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The discrete Fourier transform defines a unitary matrix operator. The logarithm of this
operator is computed, along with the projection maps onto its eigenspaces. A geometric
interpretation of the discrete Fourier transform is also given.
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Recall that the discrete Fourier transform (DFT) in dimension n is the complex-linear
transformation F : Cn→Cn, with F(u)= û, where û= (û0, . . . , ûn−1) has components û j =
(1/
√
n)
∑n−1

k=0 uj e−2π jk/n, where i
.= √−1. In the standard basis for Cn, the DFT can be

represented as an n×n matrix F = (Fjk), where

Fjk = 1√
n
e−2π jk/n. (1)

Our choice of normalization factor ensures that F is unitary: F† ◦F = I , where I is the
identity transformation, and F† is the Hermitian conjugate of F, that is, (F†) jk = Fk j .

Also recall that the exponential of a matrix M is given by the infinite series (M)
.=

∑∞
p=0(1/p!)Mp (provided it converges). Thus a complex-linear map f : Cn→Cn is a loga-

rithm for F if F = exp ( f ), and we write f = log(F). For more information on the expo-
nential and logarithm maps see, [1, Chapter 4].

Theorem 1. In any dimension n, we may take log (F) = (1/2)iπG1 + iπG2 − (1/2)iπG3,
where G1

.= (1/4)(I − iF − F2 + iF3), G2
.= (1/4)(I − F + F2 − F3), G3

.= (1/4)(I + iF −
F2 − iF3). The Gj are projections which satisfy Gj ◦Gk = 0 for j �=k. Moreover, the image
of Gk has dimension qk, where if n ≡ 0 (mod 4), then q1 = n/4− 1 and q2 = q3 = n/4; if
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n ≡ 1 (mod 4), then q1 = q2 = q3 = (n− 1)/4; if n ≡ 2 (mod 4), then q1 = q3 = (n− 2)/4
and q2 = (n+ 2)/4; and if n≡ 3 (mod 4), then q1 = (n− 3)/4 and q2 = q3 = (n+ 1)/4.

Corollary 2. log (F)= (1/4)iπ(I − (1 + i)F +F2− (1− i)F3).

Corollary 3. F = (I − (1− i)G1)(I − 2G2)(I − (1 + i)G3), where G1,G2,G3 are as in
Theorem 1 , and all factors commute.

Corollary 3 has a nice geometric interpretation. Since each Gj is a projection, we have

G
p
j = Gj for p > 0; and thus for any θ ∈ R, exp (iθGj) = I + (eiθ − 1)Gj , using the def-

inition of the matrix exponential and the Taylor series expansion of eiθ . In particular,
for vectors u∈ image (Gj), we have exp (iθGj)u= eiθu; and for vectors v ∈ image (Gj)

⊥,
the orthogonal complement to the image of Gj ,we have exp (iθGj) v = v. Consequently,
the factors in Corollary 3 are rotations by π/2, π, and −π/2 in the planes image (G1),
image (G2), and image (G3), respectively; these planes are orthogonal to each other. Note
that F is the identity (and log (F) is trivial) in the orthogonal complement to the span of
image (G1), image (G2), and image (G3).

Before we prove Theorem 1, we first state some known facts concerning the n×n DFT
matrix F:

F4 = I , (2)

trace (F)= 1− i,1,0,−i, according to n≡ 0,1,2,3 (mod 4), (3)

trace
(

F2)= 2,1 according to n≡ 0,1(mod 2). (4)

Note that as consequences, we have F3 = F†and trace (F3) = trace (F). We remark that
(2) and (4) are straight-forward to verify from (1). See also [2, page 244], for instance (al-
though our choice in normalization for F is different from the one used there). Equation
(3) is a rearrangement of the Gauss sum:

n=1
∑

k=0

eik
2/n = εn

√
n, where εn = 1 + i,1,0, i, according to n≡ 0,1,2,3 (mod 4), (5)

which Gauss proved in the 1800’s [2, page 76]. Proofs can be found in [3, page 177–180],
and in ([4], p. 214–216).

Proof of Theorem 1. As F is unitary, it is diagonalizable; and by (2), its eigenvalues are±1,
±i (the fourth roots of unity). The spectral theorem for a diagonalizable matrix (see [1,
page 517] thus implies that F =G0 + iG1−G2− iG3, where G0, . . . ,G3 are eigenspace pro-
jections with Gj ◦Gk = 0 if j �=k, and G0 + ··· +G3 = I . For given θ0, . . . ,θ3 ∈ R, define
f
.= iθ0G0 + ··· + iθ3G3. Since exp ( f ) = eiθ0G0 + ··· + eiθ3G3, it follows that if we take

θ0 = 0, θ1 = (1/2)π, θ2 = π, and θ3 =−(1/2)π, then exp ( f )= F. Although there exist ex-
plicit formulae for the projections [1, page 529], it is perhaps more expedient to observe
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that (F − I)p = [(iθ1− 1)G1 + (iθ2− 1)G2 + (iθ3− 1)G3]p = (iθ1− 1)pG1 + (iθ2− 1)pG2 +
(iθ3 − 1)pG3 and in particular, for p = 1,2,3. Thus, we need only to solve the (Vander-
monde) linear system

⎛

⎜

⎜

⎝

(

iθ1− 1
) (

iθ2− 1
) (

iθ3− 1
)

(

iθ1− 1
)2 (

iθ2− 1
)2 (

iθ3− 1
)2

(

iθ1− 1
)3 (

iθ2− 1
)3 (

iθ3− 1
)3

⎞

⎟

⎟

⎠

⎛

⎜

⎝

G1

G2

G3

⎞

⎟

⎠=
⎛

⎜

⎝

F − I
(F − I)2

(F − I)3

⎞

⎟

⎠ . (6)

Inverting this equation yields the formulae for G1, G2, G3 given in the statement of the
theorem. For the stated projection image dimensions, recall that the image of the pro-
jection P has dimension given by trace (P); thus qj = trace (Gj), which can be computed
using (3) and (4). �

As with the logarithm for complex numbers, the logarithm of a matrix is not unique.
For example, if we had taken θ3 = 3π/2 in the above, then we would have obtained the
formula log (F)= (1/4)iπ(3I − (1− i)F −F2− (1 + i)F3) instead of that in Corollary 2.
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