∈ τK1 . Further, W ∩ X = V ∩ X =
V ∈ τX . Hence,W ∈ τK and thenU ∈ τK/K1 . It follows that τK/K1 = τK1 and, consequently,
τK/Y = τY . Let V ∈ τX . Then V ∩X1 ∈ τX1 , so there exists U ∈ τK1 such that V ∩X1 =
U ∩ X1. Again, we put W = (U ∩ Y)∪ V . Similarly as at the previous step, W ∈ τK
and V =W ∩X , which gives V ∈ τK/X . Then τK/X = τX . We will show that K is com-
pact. Let Ω be a τK -open cover of K . Since K1 is a compact subspace of K , there are
U1,U2, . . . ,Uk ∈Ω such that K1 ⊆

⋃k
i=1Ui. Let x ∈ K �K1 = X �X1. There exists x1 ∈ X1

such that x1 ∈ clX{x}. Also, there is some i= 1,2, . . . ,k such that x1 ∈Ui. But then x ∈Ui

which means that K ⊆ ⋃k
i=1Ui. Hence, K is compact. Finally, we will show that X , Y

are pointwise separated in K . Let x ∈ X , y ∈ Y . Firstly, we will construct such open sets
U ,V ,P ∈ τK such that

(1) x ∈V ⊆U ,
(2) y ∈ P,



10 International Journal of Mathematics and Mathematical Sciences

(3) clX(V ∩X)⊆U ,
(4) P∩U ∩K1 =∅.

For every t ∈ X1, there are Qt,St ∈ τK1 such that y ∈Qt, t ∈ St, and Qt ∩ St =∅ since X1

and Y are pointwise separated in K1. Then, for every t ∈ X1, there exist Pt,Ut ∈ τK such
that Qt = Pt ∩K1 and St =Ut ∩K1. Put Ωy = {Ut | t ∈ X1}. It is not difficult to check that
Ωy is a cover of X . Since X is θ-regular, there exists R∈ τX such that x ∈ R and clXR can
be covered by finitely many elements of Ωy . Let t1, t2, . . . , tm ∈ X1 be such elements that
clXR⊆

⋃m
j=1Utj and T ∈ τk such that R= T ∩X . We put

P =
m⋂

j=1

Ptj , U =
m⋃

j=1

Utj , V =U ∩T. (3.2)

We leave the reader to verify that U , V , P satisfy the conditions (1)–(4). Now we put
M = Y ∪ clXX1 and

W = [M� clM(U ∩M)
]∪ [(X �M) � clX(V ∩X)

]
. (3.3)

We claim that W ∈ τK , y ∈W , and W ∩V =∅. It is clear that K1 ⊆M. Then (X �M)∩
K1 =∅, which gives W ∩K1 = K1 ∩ [M� clM(U ∩M)] ∈ τK1 . Further, M ∩X = clXX1,
X �M = X � clXX1. Then W ∩ X = [clXX1 � clM(U ∩M)]∪ [(X � clXX1) � clX(V ∩
X)]. But the set clXX1 � clM(U ∩M) is open in clXX1 since clXX1 is a subspace of M.
But clXX1 is also a subspace of X , so there is S ∈ τX such that clXX1 � clM(U ∩M) =
S∩ clXX1. Then W ∩X = (S∩ clXX1)∪ [(X � clXX1) � clX(V ∩X)]. On the other hand,
from (3) it follows clXX1∩ clX(V ∩X)⊆M∩ clX(V ∩X)⊆M∩U ⊆ clM(U ∩M). Then
(S∩ clXX1)∩ clX(V ∩X)= (S∩ clXX1)∩ [clXX1∩ clX(V ∩X)]⊆ [clXX1 � clM(U ∩M)]
∩ clM(U ∩M)=∅. ThenW ∩X = [(S∩ clXX1) � clX(V ∩X)]∪ [(X � clXX1) � clX(V ∩
X)]= [(S∩ clXX1)∪ (X � clXX1)] � clX(V ∩X)= [S∪ (X � clXX1)] � clX(V ∩X)∈ τX .
Hence, W ∈ τK . Now we will show that y ∈W . Since y ∈ Y , it follows y ∈M. We will
check that y /∈ clM(U ∩M). It follows from (4) that U ∩P∩X1 =∅ and U ∩P∩Y =∅.
Then also U ∩P∩ clXX1 =∅, since the case p ∈ U ∩P∩ clXX1 for some p implies that
p ∈ U ∩ P ∩X ∈ τX and hence (U ∩ P ∩X)∩X1 �= ∅, which is a contradiction. It fol-
lows U ∩P∩M = (U ∩P∩Y)∪ (U ∩P∩ clXX1)=∅. But then P∩M ∈ τM is a neigh-
borhood of y which does not meet U ∩M, so y /∈ clM(U ∩M). Then y ∈W . Finally,
W ∩V = [(V ∩M) � clM(U ∩M)]∪ [(V ∩ (X �M)) � clX(V ∩X)]⊆ [(V ∩M) � (U ∩
M)]∪ [(V ∩X) � clX(V ∩X)] = (V �U)∩M =∅. Hence, τK is a �-acceptable topol-
ogy on K with respect to X , Y which means that �(X1) � �(X).

Conversely, let X ∩Y =∅ and suppose that X is compactificable by Y . We put K1 =
X1 ∪ Y with the topology induced from K . Let Ω1 be an open cover of K1. For every
V ∈ Ω1, there exists U(V) ∈ τK such that V = U(V)∩K1. We put Ω = {U(V) | V ∈
Ω1}. Let x ∈ K . If x ∈ K1, there is some V ∈Ω1 such that x ∈ V ⊆ U(V). Suppose that
x ∈ K �K1 = X �X1. SinceX1 is a minimal subspace ofX , there is some x1 ∈ X1 such that
x1 ∈ clX{x}. There is V ∈Ω1 such that x1 ∈ V ⊆ U(V). But then x ∈ U(V). Therefore,
Ω is a cover of K . Since K is compact, there exist V1,V2, . . . ,Vn such that K ⊆⋃n

i=1U(Vi),
which implies thatK1 ⊆

⋃n
i=1Vi. Hence,K1 is compact and τK1 obviously is a �-acceptable
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topology on K1. Then X1 is compactificable by Y , which means that �(X) � �(X1). To-
gether with the result of the previous paragraph, we have �(X)=�(X1). �

The continuation of this paper is the forthcoming paper “The compactificability
classes of certain spaces” in which we will study the compactificability classes of some
spaces constructed from the real line and Cantor or Tykhonov cubes.
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