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1. Introduction

We say that the finite group G acts on a topological surface X if there exists a monomor-
phism ¢: G — Hom" (X), where Hom" (X) is the group of orientation-preserving homeo-
morphisms of X. Two actions of finite groups G and G" on X are topologically equivalent
if the images of G and G’ are conjugate in Hom* (X). There are two reasons for the topo-
logical classification of finite actions rather than just the groups of homeomorphisms.
Firstly, the equivalence classes of group actions are in 1-1 correspondence to conjugacy
classes of finite subgroups of the mapping class group and so such a classification gives
some information on the structure of this group. Secondly, the enumeration of finite
group actions is a principal component of the analysis of singularities of the moduli space
of conformal equivalence classes of Riemann surfaces of a given genus since this space is
an orbit space of Teichmiiller space by a natural action of the mapping class group, see
[1].

The classification of conformal actions up to topological conjugacy is a classical prob-
lem which up to now was solved for surfaces of genera g = 2,3 in [2] (the paper omits
one group for the genus 3), ¢ = 4 in [3], for elliptic-hyperelliptic surfaces in [4] and for
2-hyperelliptic Riemann surfaces in [5]. Bujalance et al. [9] determined, for each g, the
full automorphism groups of a hyperelleptic Riemann surface and Weaver classified their
action in [7].
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A compact Riemann surface X of genus g > 2 is said to be p-hyperelliptic if X admits a
conformal involution p, called a p-hyperelliptic involution, such that X/p is an orbifold of
genus p. This notion has been introduced by Farkas and Kra [6], where they also proved
that for ¢ > 4p + 1, the p-hyperelliptic involution is unique and central in the full au-
tomorphism group of X. A Riemann surface which is p- and g-hyperelliptic simultane-
ously is called pg-hyperelliptic. In [8] it was shown that for 0 < p < g with pq # 0, such
a surface of genus g > 2 exists if and only if 29 — 1 < g < 2p +2g + 1. Here we restrict
our attention to conformal actions on pg-hyperelliptic Riemann surfaces whose p- and
q-hyperelliptic involutions are central in the full automorphism group. In particular, ac-
cording to [8, Theorem 3.7], this class of surfaces contains all pg-hyperelliptic Riemann
surfaces of genera g for2 < p<g<2pandg>3g+1.

For commuting p- and g-hyperelliptic involutions &, p, let k be the genus of X/(p,d).
Then pd is a (g — p — q + 2k)-hyperelliptic involution and k is in the range 0 < k <
(2p+2q+1—g)/4. Let X[? denote a Riemann surface with central p- and g-hyperelliptic
involutions corresponding given k and let G be an automorphism group of X/*?. The
group G=G/ (8,p) acts on the surface X,f /¢, p) of genus k. Using the known classifi-
cation of finite group actions on surfaces of low genera, we determine the presentation
of G and next we lift G to the group acting on the surface X{*?. The method is simi-
lar to that used in [4, 5, 9], however this time it involves many more calculations and
the set of topological classes of actions is much bigger. For this reason, we restrict our-
selves to k = 0,1,2 only. These are the only possible values of k corresponding g in range
2p+29—10 < g <2p+2g+1. We give the full topological classification of actions on
surfaces X* of such genera except X{? of genus 2p +2q — 3 and X3 of genus 2p +2q — 7
and decide which of them can be chosen to be full. For k = 0, we enlarge our assumption
to g >2q — 1. In the general case, the two exceptional surfaces need many more calcula-
tions than others and so we omit them. However, for the particular values of g, p, and ¢
it is not difficult to complete the gap.

The main results are presented in Theorems 3.4-3.7 and the supporting tables. In par-
ticular, Theorem 3.7 lists the actions on any pg-hyperelliptic Riemann surface of genus g
inrange2p+2q—2<g=<2p+2q+1for5=<p<q<2p—3.Asanexample, we give the
actions on 5-, 6-hyperelliptic Riemann surfaces of genus 20, 21, 22, and 23 (see Table 1.1).
Every action is determined by the finite group of automorphisms G, the signature of a
Fuchsian group A and a surface-kernel epimorphism 6 : A — G defined by a so-called
generating vector which is the sequence of the images of the canonical generators of A.

In addition, we give the examples of group actions on Riemann surfaces of genus 2,
3, and 4 with central p- and g-hyperelliptic involutions. Since 2q — 1 < g, it follows that
q=1forg=2and q € {1,2} for g € {3,4}. Thus there are the following surfaces: X"
and X&’l of genus 2, Xg’z, X&’Z, Xll’z, Xlz’z, Xg’l, X(}’l of genus 3, and Xé’l, X(?’Z, X(}’z, X&’Z,
Xlz,z of genus 4 (see Table 1.2).

2. Preliminaries

We will approach the problem using the Riemann uniformization theorem by which each
compact Riemann surface X of genus g > 2 can be represented as the orbit space of the
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Table 1.1

Presentation of G a(A) Generating vector

g=20
(z:2%) ® (w:w?) [2,2,2] (z, 1L, z,w,.2 , w,zw, zw, zw)
(x:x%) ® (z:2%) [6,6,2,.7.,2] (x,x71,x%,x%,%3,2,2,2,2x%)

g=21
(z:22) ® (w:w?) [2,24,2] (z,12,2,w, 10 w,zw, zw)
(x:x2)@®(z:22) ® (w: w?) [2,14,2] (xz,x7 4,2, .5,2,w,.2. ,w,zw)

(x:x") @ (z:2%)

(%, y: 3%,y (o), (72%)2, () %))

[4,4,2,.11,2]

(2,4,4,2,.5.,2]

1

(x,x71,x%,.5.,x%,2,.5.,2,x%2)

Pz, x7 L, x%,.4.,x4%, 2, .8.,2,2x7)

1

(x,x71,2,.%.,2,x°2,.5., zx?)

(%, y%,xp,y% ¥ (xp) 2%, 3, (k) )

g=22
(z:22) ® (W:w?) [2,2,2] (2,13, z,w, 11, w,zw)
g=23
(z:22) & (w:w? [2,268,2] (2,14, z,w, 12, w)
(x:x)@®(z:22) ® (w:w?) [2,15,2] (xz,x7 Y, 2,. 7,2, w,.5. ,w)

(x:x*) @ (z:2%)

(x:x%) @ (z:2%)

(x:x%) @ (z:2%)

(x:x'2) @ (z:2%)

(x:x™) @ (z:2?)
(%,y:xhy2%, (xp)% (x71y)?) @ (z:22)
(x,y 2%, %, (xp)") @ (z:2%)
(x,y:x%,y% (xy)®) @ (2: 2%)
(x,y:x%, 9%, (xy)'2) @ (z:2%)
(x,y: 224yt x yxy) @ (z:2%)
(x,y: 3293, 90,57 L yxy) @ (z:2%)

1

(x,y:x%y%, y12,x7 Lyxy) @ (z:2%)
ey x?y? yh (ey)*)
Goy:x2ynyt (xy)°)

ey x?y? yh (ey)'?)

(x, y 12t %2 (xp)4, 4, y2xy?x )

[4,4,2,.12,2]
(6,6,2,.5.,2]
(8,8,2,.5.,2]
(12,12,2,2,2,2]
(24,24,2,2]
[2,4,2,.7.,2]
(2,2,4,2,.5.,2]
(2,2,6,2,2,2,2]
(2,2,12,2,2]
(4,4,4,2,.5.,2]
(4,4,6,2,2,2]
(4,4,12,2]
(4,4,4,2,.3.,2]
(4,4,6,2,2,2]
(4,4,12,2]
(4,4,8,2,2]

-1 42 2
(x, x4 x2,.6.,x%,2,..,2)

1,2 2
X220 x%2,.7.,2)

(FPz,x~
(x4, x%,%3,2°, %%, 2,2, 2,2)
(x°z,x L xtxtxt 2,2,2)

1,x%,x5,2,2)

(x,x~
(xPz,x71,x1%,2)

((xy) 2,23, y,4%,%2,%%,2,2,2)
(x2,3,x9, (xy), (xy)%, (xp)*,2,2,2)
(63, ()71 (xp), (xp)?, 2,2)
(xz,y(xy)% (x) 7", (xy)°,2)
(xz,(yx)~Y, y,x%,x%,2,2,2)

(o, (%)~ 2%, 2,2)
(xz,(yx)7",y,2)

(6, xy,x%, %%, (xp)% (x9)%, (x9)?)
2,y (xy) 72, (xy)?, (xp)?)

(6, y(xp)®, ()", (xp)°)
(2,7, (xp) a7, y7)
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Table 1.2

Presentation of G a(A) Generating vector

Actions on the surfaces X¢"' and X;"' of genus 2

(z:22) @ (w:w?) [2,.5.,2] (2,2,2,W,2W)

(x:x°) ® (z:2%) [6,6,2] (x,x%2,x°2)

Actions on the surfaces Xg*, X¢%, Xg'' of genus 3

(z:22) & (w: w? [2,.6.,2] (2,2,2,2, W, W)

(x:x2) @ (z:22) ® (w: w?) [2,.5.,2] (xw,x,2,2, W)

(x:x*) ® (z:2%) [4,4,2,2] (xz,%,2,x%)

(x:x*y ® (z:2%) [4,4,2,2] (x,x7 1, 2,2)

(x:x8) @ (z:2%) [8,8,2] (x,x7'z,2)

(x,y x4, 9%, (xp)%, (x71y)?) @ (z: 2%) [2,4,2,2] (yx7'z,x,9,2)

(x,y: x4, 22, (xp)h) [4,4,4] (6 p,(xy)™h)
Actions on the surfaces X%, X of genus 3

(z:22) ® (w:w?) (1;2,2) (z, 1, w,w)

(x, 2%,y xyx~1y) (152) (x,xy,9%)

Actions on the surface X' of genus 3

(z:2%) ® (w:w?) [2,.6.,2] (2,2, Wy Wy ZW, ZW)

(x:x2)®(z:22) ® (w: w?) [2,.5.,2] (x,%,2, W, zw)

(x:x*Y ® (z:2%) [4,4,2,2] (xz,%,2,x%)
Actions on the surfaces X;"', X¢* of genus 4

(z:22) @ (w:w?) [2,.7.,2] (2,2, 2, W, Wy W, ZW)

(x:x°) ® (z:2%) [3,6,2,2] (x4 x Y 2,x%2)

Actions on the surface X;* of genus 4

(z:22) @ (w: w?) (1;2,2,2) (1,1,z,w,zw)
Actions on the surfaces XJ?, X3 of genus 4

(z:2%) @ (w:w?) [2,.7,,2] (2,2,2,2,2, W, ZW)

(x:x'% @ (z:2%) [10,10,2] (x,x*z,x°2)

hyperbolic plane # under the action of some Fuchsian surface group I'. Furthermore,
a group of automorphisms of a surface X = #/T can be represented as A/T for another
Fuchsian group A. The algebraic structure of a Fuchsian group A is determined by the
signature

a(A) = (ysmy,...,my), (2.1)
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where y, m; are integers satisfying y = 0, m; > 2. In the case y = 0, we will write simply
0(A) = [my,...,m,] and we will denote a sequence of numbers m,.”., m by m". The group
with signature (2.1) has the presentation given by

generators : Xi,..., X, a1,b1,...,a,,b,,

(2.2)
relations: x"' = - - - = XM =xp -+ x[ag,by] - [awby] =1

Such set of generators is called the canonical set of generators and often by abuse of lan-
guage, the set of canonical generators. Geometrically, x; are elliptic elements which corre-
spond to hyperbolic rotations and the remaining generators are hyperbolic translations.
The integers m,m,...,m, are called the periods of A and y is the genus of the orbit space
JC/A. Fuchsian groups with signatures (y; —) are called surface groups and they are char-
acterized among Fuchsian groups as these ones which are torsion-free.

The group A has associated to it a fundamental region whose area p(A), called the area
of the group, is

y(A)—Zn(Zy—2+i<l—i>>. (2.3)

i=1 m;

An abstract group A with the presentation (2.2) is isomorphic to a Fuchsian group
with the signature (2.1) if and only if the right-hand side of (2.3) is greater than 0; in that
case (2.1) is called a Fuchsian signature.

If A is a subgroup of finite index in a Fuchsian group A’, then we have the Riemann-
Hurwitz formula

H(A)

[A":A] = WA

(2.4)

ProrostioN 2.1. If A is a normal subgroup of A" of index N, {x1,...,x,} is the set of canon-
ical elliptic generators of ', {my,...,m,} the set of periods of A, and p; denotes the order of
Ax; € N'/A, then the periods in o(A) are

ml N, ml m, N, mr
— N — N (2.5)

)4 )4 pr pr

where we omit those values m;/p; which are equal to 1. Furthermore, if the orbit genera of
/AN and 3/ A arey and k, respectively, then

zk—z:N<zy—z+i(1—i>>. (2.6)

i=1 !

Let G be a finite group acting on a Riemann surface X of genus g > 1. If the canonical
projection X — X/G is ramified at r points with multiplicities m;,...,m, and y is the genus
of X/G, then the vector of numbers (y : m;,...,m,) is called the branching data of G on X.
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A (2y+r)-tuple (51,...,Ey,31,...,Zy,?q,. ..,X,) of elements of G satisfying the condition:
(1) al,...,EV,EI,...,Zy,%l,...,%, generate G,
(2) X; has order m; fNor i=1,...,r,
(3) &1...% [T, (@, bi] = 1

is called a generating (y;my,...,m,)-vector.

A group G acts on a surface of genus g with the branching data (y : m,...,m,) if and
only if G has the generating (y : my,...,m,)-vector and 2¢g —2 = |G|(2y =2+ >._;(1 —
1/m;)). Indeed, if G satisfies these conditions, then we can take a Fuchsian group A with
the signature (2.1) and define an epimorphism 0 : A — G by the assignment 6(a;) = a;,
0(b;) = E,-, and 6(x;) = X;. Then T = ker 6 is a surface Fuchsian group of orbit genus g and
G acts as an automorphism group on a Riemann surface #/T.

There is 1-1 correspondence between the set of generating vectors of G and the set
of epimorphisms 0 : A — G with torsion-free kernels. Two epimorphisms 6: A — G and
0" : A’ — G’ define topologically equivalent actions if

e =0y (2.7)

for some isomorphisms ¢ : G — G" and v : A — A’ [2]. The relation of the equivalence of
actions induces an equivalence relation on generating vectors in the sense that two such
vectors are equivalent if they determine the epimorphisms which give rise to equivalent
actions.

We will need some pairs of isomorphisms of Fuchsian groups and abstract groups to
demonstrate topological equivalence of actions, as in (2.7).

In the case when G is generated by elements x, y and two central involutions p;, p,, for
which the assignment ¢(x) = xp5ph, ¢(y) = ypi'p%, ¢(p;) = p; defines an isomorphism
from G onto some group G’, where j = 1,2 and k,I,m,n € {0,1}, we will use the pair
(Dk,l,m,n = (idA) ¢)

When G is generated by the element x and two central involutions p1, p, for which the
assignment w(x) = x"pfp} and w(p;) = p; defines an isomorphism w : G — G, we will
use the pair Q1 = (ida, w).

If G = A/T with 0(A) = (1;my,...,m,) and for fixed integers oy, a, € {0, 1}, there exists
sorwinrange 1 <s, w < r such that 6(c) = p}'p5* or 0(d) = p{'p3>, where 0: A — Gisa
surface-kernel epimorphism, ¢ = x; - - - x; and d = x,, - - - x,, then by Y, o, and by @g 4,
we will denote the pairs (v,idg) and (y,idg), respectively, where v and y are defined by
v(a) = ca, v(b) = b, v(x;) = bx;b~! fori=1,...,s, v(x;) = cx;c” ! fori=s+1,...,r and by
pla) =a,u(b) =d b, u(x;) =d 'xidfori=1,...,w—1, u(x;) = ax;a ! fori=w,...,r.

Finally, in the case when my = my in the signature of A, we will use the pair ¥y, =
(Yx,1,idg), where vy is defined by the assignment yy i(a;) = aj, yx,(b;) = bj, and

Xi i=1,...k—-1,1+1,...r,

X1 l:k)
ki(xi) = (2.8)
i () X xix, i=k+1,...,1—1,

-1 .
(Xksr-oxn) g (Xpr...x), i=1



Ewa Tyszkowska 7

The pairs Wi induce the equivalence of every two generating vectors admitting the same
elements up to permutation of involutions p, p2, p3, what allows us to write the generat-
ing vector in the form

v=(0(a1),...,0(ay),0(b1),...,0(b,),0(x1),...,0(x,—s) I pi, 5%, (p1p2) ™), (2.9)

where u = u; + up + u3 and p?i denotes the sequence p;, 4., p;. For better readability, we
will separate the central involutions from the other elements of the generating vector by
the vertical line. If in addition G is abelian, then any permutation of elements with the
same orders of v provides an equivalent vector.

The signatures 7 = (y;my,...,m,) and 7’ = (y';m},...m,) give rise to the same sets of
the equivalence classes of group actions if and only if ' =y and m; = m, ;) for some
permutation v of the set {1,...,7}. Let x; and x] be the canonical elliptic generators of
Fuchsian groups A and A" with signatures 7 and 7" which correspond to periods m; and
m;, respectively. Then according to [2, Proposition 2.3], for any isomorphism y : A — A/,
¥(x;) is conjugate to x; or x ', where m; = m;. Thus y induces the permutation ¥/ of the

J J

set {1,...,r} such that m; = ml'rl( Y In particular, if a pair (y, ¢) induces the equivalence of

actions given by epimorphisms 8: A — Gand 6" : A’ — G" and G’ is abelian, then

90(x;) = 0’ (x7,) (2.10)
fori=1,...,randj=1orj=—1.

3. The actions of finite groups on pg-hyperelliptic Riemann surfaces

A conformal involution p of a Riemann surface X of genus g > 1 is called a p-hyperelliptic
involution if X/p has genus p. For simplicity, we will say that p is a p-involution. Here
we study conformal actions on Riemann surfaces admitting central p- and g-involutions
simultaneously for some integers g > p. In particular, this class of surfaces contains all pg-
hyperelliptic Riemann surfaces of genus g for any integers p, g, g inrange2 < p<q <2p
and g > 3q + 1. The product of commuting p- and g-involutions is a t-involution, where
the possible values of ¢ are given in the following lemma which is a consequence of [8,
Theorem 3.4].

LEmMA 3.1. Let g > 2 and q = p = 0 be integers such that 2q — 1< g <2p+2q+1. Then
there exists a Riemann surface of genus g admitting commuting p- and q-involutions whose
product is a t-involution if and only if t = g — p — q + 2k for some integer k in range 0 < k <
2p+2q+1-g)/4

Let X/? denote a Riemann surface of genus g with central p- and g-involutions whose
product is a (§ — p — q +2k)-involution for some fixed k in the range 0 < k < (2p +2q +
1 — g)/4. The group Z, ® Z, generated by the p- and g-involutions of X,f ‘1 can be rep-
resented as A/T for some Fuchsian group A, which by Proposition 2.1 has the signature
(k;2,8*37% 2). Thus the dimension d of the corresponding locus in the moduli space is
6(k—1)+2(g+3—4k) = 2g — 2k. So by the inequality g > 2q — 1 and the restrictions on
k, we obtain the following lemma.
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LEmMA 3.2. For q = p, the pg-hyperelliptic locus in the moduli space corresponding to
classes of surfaces admitting central p- and q-involutions is a finite union of manifolds of
dimensions ranging between 3(p — 1) and 2g.

Given an integer ¢ > 2, a group G is said to be a g — (p,q,k)-hyperelliptic subgroup if
there exists a surface X}"? of genus g such that G = Aut(X}?) and the p- and g-involutions
belong to G. In such a case X{*! = %/T for some Fuchsian surface group of the orbit genus
g and G = A/T for some Fuchsian group A, say with the signature v = (y;my,...,m,),
containing A as a normal subgroup. Assume that G = A/A has order N. Let 6 and 7 be
the canonical epimorphisms from A onto G and G onto G and 0 = 6. Let pi be the order
of g(x,'). Then by Proposition 2.1, m;/p; = 2 or m;/p; = 1 and (2.6) is satisfied.

The group G admits central involutions py, ps, and p3 = p1p, such that 67'(p;) is a
Fuchsian group with the signature (u(j);[2,%+27#U),2]) for some assignment y: {1,2,
3} = {p,qg,t}. Since I is a surface group, it follows that 6(x;) has order m;. Furthermore,
O(x;)?" = pYp5 for some r;,s; € {0,1}. So applying Proposition 2.1 for A and its normal
subgroup 61({p;)), we calculate that 6 maps (2g +2 — 4u(j))/2N — 2. p+18i(pj)/pi of the
elliptic generators corresponding to p; = 1 onto p;, where ¢;(p;) is 1 or 0 according as p;
is or is not equal to 8(x;)?". Thus we obtain the following proposition.

ProrosTION 3.3. Let G be an abstract group of order 4N. Let p.,..., p, and y be nonnegative
integers satisfying the equation

’ 1
2k—2+N(Q2-2y)=N 1—-— (3.1)
y lzi( pi)

for some fixed k in range 0 < k < 2p+2q+1—g)/4 and let T = (y;my,...,m,), where
m; =2 for p; =1 and m; = &p; for pi# 1 with&§ =1 o0r & =2. Then Gisa g — (p,q,k)-
hyperelliptic subgroup if and only if it admits central involutions pi, p2, p3 = p1p2 and there
exists a Fuchsian group A with the signature T and an epimorphism 0 : A — G satisfying the
conditions
(1) O(x;) has order m;,

(i) 8(x1),...,00x) T [6(a:), 0(b)] = 1,

(iii) O(x;)P = pi'p5 for somer;,s; € {0,1},

(iv) 0 maps exactly

2+ 2-4u(j) < eilpy)
uj = N > o (3.2)
pi#l

of the elliptic generators of A corresponding to p; = 1 onto p; for some assignment p : {1,2,
3} = {p,q,t}, where &i(p;) is 1 or 0 according as p; is or is not equal to 0(x;)P".

We describe g — (p,g,k)-subgroups corresponding to g in range 2p +2g — 10 < g <
2p+2q+1, where according to Lemma 3.1, k takes one of the values 0, 1, 2. In order to
find the complete list of such groups acting on a surface of given genus, first of all we
determine all the possible signatures of A, up to permutation of periods, however any
such permutation gives rise to the same sets of topological types of actions. For, we find
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Table 3.1
4 Fy Ey Fopyq Fopgn2 Fopqra
g =2p+2q+1  4q+4 4p+4 0 — —
L =2p+2q 4q+2 4p+2 2 — —
$=2pt2q-1 4q 4p 4 — —
Q@ =2p+2q-2  4g-2 4p-2 6 — —
g =2p+2q—-3  4g—4 4p—4 8 0 —
g =2p+2q—4 496 4p—6 10 2 —
& =2p+2q-5  4q-8 4p—8 12 4 —
g =2p+2q—6 4g—10  4p—10 14 6 —
g =2p+2q—7 4q-12  4p-12 16 8 0
gu=2p+2q—-8 4g—14  4p-—14 18 10 2
gn=2p+2q—-9 4g-16  4p—16 20 12 4
g2=2p+2q—10 4g—18  4p—18 22 14 6

all the possible values of N, p;, and y satisfying (3.1) and next we take m; = 2 for p; = 1
and m; = &;p; for p; # 1, where & = 1 or §; = 2. Such a signature will induce an action of a
g — (p,q,k)-subgroup G of order 4N with central involutions p1, p2, and p3 = p1p, if and
only if there exists an epimorphism 8 : A — G satisfying the conditions of Proposition 3.3.
In particular, for & = 2, 6(x;)?" = pi'p5 for some r;,s; € {0,1} such that r;5; # 0 and 6
maps u; of elliptic generators with p; = 1 onto p;, where u; are given by (3.2). So we
examine all the possible values of r;, s; and choose those for which the numbers u; are
integers for some 0 < p < g with pgq # 0. In this way, we obtain the connection between
the number of periods m; = 2 corresponding to p; = 1 and the values of p and g. To
simplify the calculations we list in Table 3.1 the values of F, F;, and F; corresponding the
considered surfaces, where F,(j) = 2g +2 — 4u(j) denotes the number of fixed points of
u(j)-involution for the assignment y: {1,2,3} — {p,q,t}.

Having all candidates for the signature of A, we determine the presentations of the
corresponding groups G = G/ (p1,p2) by inspecting groups of automorphisms of a genus
k surface and choosing those of them which admit generators of orders p; not leading
to a contrary with the values of r; and s; (some p; may be equal to 1). The generating
vector of G given in Tables 3.2, 3.5, and 3.9 according as k = 2,1 or 0 determines, up to
topological equivalence, how an epimorphism 6:A—G maps the canonical generators
of A, except the elliptic elements corresponding to p; = 1 which are mapped onto 1. A
generating vector of G can be written as

(€1 P seereyp P P P e Sy PSP P g8 | PP ), (3.3)

where m = r —u; —uy —us, n(e;) = 0(a;), n(f;) = 0(by), m(gi) = 0(xp), ki, li, i, i, 055 6: €
{0,1} and p?‘ denotes p;, .4, p;. In order to determine the set of relations in the presenta-
tion of G, we assume that any relation

R(B(ar),...,0(by),0(x1),...,0(x,)) =1 (3.4)
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Table 3.2

Case Presentation of G Data N Generating vector
2.1 Z, = (X:X%) (1:2%) 2 (1,1,%,%)
2.2 Zy = (X:X%) (2%) 2 (%, %, %, %, %, X
2.3 Z5=(X:%°) (3%) 3 (X x%xLx1)
2.4 Zy=(X:X%) (22,4%) 4 (x2,x%,%,x71)
2.5 Z, 072, = (X,7: X%, 5%, [X%,)]) (2%) 4 (%,%,%,7,Xy)
2.6 Zs=(X:X°) (5%) 5 (%,%,%%)
2.7 Zs = (X:X°) (3,6%) 6 (X,%,%)
2.8 Zs = (X:X°) (2%,3%) 6 (,%,%2,%Y)
2.9 Dy = (X,y: 32,9, Xyx"1y) (2%,3%) 6 xxy.75™h
210 Zg=(x:X%) (2,8%) 8 (x4,x%,%)
211 D= X,y : x4, 94, X2 9%, X9x 1Y) (4%) 8 (%, 7, V%)
212 Dy =(X%,y:X,94Xyx71y) (2%,4) 8 (X%X7,9%y)
213 Zy = (X:X1) (2,5,10) 10 (x°,%4,%)
214 Z,@Z = (%,5:%%55 (% 7)) (2,6%) 12 &3y, 5"
215 Dys = (X, y:%4L7,59% 1Y) (3,4%) 12 (7, (Xy) LX)
2.16  Dg=(X,y:X%5°,Xyx71y) (2%,3) 12 (%X9,.9%,9%)
2.17  Dygs=(X,y:X%,55,Xpyx"1y° (2,4,8) 16 x4y
1y (BREWIRLYLEWL (5,25 W], (2,4,6) 24 (%, (ZWR)~1,ZW)

[Z,w], [X, y],Xxwx 'w,xzx 1y-1z71)
2,19 SLy(3) = (X, : X%, 94, (x9)%, Xy X 15?) (3%,4) 24 X, (x)Ly)
220 GL(3) = (%5 : %55, ()5 ((X))4x)?) (2,3,8) 48 (%5,

in the presentation of G involving 5(111),. . ,g(by), 5(x1),. . ,5(x,) induces the relation

R(6(a1),...,0(b,),0(x1),....0(x)) = piph (3.5)

for some a,f3 € {0,1}. In most cases, the parameters «, f are determined by the values
of r;, si. In the other case, we must decide if two presentations corresponding to dif-
ferent values of such parameters provide equivalent actions. Sometimes it does lead to
nonequivalent actions and so a lifting of the given group G may not be unique. Even
more, the group G sometimes induces actions on pg-hyperelliptic surfaces with different
values of p and g as we can observe for genus 3 actions.

Finally, we check if the determined set of generators and relations presents a group
of the required order 4N and if the generating vectors of such a group corresponding to
different values of parameters k;, li, &, B> Om> Gm are topologically equivalent.

Following the program outlined above we classify the finite group actions on surfaces
X1 of genera g in range 2p +2q — 10 < g < 2p+2q+ 1 except X; of genus g5 and X,
of genus gy since the two cases require lifting all groups of automorphisms of a genus 1
or a genus 2 surface, respectively, and the corresponding sets of the topological classes of
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actions are very big. Additionally, for k = 0, we extend the assumption to g = 2g — 1. The
results can be applied for any pg-hyperelliptic Riemann surface of genus g > 3q + 1 with

p<q.

3.1. Classification of conformal actions on a surface X}

THEOREM 3.4. The topological type of the action on a surface X2 of genus g0, g11, or g1 is
determined by the group of automorphisms G, the signature of A, and the generating vector
listed in Tables 3.3 and 3.4, where v denotes a permutation of the set { p,q}.

Proof. Let G be an automorphism group of a surface Xf 1 of genus gio, g11, or g2 and
let p1, p2, and ps3 = p1p, denote the central involutions of G. According to the classifi-
cation of finite group actions on a genus 2 surface given up to topological equivalence
by Broughton [2] and the solutions of (3.1) for k = 2, the corresponding group G is
isomorphic to one of the groups listed in Table 3.2. We exclude the cases 2.4, 2.9-2.12,
2.15-2.20, where the numbers u; defined by (3.2) cannot be integers for any values of p
and g. For example, let us consider the case 2.15. By inspecting Table 3.1, we conclude
that u; can be integers only for a surface of genus g, if there is exactly one ¢-involution
among the elements 6(x;)? with p; # 1 corresponding to p; = 4. However, this condi-
tion cannot be satisfied because p; = 4 for i = 2,3, and 0(x,)P? = 0(x3)F>. Indeed, since
G= (%, y:x4,5°,Xyx"1y) and the epimorphism 0'is defined by 5(x1) =7, 5(x2) =(Xy)™,,
5(x3) =%, and 5(xj) =1 for j =4,...,r, it follows that any generating vector of G has a

form v = (ypf' pl, (xy) 1 pR p2, xp% pl | p1 p2, p%%) for x and y belongmg to 77! (x) and

n~1(9), respectively, and k;,I; € {0,1}, which implies that 6(x,)P> = x* = 0(x3)?>.

Let us consider the remaining cases from Table 3.2. First suppose that G is isomorphic
to Z, = (X). Then G is generated by element x € 7~ !(X) and two central involutions py, p,.
Since x"* = p‘f‘ pgz for some 8,68, € {0,1}, it follows that G is isomorphic to Z, & Z, ® Z,
if §; = 8, = 0 or to Z,,, ® Z, otherwise.

Cases 2.1, 2.2. Here n = 2 and a generating vector of G has a form

var = (o3 ps, i xpl ol xpfp | ol pin, o) (3.6)

or

Voo = (xpt'py xpi 5, xp ps . xp pi xph p5 . xpieps | pit pst,pie), (3.7)

respectively. Using the pairs Yy, 4, and @p, g, if necessary we can assume that a; = a; =
B = B2 = 0. Since 0(x;)? = x2 = pd'p* for p; # 1, it follows that A has the signature
(1;2,2,2,%72)2 2) in the case 2.1 or (0;2,2,2,2,2,2,2, €722, 2) in the case 2.2 and conse-
quently G =7, ®Z, ® Z, or A has the signature (1;4,4,2,%7/2,2) or (0;4,4,4,4,4,4,2,
(6-1172 9), respectively, and G = Z, ® Z,. Now suppose that a pair (y,¢) induces the
equivalence of two Vectors corresponding to k;, I; and k;, I}, respectively. Clearly ¢(p;) =
pi and @(x) = xpipt for some a,b € {0,1}. Thus by (2.10), we have k; = k~ p Taand

li =I5 +b fori=1,..,r — u, where u = uy +up + us. Thus either Sk —Z, Lk if
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Table 3.3
Case o(A) Presentation of G g
2.1.a (1;2,2,2(6-3/2) (x:x2) @ (z:22) @ (w:w?) gu
2.1b (1;42,2(8-70/2) (x:xY) @ (z:2%) g
2.2.a (26,2(8-5)72) (x:x2) @ (z:22) ® (w: w?) g
2.2.b (4°,2(8-11/2) (x:xY) @ (z:2°) g
2.3.a (34,2(673)/3) (x: x>y ®(z:2%) ® (w:w?) g
2.3b (6,33,2&6)/3) (x:x3) @ (z:22) @ (w:w?) g10> g12
2.3.c (6%,32,2(&-7)/3) (x:x%) @ (z:22) @ (w: w?) £10> 811> €12
2.3.d (63,3,288)73) (x:x)@®(z:22) ® (w:w?) £10> 811> §12
2.3.e (64,2(8793) (x: )@ (z:2%) ® (w:w?) g10> £11> §12
2.5. (24,4,2°74) Coyrawixt,ys 2w, (2], i
[z, y1, [w,x], lw, y1, [x, ylzw)
2.5.b (23,42 2(&-9/4) (6, y,z:x%, 94,28, [x,2], [y, 2], [x, y]2) gu
25.c (44,2,2(813)/4) (x,y:xty4 [,y 12 y2, 67, y]) gn
2.5d (45,2(8-15)/4) (x:xhY e (y:y") g
2.5.d (45,2(8-15)/4) (x,y x4, 94 [x, y19%) g
2.6.a (10,52,2(8-6)/5) (x:x°) @ (z:22) @ (w:w?) £10
2.6.b (10%,5,2(&-7)/5) (x:x5) @ (z:22) ® (w:w?) £10> Q11
2.6.c (103,2(-8)/5) (x:x) @ (z:22) ® (w:w?) £10> 811> &1
2.7.a (63,2(8-7)/6) (x:x) @ (z:2%) ® (w: w?) gi
2.7.b (3,122,2(8-7)/6) (x:x2)® (z:2%) g
2.7.c (6,122,2(8-9)/6) (x:x2)® (z:22) g
2.8.a (22,6,3,2&-7/6) (x:x5) @ (z:22) @ (w: w?) gu
2.8.b (22,6%,2(8-97/6) (x:x) @ (z:22) ® (w:w?) g
2.8.c (42,3,6,2(8713)/6) (x:x2) @ (z:22) au
2.8.d (42,62,2(8-15)/6) (x:x2)® (z:2%) gi
2.13.a (2,102,2(&-7)/10) (x:x1%Y @ (z:22) & (w:w?) g
2.13.b (4,10,20,2(8-14/10) (x:x0) @ (z:22) gu
2.14.2 (2,12,6,267/12) Coyozw ity 28 wh %2 [7,2], i
[, wl, [y, wl, [x, ylzw)
2.14.b (2,122,2(6-9712) (x,p,2:5%, 92,2, [x,2], [ ,2), [ %, y2) g
2.14.c (4,12,6,2(8-13)/12) (x,y,2:x%,9%,2%, [x,2), [y, 2], [x, y]2) g
2.14.d (4,122,2619/12) (x:x)y @ (y:y?) g
2.14.e (4,122,2(¢-1512) (x,y: x4 912, [x,y]y°) gu
a=0or > 'ki=(r—u)— > |'k; otherwise, and similarly >/ "\'l; = > "'l or >.\_}
(r—u)— 'l according to b = 0 or b = 1. So any two vectors hsted in Table 3.4 are not
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Table 3.4
Case g Generating vector Conditions
5 la a (h,1,%,x2"P) 3" @=3 | 2P~ (@4 7)), N
.1. one
h=zif p=gq=4;h=1otherwise
51 b gu (h’ l’x’x71+2v(q)zv(p)73 ‘ 2'11(17)74,(xZ)'v(q%S’zxZ)y N
.1. one
he (z)if p=4and q=>5; h =1 otherwise
(h’l,x)x—nzv(q)zv(p)w(q) ‘ (xzz)v(q)—zt,zv(p)—zt))
- — None
h=zif p =g =4;h=1 otherwise
pP=4q
394 g (%, %, %, xh, xh, x2"P) 3 @3 | 2/(P)=4 (@) =4 740, N
2. one
he{z,w)
92b . (26,2, xh, xh, x~ 2@ 273 | 2074, (7))@, x72); N
2. one
he(x%z)
23.a g (6,2, %1, 571 | 22033y 2@/3=3 7)) p=0(3),
q=0(3)
2.3.b 812 (xz,%,6" L, x| 22071003 [y 20(@)/3-3 7y v(p) =203),
v(q) =0(3)
2.3b 1o (xzw,x,x7 1, x| ZPHPI77V3 4y V(@) =7)/3) p=20),
q= 2(3)
2.3.c &1 (xzw,xz,x~ 1, x71 | 22V (P)=8)/3 4y(2(q)=7)/3) vp)=16),
v(q) =2(3)
23.c gu (xzw,xzw,x~1,x71 | 22/ (P)=8)/3 4y (27(q)=8)/3) p=10),
q=1(3)
2.3.¢ g (xz,x2,x~ 1,61 | Z@P)=1D/3 12(@)/3=3 7)) v(p) =103),
v(q) = 0(3)
_ _ (xz, 2w, 51, x1 | Z2HP)~10V/3 4, (¥(@=10/3 7)) p=203),
q=2(3)
2.3.d gio (xzw,xz,x Lw,x~1 | 22 (P)=8)/3 4,(2v(q)-8)/3) p=10),
q=1(3)
_ _ (xzw,x2,x" 12, %1 | Z2VPV3=3, y(2r@)-7)3) »(p) =0(3),
v(q) = 2(3)
2.3.4d i (xzw,xzw,x " 1z,x71 | Z2(P)373 (2@ -8)3) Y(p)=00),
v(q) = 1(3)
23.d o (xzw, xzw,x \zw,x~1 | 22/ (P)/3-3 2(@)/3-3) p=0(03),

q=0(3)
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Table 3.4. Continued.

Case g Generating vector Conditions
_ _ (x2,x2, 512,51 | 22/ PV3=4 Y 20@)/3=3 7)) p=003),
q=0(3)
_ _ (x2,x2, %"\ w, x| Z@P=10/3 4, @3@-10/3 7)) v(p) = 103),
v(q) =2(3)
23.e &io (xzw,xz,x~ 'z, x7 1w | 220373 3y ((9)=8)/3) v(p) =00),
v(q) = 1(3)
_ _ (xzw,x2, %"z, %12 | Z2P=1003 4, 23713 p=203),
q=2(3)
=0(3),
2.3.e gu (xzw,xzw,x 'z, x " w | 22 (P)/3-3 [y 2v(@)/3-3) p=00)
q=0(3)
_ _ (xzw, xzw,x~12,x" 17 | Z2HP)-10/3 1/(2¥(9)-8)/3) v(p) =2(3),
v(q) = 1(3)
2.3.e 812 (xz,x2,x 2,671z | 2@ (P)=13)/3 4 2(@)/3=3 7)) v(p) =203),
v(q) = 0(3)
_ _ (xzw, xzw,x~ 1 zw,x 1z | Z@P)-10/3 ,2(q)3-3) v(p) =2(3),
v(q) = 0(3)
_ _ (xz,%2,% 12, x 1w | 22034 @@-1013 2y)) v(p) =0(3),
v(q) = 2(3)
_ _ (xz,%2,% ' w,x~\w | 22713 1 (0N@-1D/3 ) p=1(3),
q=1(3)
2 5a g (xh,x’x’y’yxzv(p)/272wv(q)/272h ‘ Z'u(p)/272,wv(q)/272), p = 0(2)’
he(z) q=0(2)
s5b  gu (xh,x,%, y, yP-2x2" D20 | 207272, (y2)00)=502) v(p) = 1(2),
he{y) v(q) = 0(2)
25 au (xh,x,%, y, y" D~ LY@ 2] | (x2) 0017772 (2 2 )¥(@)/272), v(p) = 1(2),
.5.c
h e (x?) v(q) = 0(2)
25d g (xh, x,%, y, y" @257 P72 ) | (x2) 001772 (y2)00)=502), »(p) =1(2),
5. 1
h e (x%y?) v(q) =1(2)
sed g (xh, x,%, y, y" @~ 1?2 | (x2)/ 024 (52 2 ) (@/272), v(p) = 0(2),
he (x?) v(q) = 0(2)
2.6.a g10 (xzw,x,2°3 | 22 P)=7)/5 4y (21(9)=7)/5) p=106),

q=1(5)
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Table 3.4. Continued.

Case g Generating vector Conditions
26b 8w (xzw,x2,x° | 22 (P)=8)/5 41)(27(q)=7)/5) v(p) = 4(5),
v(q) = 1(5)
2.6.b gu (xzw, xzw, x> | 22V (P)=8)/5 4(27(q)=8)/5) p=40),
q=4(5)
2.6.c 4T (xzw,x2,x37 | 22 P)=9/5 4y (21(9)=7)/5) v(p) =205),
v(q) = 1(5)
_ _ (xzwyx2, 53w | Z@P)-85 4/(2¥(a)-8)/5) v(p) = 4(5),
v(q) = 4(5)
2.6.c gu (xzw,xzw, x>z | Z2/P)=9/5 [ (27(9)=8)/5)) v(p) =205),
v(q) = 4(5)
2.6.c 4% (xzw, xzw, X3 zw | 22 (2)=9)/5 4)(27(q)-9)/5) p=20),
q=2(5)
27a & (x4 2w, x, 2@~ 1/33(P)=1/3 | Z@)=4)/3 4 (0(p)=41/3) p=10)
q=1(3)
2.7b an (x4)x,x2v(q)—lz(v(q)+/4(p)—8)/3 ‘ Z(v(p)—4)/3)(Zxﬁ)(v(q)—4)/3) P = 1(3)’
q=1(3)
2.7.¢c g (xloz,x’x2v(q)—9z(v(p)—l)/3 | Z(v(p)—4)/3’(xé)(v(q)—S)/S) 'V(p) = 1(3)’
v(gq) =2(3)
R J— (xloz)x’x2v(q)—9z(v(p)+v(q)—6)/3 ‘ Z(v(p)—4)/3)(XGZ)(v(q)—S)/S) 'V(p) = 1(3)’
v(gq) =2(3)
28a & (3 Z0P) DBy (@-1/3 13 3270, i | Z0(p)=4)/3 3 (la)-4)/3) p=10),
q=1(3)
28b  &u (320534 @13 x3 2700 3z | ZV(P)=5)/3 4 (a)=4)/3) v(p) =203),
v(q) = 1(3)
2.8.¢c n (x2v(p)+2v(q)—1Z(v(q)—l)/3)x3’x8’x4z | (xéz)(v(q)—4)/3)(xs)(v(p)—7)/3) v(p) = 1(3)’
v(q) = 1(3)
28d  gu (PP 2AQ) -2 (P13 3 2 i | (567) ()43 (6)(v(a)-8)/3) v(p)=103),
v(q) = 2(3)
2.13a & (x5, x4 2w, x2 P/ (@15 | Z0p)-4)/5 4y () -4)/5) v(p) = 4(5),
v(q) = 4(5)
213b g” (xS’xl4z,x2v(q)713z(v(p)+1)/5 | Z(v(p)f4)/5) (xl())(v(q)77)/5) V(P) = 4(5))

v(q) = 2(5)
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Table 3.4. Continued.

Case g Generating vector Conditions
214a g (7, y~ 20D /63 @)=V | Z0(p)-1/6 4 0(0)-1)/6) p=4(6),
q=4(6)
214b  &u (3,5, )6 Z0@—4/6 | Z0(=1/6 (56)((p)=5)6) v(p) =5(6),
v(q) = 4(6)
2 14.c Qi (x’xy’yflx(v(p)fl)/3z(1/(q)f4)/6 | (x2) ()76 Z(()-4)/6) v(p) = 1(6),
v(q) = 4(6)
2.14d  &n (3, 5y, y"@=0xOEIZD/3 | (x2)P)=7)/6 (5/6)((@)=5)/6) Y(p) =106,
v(q) = 5(6)
2.14.e g (2,5, Y@ =S xOPHH@/3-2 | (x2)(HP)=8)/6 (x26)(H@)-4)/6) v(p) = 2(6),
v(q) = 4(6)

equivalent. Furthermore, composing the pairs ¥; and Q;; we can show that any gen-
erating vector of G is equivalent to one of them.

Case2.3. Letv = (xplflplzl,xp]fzplzz,x‘lplfplf,x P pg‘
plfi+"pl+s’ for i = 1,2,3,4. Using pair Qg,, if necessary, we can assume that x*> = 1,

| pit,p5t,ps°) and n = 3. Then x° =

plfipz = pi'p3, and G is isomorphic to Z; & Z, ® Z,.

The cases 2.6, 2.7, 2.8, 2.13 are similar and so we omit them.

Next assume that G is isomorphic to Z, & Z, = (X) ® (y) and let x and y belong to
77 1(X) and 7n71(), respectively. Then G is generated by elements x, y and two central
involutions py, p, which satisfy the relations x* = p'p, y" = p$pS2, [x,y] = p|'p}* for
some €1,€,01,02,91,y2 € {0,1}. Clearly for any values of these parameters, the group G
has order 8n.

Case 2.5. Letusassume thatv= (xpl pz,xpl pz,xpl Pz’)’Pl P2>)’xP1 p2 | pi'p5,ps’) and

n = 2.Then palpz =x*=pip; fori=1,2,3andsom = mz mj3. Furthermore, p}' p5? =

y? = p'py and pi'pS’ = (yx)? = x2y?p}'p}* imply that p{' p}* = pi' ™"+ p3 ", Using the

pairs O ;m,, and Wi we can prove that v is equivalent to

Vap = <XP1P2,X %)y xPul+m+aP§2+u3+ﬁ | 152" p5 ) for some «, f € {0,1}.
(3.8)
Two such vectors v, and vy g are equivalent only if pf p2 =p pﬁ 2 Then a pair

(y,¢) of automorphisms of A and G induces their equivalence, for ¢ and ¢ defined by
the assignments y(x1) = x7 1, w(x2) = x5 "5 ', W) = x5 155 ooy, W) = x 1, wixs) =
x5, wxe) = X asx s L, w() = 7 lasxg tas 'xg and by @(x) = x7p)tpl,
e(y) =y~ 9(p;) = pj» j = 1,2, respectively.

By inspecting Table 3.1 we check that the numbers u; are integers only for a surface
of genus g1; if exactly one of elements 6(x;)?" with p; # 1 is a ¢-involution. It is possible
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Table 3.5
Case Presentation of G Bran.data N  Generating vector
n NN g TR N AN AL L] Nk
. (X, y,¢ |y, et [X, yl,cxc !y, cyc XL xmy k) (2,42) amn (EREFD)
= (Zn ® Zy) X Zys m/n, k= —1(n/m)
NN N N T N] AL ] N_] AN O TN NNk
12 (%, 7,¢ 1 y", ¢ [X yl,exc y-t ey y X xmy k) (2,3,6) omn (FE25,2)
=(Zn®Zy) X Zg;m/n, k> —k+1 = 0(n/m)
s | EREEERGORELETY sy (BERETD
= (Zn®Zy) X Zss m/n, k> —k+1=0(n/m)
” (X,5,¢ 1y, [X, yl,exe 1%, cye ' y,xmy k) (29 IMN (Ef?%’ T?’l,
= (Zy ® Zn) X Zy; M = ged(m,n, k), N = mn/M cyix)
X750 (%YX= 5 = Zy @ Z; o~
L5 (X, y: 9% [ y],X" =y ) 2 Zy & Zy (1:-) MNP
M = ged(m,n, k), N = mn/M

only for i =4 or i = 5 and the both possibilities provide equivalent actions. For exam-
ple assume that A has the signature [4°,28~19/4]  the remaining cases can be proved in
a similar way. If apart from the only ¢-involution, there are p- and g-involutions among
the elements 0(x;)?' with p; # 1, then G = (x: x*) ® (y: y*) and the generating vector of
G is equivalent to (3.8), where p; = x? and p, = y? or p, = y?x?* according to 6(xs)P5 or
0(x4)P4 is the t-involution. However, the pair (y45,7) induces the equivalence of two such
vectors, where 7 is an automorphism of G defined by 7(x) = x, n(y) = xy’lpﬁ“mpng,
and 7(pj) = pj. Next assume that exactly one of elements 6(x;)?" with p; # 1 is the ¢-
involution and the remaining ones are the same p- or g-involution. If 8(x4)?* is the -
involution, then G is isomorphic to the group (x, y : x4, y*, [x, ] y*) for which p; = x? and
p2 = x*y* in (3.8) while if O(x5)?s is the t-involution, then G is isomorphic to the group
(x,y,z: x4, x2y%, 22, [x,2], [ ,2], [x, y]z), where p; = x* and p, = x?z. The pair (y45,%) in-
duces the equivalence of these two actions once again.

k 1.ks I 0

Case 2.14. Heren=6andv = (xpllplzl,x’lyplfzplf,y’ pips | pitpstps’). Thus pllp‘zSZ =
pipY, pips = pPp3. Since pP'py = (xy)° = (2y?p'py')* = pi "™ py ™, it follows
that y; = r; + 1, +1r3(2) and y, = 51 +5;, +53(2). Using the pairs Oy 1, » we can show that v
is equivalent to (x,x~ 1y, y~'p}" " p3> ™" | pi, pi?, p3*). The numbers u; are integers only
for a surface of genus g1 if one of elements 8(x,)?? or 6(x3)P* is the only ¢-involution
among the elements 6(x;)?" with p; # 1. As in the case 2.5, we can show that both pos-
sibilities provide the equivalent actions, however this time the automorphism y» 3 of the

group A is involved. 0

ux
1

3.2. Classification of conformal actions on a surface X/, Let G be an automorphism
group of a surface X{"? of genus g in range 2p +2q — 10 < g < 2p +2g — 4. By analyzing
the all possible solutions of (3.1) for k = 1 and the classification of finite group actions
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Table 3.6

H Presentation of H p1 P2

H, 2,02, 072,0 7, =(x)®(y) ®(z) ® (W) z w

H, Zy®Zy={(x)®(y) x2 2

H; Zy®Z,®Z, = {x) ® (y) ®(2) z 2

H, (x,y: x4 94, [x, y]x2y2, (x5, v]) x2y? x?

H; (x4 4 [ p1y7) y? x?

Hg (6, y:x%, 94 %, ]y?) @ (z:2%) y? z

H; (x,y:x4,x29%, [x,y]y*) & (z:2%) y? z

Hy (x, 3,z x4, 3292, 22, [x, ¥z, [2,x], [y, 2]) z x?

H, (x,y,2:x%,y%,2%, [x,2), [y, 2], [x, y]2) z w

Hi, Z,® 72y =(z) & (w) z w

H,, Z,®2,&7Z, =(y) ®(z) & (w) z w

Hin Zyn®Zy = (y) ®(2) " z

Table 3.7

1.5 o (A) G g Conditions
a (1;2¢8°1) Hi, £=gs None
b.1 (1;2€172) Hy, 7> 89> 11 p=1(2)andq=1(2)
b.2 (1;26172) Hisxa 27> 9> €11 p=1(2)andg=1(2)
c (1;2€173) Hi; g g1 p=1(3)andg=1(3)
d.1 (1;2&-174) H, I3 p=1(4)andg=1(4)
d.2 (1;2&-174) H, I p=1(4)andg=1(4)
d.3 (1;2(-1/4) H; ) p=1(4)andg=1(4)
d.4 (1;20-10) H, & pq=1(2), p=3(4) or g =3(4)
d.5 (1;2€174) H; L pg=1(2), p=3(4) or q=3(4)
d.6 (1;2&-174) H, L pq=1(2), p=3(4) orq=3(4)
d.7 (1;2€-174) H; L pg=1(2), p=3(4) or q=3(4)
d.8 (1;2€-174) Hy, £ p=1(4)andg=1(4)
d.9 (1;26-D/4) Hipxa % p=1(4)andg=1(4)
e (1;2(-175) His £10 p=1(5)and qg=1(5)
f1 (1;2&-1)/6) Hg gu p=1(6)and g = 1(6)
£2 (1;2(&-1)/6) Hixe gu p=1(6)and g = 1(6)
g (1;26-1/7) H,; gn p=1(7)and g = 1(7)
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on a genus one surface given in [4], we conclude that the corresponding group G has one
of the presentations listed in Table 3.5. According to these cases we will refer to an action
of the group G as to (1.1), (1.2), (1.3), (1.4), or (1.5) action, respectively. In order to state
our results we need some groups listed in Table 3.6. Let us notice that there are only two
pairs of isomorphic groups among them, namely, (Hs, Hs) and (Hy, He).

THEOREM 3.5. The topological type of the (1.5) action on a surface X! of genus g in range
2p+2q—4 < g <2p+2q— 10 is determined by the group of automorphisms G, the signa-
ture of A given in Table 3.7 and the generating vector v, where
v= (h,l | pf””’ )/Z,p?@/z, p?(”/z) in the case (a),
Fy(q /8

v=(xylor 0y " o5 %) in (d.1)~(d.7), (3.9)

Fv/2 Fyp/2n  Fyp/2 ) .
v= <h y 1o oy ph n) in the remaining cases
for some permutation v of the set { p,q,t}, where h denotes the involution p; with fixed points
iftwo of F,, Fy, F; are equal zero and h = 1 otherwise.

Proof. In this case, the group A has the signature o(A) = (1;2,.7.,2). Let x1,...,xr,a1,b
be its canonical generators and let x and y denote 6(a;) and 6(b;), respectively. Then
G= Zy ®Zy = (nm(x)) ® (n(y)) for some positive integers N, M, where M divides N.

The generating vector of G has the form (x,o'f‘1 P yp1 p2 | pit,p5%,p3°), where by (3.2),
uy = Fyp)/2MN, u, = Fy()/2MN, and u3 = F,(;)/2MN for some permutation » of the set

{p,q,t}. Using pairs Y, o, and Op, g, if necessary, we can assume thata; = a, =1 =, =

0.
The elements x, y, p1, p2 generate G and satisfy the relations [x, y] = pi' ™ p5* ™, xM =

€1 €2

p‘f‘p‘;z, yN = pl'py’ for some integers 81,8,,€1,€> € {0,1}. If M = 1(2), then by the rela-
tion yxy~! = xp" " py?™, we obtain xMp}1 " p3> ™ = xM which implies u; +uz = 0(2)
and u; +u3 = 0(2) and consequently p = 1(N) and g = 1(N). Furthermore, exchang-
ing the identity of G for ¢’ in the pair Ys,5,, where ¢’ is defined by the assignment
¢'(x) = xpllpgz, ¢'(y) =y, 9'(p;j) = pj, we obtain the pair Y} ; which induces the equiv-
alence of the actions of G and a group corresponding to §; = §, = 0. In the similar way,
we can prove that for odd N, €; = €, = 0, u; + u3 = 0(2), and u, +us = 0(2).

By inspecting Table 3.1 and the formula (3.2) for ¢ in range g1, < g < g, we conclude
that the numbers u; are integers if and only if M = 1 and N divides F;/2, except g = go,
where the additional case M = N = 2 is possible.

fM=1thenG=Zy®Z,8Z, =(y)®(p1) ® (Pz) and v =(l,y |P1 ,p2 2, (p1p2)™)
or GEZn®Z, =(y)®(p1) and v = (L, y | pi", (yN)*2,(yNp1)*). These two actions are
equivalent if and only if N is odd.

Now assume that ¢ = gg and M = N = 2. For i = 1,2, let us define the automorphisms
vi: A — Aand ¢;: G — G by the assignments y,(a) = ab, y1(b) = b, y1(x;) = x; for j =
L...,r and ¢1(x) = A ¢1(y) =y, ¢1(p;) = p; and by ya(a) = b, y2(b) = a, ya(x1) =
XL o pa(x) = x7 ! and o (x) = y, ¢2(y) = x, ¢2(pj) = pj, respectively. Then using the
pairs (y;, ;) and Wi, we can prove that the action of G is equivalent to one of d.1-d.7 in
Table 3.7. O
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THEOREM 3.6. Fori=1,2,3,4, the (1.i)-action on a surface X{D’q of genus g in range 2p +
2q—10 < g <2p+2q—4is possible only for g = 2p +2q — 7. The topological type of Cases
1.1, 1.2, 1.3, and 1.4-action on such a surface is determined by the group of automorphisms
G, the signature of given in Tables 3.8, 3.9, 3.10, 3.11, respectively, and the generating vector
v, where

— — uytus _urt+u u u u .
(c2x 0y tept o py ™ It patps), i=1,
utu Ur+u: u u u .
(Sx,cy,cpt ™ pa™™™ | it p%,p57), i=2,
v =1 (3.10)

uptus _ur+us | up
P1

— — Uu; Uu .
(c;c2x,x7 epy ™ p P23 ) i=3,

ur+us u2+u3| u
P

-1 —1 aa—1y—1 U U .
(7, ye ey x ™ pr o p; 1hp2hps), =4,

and v denotes a permutation of the set {p,q}.

Proof. By inspecting Table 3.1 and the formula (3.2) for g in range gi» < g < g6, we con-
clude that the actions (1.1)—(1.4) are possible only on a surface of genus gy if both el-
ements X and ¥ in the presentation of G have the orders 2 and exactly one of elements
0(x;)?i is the t-involution for some i with ZIGI/ pi=8.

Case 1.1. G is generated by the elements ¢ = 0(x,), x = 0(x2)?0(x1), y = 0(x2)0(x1)0(x2)

and two central involutions p;, p, which satisfy the relations y? = p{'p5*, ¢* = p?p3,

cxc™l =y 1p T eyl = x, [x, y] = pP T pY "™ for some €1, €, € {0,1}. Two groups
corresponding to different values of parameters €, €, have different numbers of elements
whose squares are equal to p{' p5* and therefore their actions are not equivalent. Let us no-
tice that x, y, p1, and p, generate a subgroup of G isomorphic to H; for some i = 7,8,9
and G =~ H; x (c) if pi’p5y =1 or G = (H; x {(c))/{c*p}’p3) otherwise.

The generating vector of G has the form (c~2x,c, y 'cpy' ™ p5> ™ | pi',p5%,p5’). The
numbers u; are integers if and only if exactly one of elements 6(x;)* or 6(x3)* is the only
t-involution among the elements 0(x;)?. The pair (y» 3, ¢) induces the equivalence of two

actions corresponding to both possibilities, where y, 3 is given by (2.8) and ¢ is defined
213 Sr+s3 uy U

by ¢(x) =y~ (y) = xp7" " p3 ™, 9le) = ylepypy’

Case 1.2. Here 6(x3)P* is the only t-involution among the elements 6(x;)?:. The group
G is generated by the elements x = 6(x1x,)%0(x1), ¥y = 0(x1x2)*0(x2), ¢ = 0(x1x2) ! and
two central involutions p;, p, which satisfy the relations ¢® = pi’p3’, cyc™! = x~ypi’py,
cxc™t = ypipy and [xy] = pi'""pd ™. Since y? = cpic! = (x7lypPpy)? =

x72y2p " p T it follows that x> = y? = p'?p5 ™. Thus x, y, p1, and p, generate a
subgroup of G isomorphic to H; and G ~ (H7 x (c))/(c°p}’p3 ). Any generating vector of
G is equivalent to (c3x,c2y,cp" ™ p5 ™™ | pi1, p52,py’), where u; are defined by (3.2) (see

Table 3.9).
Case 1.3. Now G is generated by elements c=0(x;), x=0(x1)?6(x2), y=0(x1)?6(x2)*60(x1)?

and two central involutions py, p; satisfying the relations cxc™! = x71y, cyc™! = x~1pPp3,
[x, y] = pjiretmtts gl s [ o3 — plipSt Thus y? = x2 = [x, y] and so the elements
X, ¥, p1, and p, generate a subgroup of G isomorphic to Hy if rj +rm + 13+ u; +us =

0(2) and s; + sy + 83 + ur + us = 0(2) or to H; otherwise. Furthermore, G = H; x (c) if
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Table 3.8
Case1.1| T=0(A) Presentation of G u; U Us Conditions
. (Hix (c:c®))ctpa);
al [4,82,2-17/16] 1l vp)=7  ¥q)-5 4 v(p)=7(8),
7<i<9| 7 xXe =y P 8 8 »(q)=5(8)
cycl=x
. (Hix (c:c®))Actpa);
b.i, [4,82,2(-17)/16] 1.1 v(p)-3  v(q)-9 4 v(p)=3(8),
7<i<9| 07 e =y 8 8 »(q)=1(8)
cycl=x
. Hz X (C:C4)7 ( ) 3 ( ) 3 (p) 3(8)
b (g-5)/16 L wp)-3  wg)-3 ¥p)=3(8),
7<izo | 2482 Iexet =y, 4 8 8 »(q) =3(8)
cycl=x
di Hie fezch; (P)-7 g -3 Wp)=7(8)
-5 2 g H(g-13)/16 R v(p)— wg)—=3  ¥(p)=7(8),
7<izg | 4982 It =y, 4 8 8 v(q)=3(8)
cyct=x
) (H; % {c:c®))/{c*pa)s
€.1, 2 82 z(g,g)/l(,] T V(P) -3 V(q) -5 4 V(P)E-”(s),
7<i<9| 77 xe =y P 8 8 7(q)=5(8)
cyct=x
Table 3.9
1.2] T=0(A) Presentation of G u; U U; Conditions
(H7 % {c:c'))/{cp1);
wWp)-3  w(g)-3 P=3012)
a | [2,3,12,2@924]  cxc7l =y, 0 (pl)z (ql)z 7=3(12)
cycl=xly
(H7 % {c:c'))/{c%p1);
=7(12),
b [2,6,12 2(g—13)/24] cxc! =y 0 V(P)*7 V(q) -3 V(P) - (12)
,6,12, s 12 12 v(q) = 3(12)
cycl=x"lyp,
(Hy x {c:c"))/{cps); _
¢ | [4,3,12,267724]  cxet = Ya)=3 - Ap)=9 o ahIany
P} > - }/Pz, 12 12 ’V(q) = 3(12)
cycl=x"ly
(Hy x {c:c'))/{c’ps); N
d | [4,6,12,262]  cxcl = Y@)=7 Ap)=9 0 =
>0, 12, =Jp2 12 12 v(q) =7(12)
cyet=x"lyp
(Hy x {c:c'))/{c’ps); N
e | [4612,2692] cxel = vq)-3  v(p)-13 . v(P)f 1(12),
,6,12, =Yp2 B B v(q) = 3(12)
cycl=x"lyp,
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Table 3.10
1.3 | 7=0(A) Presentation of G u, U us Conditions
H; x {c:c);
=3(12),
3 B B v(p)—3 v(q) -3 p
a.l | [32,6,2679/12]  cxcl=x71y, 0 6 6 q=3(12)
cyct=x71
H, X {c:c’) 9(12)
_ _ pP=E >
a2 | [3%,6,26712]  cxcl=x71y, Mx V(q)T3 0 q=9(12)
cyct=x71
H; x (c:c”)
_ _ v(p) =3(12),
a3 | [32,6,26712]  cxcl=x71y, Mx V(q)TS 0 »(q) = 9(12)
cyct=x71
H; x {c:c);
_ _ v(p) =5(12),
cl | [3,62,26912]  cxcl=x71y, Mf M; 0 v(q) = 3(12)
cyct=x"p,
H; x {c:c); (p) = 11(12)
_ _3 np)= >
c2 | [3,62,2612]  cxcl=x71y, Mj % 0 v(q) =9(12)
cyct=x"1p,
H, x {c:c); (p) = 5(12)
_ _3 Wp)= s
3 | [3,6526°912]  cxel = xly, M{)S % 0 w(g)=9(12)
cycl =x71p;
H; x {c:c); (p) = 11(12)
-5 -3 "= ’
c4 | [3,62,267912]  oxch=xly, 0 % % v(q) = 3(12)
cycl =x71p,
(Hy x {c:c®))/{cpr); B
o wp)=5 g -5 p=5(12),
A1 | [63,2@13912]  oxe = xly, - - i = 0 q=5(12)
6 6
cyct=x"1p,
(H7 x {c:c®))/{cp1);
_ _ p=11(12),
d.2 [63 g 13) /12] cxc = x—ly, 0 M V(q)—s q= 11(12)
6 6
cyct=x"1p;
(H7 % {c:c®))/{3py);
7 P2 WD) -5 Wp)-5 v(p) =5(12),
d.3 | [6%,2&71312]  excml = x7ly, 6 " & 0 v(q) = 11(12)

cyct=x"1p,
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1.3 |t=0(A) Presentation of G U U, U3 Conditions
(H7 % (c:c®))/{Spa)s
_7 _3 v(p) =7(12),
da4 |[63,2€71912]  cxcl =x7ly, 0 v(p; V(q)6 »(q) = 3(12)
cyct=x"1p,
(Hi x {c:c®))/{cp1); _
45 | [6.2672]  exe = 50 vp)-7  v(qg)-3 0 »(p) = 1(12),
: ’ ¥ 6 6 v(q) =9(12)
cyct=x"1p
(Hy % {c:c®))/{cp1);
wWp)—7  v(q)-3 v(p) =7(12),
d6 | [60,26 ] exet =x7ly, (pé (q)6 0 (g) =9(12)
cyct=x"1p,
(H7 % (c:c®))/{Spa)s
_3 _7 v(p) = 1(12),
d.7 | [6%,2&7139/12]  cxcl = x71y, V(q)6 v(p; 0 »(q) = 3(12)
cycl=x"1p,
Table 3.11
Case 1.4 T=0(A) Presentation of G u; U, U3 Conditions
. H;x {(c:c?); (=3 g)-3 304)
a, 34,2065/ - wnp)=3 vg)=3 p=>4)
d<i<7 [2°,4,287%] cxc = x71, 0 1 1 q=304)
cyc=y!
bi H;x (c:c?); (=3 »(g)5 (p) = 3(4)
L 2 42 28] fyp — pe np)=> q)=»> Yp)=ta),
4<i<7 [274)2 ]CXC—.X 5 4 4 4 V(q)El(‘l)
cye=y'p
. H;x (c:c?); (-7 )3 304)
CL (g-13)/ - wWp)-7 v(@)-3 p=34)
sxizy | BE2ZT  ee=xTp, ! 4 4 q9=314)
cye=y'p
di H;x (c:c?); (=5 (p)—5 () = 1(8)
1, 3 H(g-13)/8 ol »p)— vp)— wp)= >
1<iz3 | BT ee=xTp, 4 4 Yo =1
cye=y'p
(H;i % {c:c*))/{pa)s -3 -9
Zl< s [4%,2(-17)/8] e P2 V(qi V(le 4 Wp) = 3(4),
T e=y »(q) = 1(4)
(Hi % {c:c*))/{p1)s
fi, _ vp)=7 w(p)-5 P =3(4),
( )/8 — = MY S
seizcy | B2 oe=yTipp 4 4 * q=3(4)
cxc=x"1
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Table 3.12
Case Presentation of G Bran. data N Generating vector
0.1 G is trivial (=) 1 —
0.2 Zy = (X:xN) (N?) any (x,x71)
03 Dua-GIEFGYY (25 ven  (BFE) )
0.4 Ay = (%5 : 359, (Xy)%) (2,3%) 12 (x5, (xy)™")
0.5 S =(x%,5:5%,5°, (X)) (2,3,4) 24 x5, &)™)
0.6 As = (%, 5 :X%,5,(Xy)°) (2,3,5) 60 (x5, (xy)™")

pipy =1or G= (H;x (c))/cpl'py if pi'p5 # 1. The generating vector of G has a form
(c,c2x,x Lept T py e plt, p32,py’). The numbers u; are integers if and only if exactly
one of elements 0(x;)?, 6(x)3, or 8(x3)? is the only t-involution however the all possibil-

ities provides the equivalent actions (see Table 3.10).

Case 1.4. Here 6(x;)? is the t-involution for exactly one i in range 1 <i <4 and it is
no importance for which of them. Here G is generated by elements x = 6(x;)0(x,), y =

0(x3)0(x1), ¢ = O(x;) and two central involutions p;, p, which satisfy the relations cxc™! =
—1 N1t s1tsy -1 _1 s sitss i1

xRy ey =y T T [, ] = py P37 The generating vector of

G has the form (c,c™'x, yc™ eyt x1p1 " p32 5 | pit, p32, p3?). Using pairs (y12,¢) and

(¢,u), where @, ¢, and u are defined by ¢(x) = x, p(y) = yxp?p%l, o(c) =c'x, 9(pi) = pis
Plxr) = x1"5 Plar) = xixs 'xy !, plaes) = xuey 'y !, ples) = xpxaxsxg ' xs ooy P!, plxs) =

X 9() = x5 and by p(e) = ¢ ulx) = ypi " p3 T, uly) = xpi T p " ulp)) = pj,
we can prove that the action of G is equivalent to one of those listed in Table 3.11. O

3.3. Classification of conformal actions on a surface X}*!. By Lemma 3.1, for any inte-
gers p,q,ginrangeq > p > 0and2q — 1 < g < 2p+2q+ 1, there exists a Riemann surface
admitting p- and g-involutions whose product is a (g — p — g)-hyperelliptic involution.
According to [8, Theorem 3.7], these p- and g-involutions are central and unique in the
full automorphism group G if g >3g + 1. By analyzing the all possible solutions of (3.1)
for k = 0 and the classification of spherical groups given in [10], we conclude that the
corresponding group G is isomorphic to one of the groups listed in Table 3.9. By argu-
ments similar to those in the proofs of the previous theorems, we obtain the topological
classification of actions induced by G on a surface X;*? with central p- and g-involutions.
TurOREM 3.7. The topological type of the action on a surface X{'! of genus g >2q — 1 is de-
termined by the finite group of automorphisms G, the signature of A given in Table 3.13 and
the generating vector listed in Table 3.14, where v denotes a permutation of the set {p,q,t}.
In particular, these tables determine the actions on any pq-hyperelliptic Riemann surface of
genusginrange2p+2q—2<g<2p+2q+1for5<p<q<2p-3.
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Table 3.13
Case T=0(A) Presentation of G Conditions
0.1 [2873] (z:22) & (w:w?) None
0.2.a [N,N,2&3/N] (x:xMY® (z:22) @ (w:w?) None
0.2b  [N,2N,2@+2/N] (x:xNY @ (z:2%) N=1(2)
0.2.c [2N,2N,2&+VU/N] (x:xNYy @ (z:2%) None
0.2.c  [2N,2N,2@+VU/N] (x:xNYy @ (z:2%) N=1(2)
0.3.a  [2,2,N/2,26tN] (x,y: 35,92, ()N @ (2:2%) & (w: w?) N=0(2),N=>4
0.3b  [2,4,N/2,2@IN=12]  (x y 15t yN2 (xy)2, (x7' y)?) @ (2: 22) N=02),N=>4
0.3.c [4,4,N/2,2(@+3/N-1] (x,y:xh, %2y, (xy)V2) @ (z:2%) N=02),N=4
0.3.C  [4,4,N/2,26t/N-1] (x,y: x4 94 (xy)V2, (32 )2 92, (2x)%x2) N =0(4)
0.3.d  [2,2,N,26TDN] (x,y: 35,92, (xy)Ny @ (z:2%) N=02),N=>4
0.3.e  [2,4,N,2(tD/N-1/2] (0, y 102, YN, xyxyN Yy @ (21 22) N=02),N=4
0.3.  [2,4,N,2TD/N-172] (x,y: 35,94 )N, (2%)2, ((xy)V2x)?) N=02),N=>4
0.3.f (4,4,N,2&*D/N-1] (x,y : 2yNV2 9N x7lyxy) @ (z:22) N=02),N=>4
0.3.2  [4,4,N,2t/N-1] (o, y 1 xt,x2 2, (xy)N) N=02),N=4
0.3.f7  [4,4,N,26TD/N-1] (x,y 1 xtx2(xy)V2, y4, y2xy?x ) N =0(4)
0.4.a [2,3,3,2(&3)/12] (6, y:x%, 9%, (xy)?) @ (z:2%) © (w:w?) None
0.4b  [2,3,6,2&"112] (x,y:x% 9, (xy)) @ (z:22) & (w: w?) None
0.4.c [2,6,6,2875/12] (x,y: %9, (xy)) @ (z:2%) & (w: w?) None
0.4.d  [4,3,3,267312] (0, y x4, 93, (xp)%, yx2y~ 1 x?) @ (2) None
0.4.e (4,3,6,2&-7/12] (x,y:x4, 9%, (xp), yx?y~1x%) @ (z) None
0.4.f (4,6,6,2&-1D/12] (x,y: x4, 9%, (xy)3, yxty~'x?) @ (z: 22) None
0.5.a  [2,3,4,206324] (0, y:6%, 9%, (xy)*) @ (z:2%) & (w: w?) None
0.5b  [2,6,4,2875/24] (6, y: 35,9, (xy))y @ (z:2%) & (w: w?) None
0.5.c [2,3,8,2(¢73)0/24] (2, y:x%, 9%, (xp)8, (xp)t (yx)h) @ (z: 2%) None
0.5.d  [2,6,8,2&71D/24] (2, y:x%, 9%, ()8, (x)* (yx)*) @ (z: 2%) None
0.5.e (4,3,4,28°9724] (x,y: x4 93, (xy)t yxty~'x?) @ (z: 22) None
0.5.f  [4,6,4,26717/24] (0, y 0%, 93, (), yx2y~1x?) @ (z: 22) None
0.5.g (4,3,8,2(8719/24] (x,y:x4, 9%, (xy)8, 2 (xy)*) ® (z: 2%) None
0.5.¢"  [4,3,8,2&719/24] (x,y:x%, 9%, (xy)8, x?yx2y~ 1, (xy)*x(xy)*x~!)  None
0.5.h  [4,6,8,28729/24] (x,y x4, 93, (xp)8, 2 (xy)*) @ (z: 22) None
0.5 [4,6,8,28729/24] (x,y: x4, 9%, (xp)8,x?yx2y~ 1, (xy)*x(xy)*x~')  None
0.6.a (2,3,5,2(8+3)/60) (6, y:x%, 9%, (xy)) & (z:22) & (w: w?) None
0.6.b  [2,3,10,29/60] (x,y:x% 9, (xy)) @ (z:22) & (w: w?) None
0.6.c [2,6,10,28-29/60] (x,y: x5, 9%, (xy)®)y @ (z:2%) & (w: w?) None
0.6.d [2,6,5,2&"17/60] (0, y:6%, 9%, (xy)°) ® (z:2%) ® (w: w?) None
0.6.e (4,3,5,28-27/60] (x,y x4, 9%, (xp), yxty~Ix?) @ (z: 2) None
0.6.f (4,3,10,2(8-39/60] (x,y:x%, 9%, (xy)?, yxty~'x?) @ (z: 22) None
0.6.g  [4,6,5,2647/60] (x,y 104,93, (xy)%, yx2y~1x?) @ (z: 22) None
0.6h  [4,6,10,239/60] (x,y: x4, 9%, (xy)?, yxy~'x?) @ (z: 22) None
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Table 3.14

Case Generating vector
8

0.1 (| 202 wha2 (zw)Ern/?)
0.2.a  (xzitusypretis y=1| 2B 2N 4 /2N (7)) Fun/2N)
0.2b (xNH’x—l | (xN)(Fv(P)’2)/2N,ZFV(q)/2N, (xNz)Fv(,)/ZN)
0.2.c (x1+N(u1+u3)zu2+u3’x—l | (xN)(Fv(P)—4)/2N’sz(q)/2N’ (xNZ)FV(t)/ZN)
0.2.c (x,xN’lz | (xN)(FV(P)—2)/2N,Z(F,,(q)—2)/2N)(xNZ)FV(t)/ZN)
03.a  (xz17u, ywats (xy) =L | 250N F@/2N (zy)Fro/2N)
0.3.b ((xy)—lzu2+u3’x1+2(u1+u3)’y | (xz)FV(P)/2N—1/22FV(q)/2N(xzz)Fv(t)/ZN)
0.3.c (xl+2(u1+u3>’yzuz+u3’(xy)—l | (xZ)FV(P)/ZN—I)ZF‘,@QN’(xzz)Fy(f)/ZN)
0.3.C (x”z('”*"3),)/”2(“2*”3),(xy)’l | (xz)FV(P)/ZN—l/Z)(yz)Fv(q)/ZN—l/Z)(xzyZ)Fv([)/zN)
0.3.d (xz“2+”3,y(xy)N/z(‘“*“’),(xy)’l | ((xy)N/Z)(Fv(P)"‘)/ZN,ZFv(q)/ZN’((xy)N/ZZ)va/ZN)
03 (g, (yx) ),y | (yV2)(Fup N2 g N (N2 z)Fio /2N
0.3.e (x(xy)N/z(u2+u3))y1+2(u1+u3))(xy)—l | (y2)(Fv<p>)/2N*1/2,((xy)N/2)(Fv<q)*4)/2N)(yZ(xy)N/Z)vaON)
0.3.f (x”z“”*'“),(yx)*lz’"“ﬂ,y | (x2) Bt =4/2N=1 2B /2N (52 7Y Fyn/2N)
0.3.0 (x1+2(u1+u3)’y(xy)N/2(uz+u3),(xy)—l [ (xZ)Fv(w/zN*l)((xy)N/Z)(Fv<qr4)/2N’(xZ(xy)N/Z)FV(,)/zN)
0.3.£ (x1+2(u1+u3))y1+2(uz+u3),(xy)—l | (xZ)(FV(P 4)/2N-1/2 (}’ ) @/2N-1/2 (x )Fy(l)/ZN)
0.4.a (xzu1+uswu2+u3’y’ (xy)—l |ZFV(,>)/24) q)/24 (ZW) )/24)
0.4.b (xz™ Hus+l s J Y (xy)—lz) Z(Fv(prs)/%, whna/24 (ZW)FW)/M)
0.4.c (XZM1+M3+1 w“”‘““,yz, (xy)—lw’ 2Enp) 78)/24) W(Fv(q)—s)/zzt) (ZW)FV(f)/24)
_ (xzu1+u3wu2+u3’yz’ (xy)flz | Z(Fv(p)*lé)/z‘l Fy(q)/24 (ZW) ,)/24)
4d (x1+2(u1+u3)zuz+u3,y’ (xy)—l | (xZ)(Fy(P)—12)/24’sz(q)/24)(xzz)Fv(,)/zz;)
0.4.e (x3+2(u1+u3)Zu2+u3)y’y—1x | (xz)(Fv<p>*20)/24)ZFv<q>/24, (xZZ)F”U)/M)
_ (x1+2(u1+u3)zu2+u3+l’y) (xy)’lz ‘ (xz)(pr)*12)/24’2(&(@—8)/24,(xzz)pv([)/u)
04.f (x1+2(u1+ua)zuz+u3’ny’yflx | (xZ)(Fv(p)—28)/24’ZFv(q)/24’(xzz)Fm)/zzt)
. (x1+2(u1+u3)zuz+u3,yz’ (xy)"z | (xZ)(Fv(P)—12)/24’Z(F,,(q)—16)/24,(xzz)FVm/M)
_ (x3+2(u1+u3)2u2+u3+1,x2y, (xy)*lz | (xz)(FW)—20)/24)Z(FV(,1)—8)/24) (xzz)FV(t)/M)
_ (xa+z(u1+u3)zu2+u3,Zy,ysz | (xZ)(Fv<p>*12)/24,2(&(4)’8)/24, (x2z) B =8)/24)
0.5.a (xzu1+u3wu2+u3’y’ (Xy) 1 |ZF7, 17)/48 F,,(q)/48 (ZW) ,)/48)
0.5.b (xzu1+u3+1’yz’ (xy)"w””’“ |Z(FV(P)—lé)/48WF,,(q)/48’(ZW)FW)/A}S)
0.5.c (xzu2+u3)y, (xy)—1+4(u1+u3) | ((xy)4)(F”(W712)/48,21:”(‘1)/48,((xy)4z)FV(f)/48)
0.5.d (xzuz+u3 )’(x)/)4 (xy)3+4 uy+us) | ((X}/)4) (p) —28)/48 Z >/48((xy)4z)Fv(f>/48)
_ (xzu2+us+1 vz, (xy) 1+4(uy +u3) ‘ ((xy)4) (1) 12)/48,Z(F"(2 —16)/48 ((xy) ) 3)/48)
0.5.e (x”z(‘“”“),y, (xy)—lzuz+u3 | (x2) Fy(p)—24)/48’sz(q)/4s)(xzz)Fv(3)/48)
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Table 3.14. Continued.

Case Generating vector

0.5.f (a3 204us) x2y (xy)~Lguatus | (52)Fup 4048 2B/ 48 (42 ) Foiy/48)

[2pt]— (x1+2(u1+u3),yz’ (xy)—lzuz+u3+1 | (xZ)(Fv(p)*24)/48’2(5(,;)*16)/43’(XZZ)Fv(;)/‘lS)

[2pt]5.g (xl+2(u1+u3)’y’ (xy)—lzu2+u3 ‘ (xz)(Fv(p)—36)/48’ZF,,(q)/4)(xzz)Fv(t)/zL)

[Zpt]O.S.g’ (XHZ(”’“”),)’, (xy)—1+4(u2+u3) | (xz)(FV(P)’z‘l)/“S)((xy)‘*)(F"('i)’lZ)/“S,(xz(xy)4)Fv(t)/48)
[2pt]0.5.h (x3+2(u1+u3)’x2y’ (xy) =1zt | (x2) ) =52/48 SFyq/48 (2 7\Fn/48)

[2pt]— (x1+2(u1+u3),yz’ (xy)—lzuz+u3+1 | (xZ)(Fv(p)*36)/48’2(5(,;)*16)/48’(XZZ)Fv(L)/‘ls)

[Zpt]O.S.h’ (x3+2(u1+u3)’x2y’ (xy)‘ 1+4(uz+u3) ‘ (XZ)(FV(,,)—40)/48, ((xy)4)(Fv(q)—12)/48) (x2 (xy)4)Fy(,)/48)

_ (x1+2(u1+u3),y(xy)4)(xy)3+4(u2+143) | (xz)(Fv(p)724)/48’((xy)4)(Fv(q)728)/48’(xz(xy)4)Fy(3)/48)

0.6.a (xztrmwiates y (xy)~1 | 20120 4y Pra/120 (74y)Frn/120)

0.6.b (xzu1+u3+lwu2+u3 , s (xy)’lz | Z(Fv(p)—24)/120’ WFv(q)/IZO’ (ZW)F"(')/IZO)

0.6.C (xzu1+u3 Wu2+u3,yz, (xy)—lz | Z(F,,(l)—64)/120) WFv(z)/UO’ (ZW)FV“)/IZO)

_ (xzu1+u3+lwuz+u3+l)yw’ (xy)’lz | Z(Fv(l)—24)/120)W(FV(Z)—40)/120) (ZW)F“)/HO)
0.6.d (xzu1+u3+lwuz+u3’yz’ (xy)’l | Z(Fy(p)*40)/120)WFV(‘1)/120,(ZW)F.,,(r)/IZO)

0.6.e (x1+2(u1+u3)zu2+u3’y’ (xy)—l ‘ (xz)(FV(P)’m)/le,ZFV('I)/IZO’(xZ)FV(I)/IZO)

0.6.f (x3+2(u1+u3)zu2+u3’y,yqx | (x2)(Fv(p)*84)/120)ZF1,(4)/120’(x2Z)FV([)/120)

_ (x1+2(u1+u3)zu2+u3+l’y’ (xy)—lz | (xz)(Fv(p)760)/120’Z(Fv(q)724)/120) (XZZ)FV(”/IZO)
0.6.g (x3+2(u1+u3)zu2+u3+1)yx2)(xy)q ‘ (xz)(Fv(p)—100)/120’ZFV(‘1)/120,(xzz)F‘,(t)/IZO)

- (x1+2(u1+u3)zu2+u3+l’yz’ (xy)’l [ (xZ)(FV(p)’GO)/lzo’Z(Fv(q)*40)/120’(xzz)Fv(,)/IZO)
0.6.h (x1+2(u1+u3)zu2+u3’xzy’y—lx ‘ (x2)(FV(P>’124)/120,25(4)/120, (xzz)FV(t)/IZO)
_ (x3+2(u1 +u3)zu2+u3+l’x2y’ (xy)’lz\ (xz)(Fv<p>7100)/120)Z(Fv(q>*24)/120’ (xzz)F,,(3)/120)

_ (x3+2(u1+u3)zuz+u3+l)Zy’y—lx | (xz)(FV(P) —84)/120’Z(Fy(q)—40)/120) (xZZ)Fv(r)/IZO)

4. Full actions on pg-hyperelliptic Riemann surfaces

THEOREM 4.1. For any integers2 < p < q < 2p, let X be a pg-hyperelliptic Riemann surface
ofgenusg >3q+1inrange2p+2q—10<g<2p+2q+1 excethf’q of genus2p+2q—3
and X2 of genus 2p +2q — 7. A group G of order 4N is the full automorphism group of X
if and only if G appears in one of Tables 3.3, 3.7, 3.8-3.11, 3.13 in such a way that the corre-
sponding triple (case; u; ) is different from (0.2.c;1;N — 1), (0.2.¢;2;2N — 1), (0.2.c3 15N —
1), (0.3.f30;N — 1), (1.5.d.4;1;5), (1.5.d.5; 155).

Proof. Let G = A/T be a group of automorphisms of a surface X = /T’ determined in
theorem. If the signature 7 of A does not appear in the first column of [11, Tables 1.5.1 or
1.5.2], then A can be chosen to be a maximal [11] and so G can be assumed to be the full
group of automorphisms of X. In the other case, A is always contained in an NEC group
A’ and signatures 7’ of such groups are given in the second column of the corresponding
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row. However, most 7’ gives rise to the action on a surface which does not satisfy the
conditions of theorem or its genus g’ is distinct to g. Consequently, we need only to
examine the cases when A has one of the signatures: [2,2N,2N], [2,2,2N,2N], [4,4,N],
or (152). If for every epimorphism 6 : A — G whose kernel I has signature (g;—) and
/T is pg-hyperelliptic, there exists a Fuchsian group A’, a group G’, group embeddings
i:A= A, j:G= G, and an epimorphism 6’ : A’ — G’ such that 1 # [A": A] = [G: G]
and 0" -i=j-0,then G=A/T C A/T =G < Aut(X) for all pg-hyperelliptic surfaces X
of genus g on which G acts as a group of automorphisms.

First assume that 7 = [2,2N,2N] and 7’ = [2,4,2N]. Let A" be a Fuchsian group with
the signature 7’ containing A and let y1, 2, y3 be its canonical generators. Clearly x; = y3,
X2 = y3, and x3 = y; y3y; belong to A and have orders 2, 2N, and 2N, respectively. More-
over, it is easy to see that x;x,x3 = 1 and x1, X3, x3 generate a normal subgroup of A’ of
index 2. So x1, X3, x3 form a system of canonical generators of A and consequently, the em-
bedding i: A — A’ is induced by the assignment: i(x;) = y3, i(x2) = y3, i(x3) = y1y31. By
theorems of the previous section, G has the presentation 0.2.c or 0.2.c’ with u = 1. Thus
G = Zoy ® Z; = (x) @ (z) and the generating vector of G has the form v = (z,zx,x™!) or
v = (xNz,x,xV"12), respectively. The case 0.3.¢’ with u = 0 determines the presentation
of G'.So G’ = (a,b:a* b* (ab)*M,(b*a)?,((ab)Na)?) and the generating vector of G’ has
the form v' = (a,b,(ab)1). It is easy to check that the assignment j(x) = ba, j(z) = b* in
the case 0.2.c or j(x) = (ab)7!, j(z) = (ab)Nb? in the case 0.2.c’ gives a group monomor-
phisms j : G — G’ consistent with an epimorphisms 8: A — Gand 0" : A" — G’ represent-
ing by the generating vectors v and v'.

Next assume that 7 = [2,2,2N,2N]. Then G has the presentation 0.2.c or 0.2.c’ with
u=2.5 G=Zn®7Z) = (x) ®(z) and v = (z,z,x,x7 ') or v = (z,xV,x,xN"2), respec-
tively. The signature 7" = [2,2,2,2N] appears in case 0.3.d with u = 1. Thus G’ = (a,b:
a2, b%, (ab)*N) @ (c: c?) and v' = (c,ca,b,(ab)~!). In the case 0.2.c, we can define i and
j consistent with 0 and 0 by the assignments i(x;) = y1, i(x2) = Y2012, i(x3) = y3V4¥3,
i(x4) = ys, and j(x) = ab, j(z) = ¢, respectively. In the case 0.2.¢} the required i, j do not
exist since otherwise i(x3) and i(x4) would be conjugated with y, and by the equations
jO(x;) = 0"i(x;), both images j(x) and j(z) would belong to the subgroup of G" generated
by ab and consequently, j(G) would have the order not exceeding 2N, a contradiction.

If T =[4,4,N] and 7’ = [2,4,2N], then G and G’ have the presentations 0.3.f” and
0.3.€) respectively, with u = 0. So G = (x, y : x4, x2y%, (xy)N), v = (x, y, (xy)~!) while G’ =
(a,b:a?, b*, (ab)?N,(b*a)?,((ab)Na)?) and v' = (a,b,(ab)~!). We can define the embed-
dings i and j by the assignments i(x;) = y2, i(x2) = y1 291, i(x3) = (y2y1) 2 and j(x) = b,
j(y) = aba, respectively.

Finally, if 7 = (1;2) and 7" = [2,2,2,4], then G has the presentation 1.5.d.4 or 1.5.d.5
with u = 1 and it is isomorphic to Hy or Hs while G” has the presentation 1.4.a.4 or 1.4.a.5
with u = 0 and so it is isomorphic to Hy X Z, or to Hs x Z,. Now i and j are defined by
i(x1) = yi,i(a) = y1y2,i(b) = y3y1 and by j(x) = x, j(y) = y, respectively. O
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