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Let R be a ring with center Z, Jacobson radical J , and set N of all nilpotent elements. Call
R generalized periodic-like if for all x ∈ R \ (N ∪ J ∪Z) there exist positive integers m, n
of opposite parity for which xm− xn ∈N ∩Z. We identify some basic properties of such
rings and prove some results on commutativity.
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1. Introduction

Let R be a ring; and let N =N(R), Z = Z(R) and J = J(R) denote, respectively, the set of
nilpotent elements, the center, and the Jacobson radical. As usual, we call R periodic if for
each x ∈ R, there exist distinct positive integers m, n such that xm = xn. In [1] we defined
R to be generalized periodic (g–p) if for each x ∈ R \ (N ∪Z),

there exist positive integers m, n of opposite parity such that xm− xn ∈N ∩Z. (∗)

We now define R to be generalized periodic-like (g–p–l) if (∗) holds for each x ∈ R \
(N ∪ J ∪Z). Clearly, the class of g–p–l rings contains all commutative rings, all nil rings,
all Jacobson radical rings, all g–p rings, and some (but not all) periodic rings. It is our
purpose to exhibit some general properties of g–p–l rings and to study commutativity of
such rings.

2. Preliminary results

To simplify our discussion, we denote by ((m,n)) the ordered pair of integers m, n of op-
posite parity. The rest of our notation and terminology is standard. For elements x, y ∈ R,
the symbol [x, y] denotes the commutator xy− yx; for subsets X ,Y ⊆ R, [X ,Y] denotes
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the set {[x, y] | x ∈ X , y ∈ Y}; and C(R) denotes the commutator ideal of R. An element
x ∈ R is called regular if it is not a zero divisor; it is called periodic if there exist distinct
positive integers m, n for which xm = xn; and it is called potent if there exists an integer
n > 1 for which xn = x. The set of all potent elements of R is denoted by P or P(R), and
the prime radical by P(R). Finally, R is called reduced if N(R)= {0}.
Lemma 2.1. Let R be an arbitrary g–p–l ring.

(i) Every epimorphic image of R is a g–p–l ring.
(ii) N ⊆ J .

(iii) If [N , J]= {0}, then N is an ideal.
(iv) C(R)⊆ J .
(v) If e is an idempotent, the additive order of which is not a power of 2, then e∈ Z.

Proof. (i) is clear, once we recall that if σ : R→ S is an epimorphism, then σ(J(R))⊆ J(S).
(ii) Let S= R/J(R). Then by (i), S is a g–p–l ring; and since J(S)= {0}, S is a g–p ring.

It follows from [1, Theorem 1] that N(S) is an ideal of S, hence N(S) ⊆ J(S) = {0} and
therefore N(R)⊆ J(R).

(iii) Since N ⊆ J , N is commutative and hence (N ,+) is an additive subgroup. Let a∈
N and x ∈ R. Then ax ∈ J , so [a,ax] = 0, that is, a2x = axa. It follows that (ax)2 = a2x2

and that (ax)n = anxn for all positive integers n. Therefore, ax ∈N .
(iv) As in (ii), R/J(R) is a g–p ring; hence, by [1, Lemma 2], C(R/J(R))= {0}. There-

fore, C(R)⊆ J(R).
(v) If e �∈ Z, then −e �∈ J ∪Z and there exists ((m,n)) such that (−e)m− (−e)n ∈N ∩

Z. Since m, n are of opposite parity, we get 2e∈N , so that 2ke = 0 for some k. �

Lemma 2.2. Let R be an arbitrary g–p–l ring, and let x ∈ R. Then either x ∈ J ∪Z, or there
exist a positive integer q and an idempotent e such that xq = xqe.

Proof. If x �∈ J ∪Z, there exists ((m,n)) such that xm− xn ∈N ∩Z. Therefore, there exist
a positive integer q and g(t) ∈ Z[t] such that xq = xq+1g(x). It is now easy to verify that
e = (xg(x))q is an idempotent with xq = xqe. �

Lemma 2.3. LetR be a g–p–l ring and σ an epimorphism fromR to S. ThenN(S)⊆σ(J(R))∪
Z(S).

Proof. Let s∈N(S) with sk = 0 and let d ∈ R such that σ(d)= s. If d ∈ J(R)∪Z(R), then
obviously s∈ σ(J(R))∪Z(S); hence we may suppose that there exists ((m,n)) with n >m
such that dm−dn ∈N(R)∩Z(R). It is easy to show that d−dh ∈N , where h= n−m+ 1;
thus

d−dk+1dk(h−2) = d−dh +dh−1(d−dh
)

+ ···+
(
dh−1)k−1(

d−dh
)

(2.1)

is a sum of commuting nilpotent elements, hence it is in N(R) and therefore in J(R).
Consequently, s− sk+1sk(h−2) ∈ σ(J(R)); and since sk+1 = 0, s∈ σ(J(R)). �

We finish this section by stating two known results on periodic elements.



H. E. Bell and A. Yaqub 3

Lemma 2.4. Let R be an arbitrary ring, and let N∗ = {x ∈ R | x2 = 0}.
(i) [2, Lemma 1] If x ∈ R is periodic, then x ∈ P +N .

(ii) [3, Theorem 2] If N∗ is commutative and N is multiplicatively closed, then PN⊆N .

3. Commutativity results

Theorem 3.1. If R is a g–p–l ring with J ⊆ Z, then R is commutative.

Proof. Suppose x �∈ Z. Then by Lemma 2.1(ii), we have ((m,n)) with n > m such that
xm − xn ∈ N ∩ Z. Consequently xn−m+1 − x ∈ N ; and since N ⊆ Z, commutativity of R
follows by a well-known theorem of Herstein [4]. �

Theorem 3.2. If R is any g–p–l ring with 1, then R is commutative.

Proof. We show that if R is g–p–l with 1, then J ⊆ Z. Suppose that x ∈ J \Z. Then −1 +
x �∈ J ∪Z, so there exists ((m,n)) such that (−1 + x)m− (−1 + x)n ∈ N ∩Z; and we may
assume thatm is even and n is odd. Since N ⊆ J , it follows that 2∈ J ; thus for every integer
m,2m∈ J , and hence 2m+ 1 is invertible.

Now consider ((m1,n1)) such that (1 + x)m1 − (1 + x)n1 ∈ N ∩ Z. Then (m1 − n1)x +
x2p(x)∈N ∩Z for some p(t)∈ Z[t]; and since m1− n1 is central and invertible, we get
x + x2w in N ∩ Z for some w in R with [x,w] = 0. Thus, we have a positive integer q
and an element y in R such that [x, y]= 0 and xq = xq+1y. It follows that e = (xy)q is an
idempotent such that xq = xqe; and since J contains no nonzero idempotents, x is in N .

Let α be the smallest positive integer for which xk ∈ Z for all k ≥ α, and note that, since
x �∈ Z, α≥ 2. But 1 + xα−1 �∈ J ∪Z, so there exists ((m2,n2)) such that (1 + xα−1)m2 − (1 +
xα−1)n2 ∈N ∩Z; hence (m2−n2)xα−1 ∈ Z. But since m2−n2 is invertible and central, we
conclude that xα−1 ∈ Z—a contradiction. �

Theorem 3.3. If R is a reduced g–p–l ring with R �= J , then R is commutative.

Proof. If R = J ∪Z, then R = Z and we are finished. Otherwise, if x ∈ R \ (J ∪Z), there
exists ((m,n)) such that xm− xn ∈N ∩Z = {0}; hence x is periodic, and by Lemma 2.4(i),
x ∈ P. Thus, R= P∪ J ∪Z; and to complete the proof we need only to show that P ⊆ Z.

Let y ∈ P, and let k > 1 be such that yk = y. Then e = yk−1 is an idempotent for which
y = ye, and e ∈ Z since N = {0}. Now eR is an ideal of R, so that J(eR)= eR∩ J(R); hence
eR is a g–p–l ring with 1, which is commutative by Theorem 3.2. Therefore, [ey,ew]= 0
for all w ∈ R; and since ey = y and e ∈ Z, we conclude that [y,w]= 0 for all w ∈ R, that
is, y ∈ Z. �

Theorem 3.4. If R is a g–p–l ring in which J is commutative and all idempotents are central,
then R is commutative.

Proof. We may express R as a subdirect product of subdirectly irreducible rings, each of
which is an epimorphic image of R. Let Rα be such a subdirectly irreducible ring, and
let σ : R→ Rα be an epimorphism. Let xα ∈ Rα and let x ∈ R such that σ(x) = xα. By
Lemma 2.2, x ∈ J(R)∪Z(R) or there exist an idempotent e ∈ R and a positive integer q
such that xq = xqe. Thus, either xα ∈ σ(J(R))∪ Z(Rα) or x

q
α = x

q
αeα, where eα = σ(e) is

a central idempotent of Rα. But Rα is subdirectly irreducible, hence if Rα has a nonzero
central idempotent, then Rα has 1 and is commutative by Theorem 3.2.
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To complete the proof, we need only consider the case that for each xα ∈ Rα, xα ∈
σ(J(R))∪ Z(Rα)∪N(Rα). Now by Lemma 2.3, N(Rα) ⊆ σ(J(R))∪ Z(Rα); hence Rα =
σ(J(R))∪Z(Rα), which is clearly commutative. Therefore, R is commutative. �

Theorem 3.4 has two corollaries, the first of which is immediate when we recall Lemma
2.1(v).

Corollary 3.5. If R is a 2-torsion-free g–p–l ring with J commutative, then R is commu-
tative.

Corollary 3.6. Let R be a g–p–l ring containing a regular central element c. If J is com-
mutative, then R is commutative.

Proof. It suffices to show that N ⊆ Z since this condition implies that idempotents are
central. Consider first the case c ∈ J . Then cJ ⊆ J2, which is central since J is commutative.
Since c is regular and central, it is immediate that J ⊆ Z, so certainly N ⊆ Z.

Now assume that c �∈ J , and suppose that a∈N \Z. Then c+ a �∈ J ∪Z, and there ex-
ists ((m,n)) such that (c+ a)m− (c+ a)n ∈N ∩Z. It follows that cm− cn is a sum of com-
muting nilpotent elements, hence cm− cn ∈N and there exists q such that cq = cq+1p(c)
for some p(t)∈ Z[t]. As before, we get an idempotent e such that cq = cqe and [c,e]= 0.
Now e cannot be a zero divisor, since that would force c to be a zero divisor; therefore, R
has a regular idempotent, that is, R has 1. We have contradicted Theroem 3.2, so N ⊆ Z
as claimed. �

4. Nil-commutator-ideal theorems

Theorem 4.1. Let R be a g–p–l ring. If R �= J and N is an ideal, then C(R) is nil.

Proof. We may assume R �= J ∪ Z, since otherwise R is commutative. Let R = R/N , and
let the element x +N of R be denoted by x. We need to show that R is commutative—a
conclusion that follows from Theorem 3.3 once we show that J(R) �= R.

Suppose that J(R) = R, and let x ∈ R \ (J ∪Z). By Lemma 2.2, there exists a positive
integer q and an idempotent e ∈ R such that xq = xqe; and it follows that e is an idem-
potent of R such that xq = xqe. But R = J(R) contains no nonzero idempotents, so that
xq = 0= x and hence x ∈ N(R). This contradicts the fact that x �∈ J ∪Z, hence R �= J(R)
as required. �

Theorem 4.2. If R is a g–p–l ring and J is commutative, then C(R) is nil.

Proof. If R= J , then R is commutative. If R �= J , N is an ideal by Lemma 2.1(iii) and C(R)
is nil by Theorem 4.1. �

In fact, we can improve this result as follows.

Theorem 4.3. Let R be a g–p–l ring with R �= J . If N is commutative, then C(R) is nil.

This result follows from Theorem 4.1, once we prove our final theorem.

Theorem 4.4. Let R be a g–p–l ring with R �= J . If N is commutative, then N is an ideal.
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Proof. Again we may assume that R �= J ∪ Z. Since N is commutative, N is an additive
subgroup of R. To show that RN ⊆N , it is convenient to work with the ring R= R/P(R).
As in the proof of Theorem 4.1, we have J(R) �= R; and if R= Z(R), then C(R)⊆P(R)⊆
N . Therefore, we assume that R �= J(R)∪Z(R). We note that if x +N = x ∈ N(R), then
x ∈N(R); consequently, N(R) is commutative and hence is an additive subgroup of R.

Now R is semiprime and therefore N(R)∩Z(R)= {0}. It follows that if x ∈ R \ (J(R)∪
Z(R)), there exists ((m,n)) such that xm = xn, that is, x is periodic. Thus x ∈ P(R) +N(R)
by Lemma 2.4(i); and by commutativity of N(R) and Lemma 2.4(ii) we get xN(R) ⊆
N(R). Moreover, if y ∈ Z(R), yN(R) ⊆ N(R). Now let y ∈ J(R) \ Z(R), and let x ∈ R \
(J(R)∪Z(R)). Then x + y �∈ J(R), hence it is in R \ (J(R)∪Z(R)) or in Z(R); and in ei-
ther case (x+ y)N(R) and xN(R) are in N(R), so that yN(R)⊆N(R). We have shown that
N(R) is an ideal of R; therefore, if x ∈ R and a∈N(R), xa∈N(R) and hence xa∈N(R).
Thus, N(R) is an ideal of R. �

Remark 4.5. There exist noncommutative g–p–l rings with J commutative. An accessible
example is

{[
a b
0 0

]

| a,b ∈GF(2)

}

. (4.1)
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