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The concept of the zero-divisor graph of a commutative ring has been studied by many
authors, and the k-zero-divisor hypergraph of a commutative ring is a nice abstraction of
this concept. Though some of the proofs in this paper are long and detailed, any reader
familiar with zero-divisors will be able to read through the exposition and find many of
the results quite interesting. Let R be a commutative ring and k an integer strictly larger
than 2. A k-uniform hypergraph Hk(R) with the vertex set Z(R,k), the set of all k-zero-
divisors in R, is associated to R, where each k-subset of Z(R,k) that satisfies the k-zero-
divisor condition is an edge in Hk(R). It is shown that if R has two prime ideals P1 and P2

with zero their only common point, then Hk(R) is a bipartite (2-colorable) hypergraph
with partition sets P1−Z

′
and P2−Z

′
, where Z

′
is the set of all zero divisors of R which

are not k-zero-divisors in R . If R has a nonzero nilpotent element, then a lower bound
for the clique number of H3(R) is found. Also, we have shown that H3(R) is connected
with diameter at most 4 whenever x2 /= 0 for all 3-zero-divisors x of R. Finally, it is shown
that for any finite nonlocal ring R, the hypergraph H3(R) is complete if and only if R is
isomorphic to Z2×Z2×Z2.

Copyright © 2007 Ch. Eslahchi and A. M. Rahimi. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The notion of a zero-divisor graph Γ(R) of a commutative ring R was first introduced by
Beck in [1] and was further investigated in [2], where the authors were interested in color-
ings of Γ(R), though their vertex set included the zero element. In [3–9] the authors, using
the set of nonzero zero divisors of R as vertex set of Γ(R), were interested in examining the
interplay between the ring-theoretic properties of R and the graph-theoretic properties
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of Γ(R). In this paper, we extend the concept of a zero-divisor of a commutative ring R to
that of a k-zero-divisor and investigate the interplay between the ring-theoretic properties
of R and the graph-theoretic properties of its associated k-uniform hypergraph Hk(R). In
this section, we define and study some examples of k-zero-divisors and recall some defi-
nitions from graph theory. In Section 2, we define and study some basic properties of the
k-uniform hypergraph Hk(R) and k-zero-divisors of a commutative ring R. Finally, in the
last section, we merely concentrate on the properties of 3-zero-divisor hypergraphs.

Definition 1.1. Let R be a commutative ring and k ≥ 2 a fixed integer. A nonzero nonunit
element a1 in R is said to be a k-zero-divisor in R if there exist k − 1 distinct nonunit
elements a2,a3, . . . ,ak in R different from a1 such that a1a2a3 ···ak = 0 and the product
of no elements of any proper subset of A= {a1,a2, . . . ,ak} is zero.

Clearly, a 2-zero-divisor in R is a zero divisor, but the converse is not true in general.
For example, 2 is a zero divisor in Z4, but it is not a 2-zero-divisor.

Remark 1.2. In the literature, on zero-divisor graphs, the edges are defined to be between
the distinct nonzero zero-divisors in order to construct a graph with no loops. Here, we
assume distinctness of the elements in Definition 1.1 for k-zero-divisors in order to have
a k-uniform hypergraph, for any fixed integer k ≥ 3. Note that the graph constructed by
2-zero-divisors is exactly the same as the zero-divisor graph of a ring.

Example 1.3. The element 2 in Z30 is a 3-zero-divisor since 2 · 3 · 5= 0, and the product
of no elements of any proper subset of {2,3,5} is zero.

By Z(R,k) we denote the set of all k-zero-divisors of R. It is not difficult to show
that the statement “the product of no elements of any proper subset of A is zero” or
the statement “the product of no elements of any (k − 1)-subset of A is zero” can be
used in Definition 1.1 equivalently. Clearly, from Definition 1.1, every element of the set
{a2,a3, . . . ,ak} is a k-zero-divisor in R. It is clear that every k-zero-divisor in R is also a
zero divisor in R, but, the converse is not true in general. For example, the element 2 is a
zero divisor, but not a 3-zero-divisor in Z10.

We review some basic graph-theoretic definitions, and for the necessary definitions
and notations of hypergraphs, we refer the reader to standard texts of graph theory such as
[10]. A hypergraph is a pair (V ,E) of disjoint sets, where the elements of E are nonempty
subsets (of any cardinality) of V . The elements of V are the vertices, and the elements
of E are the edges of the hypergraph. The hypergraph H = (V ,E) is called k-uniform
whenever every edge e of H is of size k. A k-uniform hypergraph H is called complete if
every k-subset of the vertices is an edge of H . The definition of a clique and the clique
number of a k-uniform hypergraph are taken from [11, 12] as follows.

Let H be a k-uniform hypergraph. A subset A of V(H) is called a clique of H if every
k-subset of A is an edge of H . The clique number of H , denoted by ω(H), is defined to
be

ω(H)= max
{|A| |A is a clique

}

k− 1
. (1.1)
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An r-coloring of a hypergraph H = (V ,E) is a map c : V → {1,2, . . . ,r} such that for every
edge e of H , there exist at least two vertices x and y in e with c(x) /= c(y). The smallest
integer r such that H has an r-coloring is called the chromatic number of H and is de-
noted by χ(H). In [11], it is shown that for any k-uniform hypergraph H , χ(H)≥ �ω(H)�.
A path in a hypergraph H is an alternating sequence of distinct vertices and edges of
the form v1,e1,v2,e2, . . . ,vk such that vi, vi+1 is in ei for all 1 ≤ i ≤ k− 1. The number of
edges of a path is its length. The distance between two vertices x and y of H , denoted by
dH(x, y), is the length of the shortest path from x to y. If no such path between x and y
exists, we set dH(x, y)=∞. The greatest distance between any two vertices in H is called
the diameter of H and is denoted by diam(H). The hypergraph H is said to be connected
whenever diam(H) <∞. A cycle in a hypergraph H is an alternating sequence of distinct
vertices and edges of the form v1,e1,v2,e2, . . . ,vk,ek,v1 such that vi, vi+1 are in ei for all
1≤ i≤ k− 1 with vk,v1 ∈ ek. The girth of a hypergraph H containing a cycle, denoted by
gr(H), is the smallest size of the length of cycles of H .

2. k-zero-divisor hypergraphs

In this section, we define and study some properties of the k-uniform hypergraph Hk(R),
the k-zero-divisors of a commutative ring R, and provide some examples.

Definition 2.1. A ring R is said to be a k-integral domain whenever Z(R,k), the set of all
k-zero-divisors of R, is the empty set.

Example 2.2. Let (R,M) be a local ring with maximal ideal M /= 0 such that M2 = 0. Then
R is a 3-integral domain which is not an integral domain.

Example 2.3. For any integer k ≥ 3, we have the following results.
(1) Let n= pα1

1 pα2
2 ··· pαrr be the prime decomposition of n, where pi /= pj whenever

i /= j and 1 ≤ αi for all i, j = 1,2, . . . ,r. Then Zn is a k-integral domain whenever
∑

i≤r αi ≤ k− 1.
(2) Let ni = p

α1i
1i p

α2i
2i ··· p

αri
ri be the prime decomposition of ni for distinct primes

pji ’s and 1≤ αji for all 1≤ i≤ t and j = 1,2, . . . ,r. Then Zn1 ×Zn2 ×···×Znt is a
k-integral domain whenever

∑

j≤r1

αj1 +
∑

j≤r2

αj2 + ···+
∑

j≤rt
α jt ≤ k− 1. (2.1)

(3) Let F be a field and let f (x) be a polynomial in F[x] such that f (x) =
P1(x)α1P2(x)α2 ···Pr(x)αr , where Pi(x)∈ F[x] are distinct irreducible polynomi-
als and 1≤ αi for all 1≤ i≤ r. Then F[x]/( f (x)) is a k-integral domain whenever
∑

i≤rαi ≤ k− 1.
(4) Let Ri be an integral domain for each i= 1,2, . . . ,n. Then R= R1×R2×···×Rn

is a k-integral domain whenever n≤ k− 1.

By [13], it is true that a nonintegral domain with a finite number of zero divisors
is finite. Similarly, we pose the following question for the rings with a finite number of
k-zero-divisors.
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Question 1. Does the finiteness of k-zero-divisors in a non-k-integral domain R imply
the finiteness of zero-divisors or, equivalently, finiteness of R?

Definition 2.4. For any fixed integer k ≥ 3, an ideal P of a ring R is said to be k-prime
whenever for any set A= {a1,a2, . . . ,ak} of nonzero, distinct, and nonunit elements of R,
a1a2 ···ak ∈ P implies that the product of the elements of a proper subset of A is in P.

Note that by this definition, every prime ideal of R is a k-prime ideal of R.

Example 2.5. Let (R1,M1) and (R2,M2) be two local rings with nonzero maximal ideals
M1 and M2, respectively. We show that M1×M2 is a 3-prime ideal in R= R1×R2 which is
not a prime ideal in R. Let (a1,b1), (a2,b2), and (a3,b3) be arbitrary elements in R1×R2,
where for each 1 ≤ i ≤ 3, (ai,bi) is a nonzero nonunit in R. Clearly, (a1,b1) · (a2,b2) ·
(a3,b3) = (a1a2a3,b1b2b3) ∈M1 ×M2 implies that at least one of the elements ai’s (bj ’s)
belongs to M1(M2) for some i( j) in {1,2,3}. In this case, there always exists a proper
subset of {(a1,b1),(a2,b2),(a3,b3)} such that the product of its elements belongs to M1×
M2. But since (1,0) · (0,1) ∈M1 ×M2 and neither of the elements (1,0) and (0,1) is in
M1×M2, then M1×M2 is a 3-prime ideal in R1×R2 which is not a prime ideal in R.

The following theorem is similar to the well-known fact on the relationship between
prime ideals and integral domains.

Theorem 2.6. Let P be an ideal in the ring R. Then R/P is a k-integral domain if P is a
k-prime ideal.

The proof follows directly from the definition, and we leave it to the reader.
The converse of the above theorem is not true in general. For example, the ideal 〈8〉

generated by 8 in Z48 is not a 3-prime ideal, but Z48/〈8〉 is a 3-integral domain.
Next, we extend the concept of zero-divisor graph of a commutative ring R to that of

a k-zero-divisor hypergraph.

Definition 2.7. Let R be a commutative ring (with 1 /= 0) and let Z(R,k) be the set of
all k-zero-divisors in R. Associate a k-uniform hypergraph Hk(R) to R with vertex set
Z(R,k), and for distinct elements x1,x2, . . . ,xk in Z(R,k), the set {x1,x2, . . . ,xk} is an edge
of Hk(R) if and only if x1x2 ···xk = 0 and the product of elements of no (k− 1)-subset of
{x1,x2, . . . ,xk} is zero.

Clearly, from the above definition we can conclude that for any k ≥ 3, Hk(R) is the
empty set if and only if R is a k-integral domain.

Theorem 2.8. Let R be a non-k-integral domain. If there exist prime ideals P1 and P2 in R
such that P1∩P2 = {0}, then χ(Hk(R))= 2.

Proof. Since P1 ∩ P2 = {0}, then P1 ∪ P2 is equal to the set of all zero divisors of R. On
the other hand, since each k-zero-divisor is also a zero divisor, each k-zero-divisor must
belong to the prime ideals P1 or P2. Consider the function c : V(Hk(R))→ {1,2} given by

c(x)=
⎧
⎨

⎩
1, x ∈ P1,

2, x ∈ P2.
(2.2)
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In order to prove that c is a 2-coloring of Hk(R), we need to show that there is no edge
e in Hk(R) such that every vertex of e obtains the same color. Without loss of generality,
let e = {x1,x2, . . . ,xk} be an edge of Hk(R) such that c(x1)= c(x2)= ···=c(xk)= 1. Since
x1x2 ···xk = 0 ∈ P2 and P2 is a prime ideal of R, then xi ∈ P2 for at least one 1 ≤ i ≤ k,
which is a contradiction. Therefore, χ(Hk(R)) ≤ 2. On the other hand, since R is not a
k-integral domain, then Hk(R) has at least one edge, which implies that χ(Hk(R)) ≥ 2,
and the proof is complete. �

Remark 2.9. From the above theorem, it is clear that Hk(R) is a bipartite hypergraph
with partition sets V(Hk(R))∩P1 and V(Hk(R))∩P2. Note that in [4], it is shown that
for any reduced ring R, the zero-divisor graph Γ(R) is bipartite if and only if there exist
two distinct prime ideals P1 and P2 of R such that P1 ∩ P2 = {0}. In addition, if Γ(R) is
bipartite, then it is a complete bipartite graph.

Remark 2.10. By considering the ring R = Z2 × Z2 × Z2, we see that χ(H3(R)) = 2. But
there are no prime ideals P1 and P2 in R satisfying the condition of Theorem 2.8. There-
fore, the converse of Theorem 2.8 is not true in general.

Theorem 2.11. Let R = R1 ×R2 × ··· ×Rn, where Ri is an integral domain for each i =
1,2, . . . ,n.

(1) If n= k, then χ(Hk(R))= 2.
(2) If n= k+ t, then χ(Hk(R))≤ 2 + t for all t ≥ 0.

Proof. Let k = n. We claim that

Z(R,k)= {(a1,a2, . . . ,ak
) | exactly one of the ai’s is zero for 1≤ i≤ k

}
. (2.3)

It is obvious that any k-zero-divisor must have at least one zero component. Let x1 =
(a11,a12, . . . ,a1k) be a k-zero-divisor with at least two zero components. Without loss of
generality, assume that a11 = a12 = 0. Consequently, there exist x2,x3, . . . ,xk ∈ V(Hk(R))
such that {x1,x2, . . . ,xk} ∈ E(Hk(R)), where xi = (ai1,ai2, . . . ,aik) for all 1 ≤ i ≤ k. Thus,
∏

i≥1 ai j = 0 for each j ≥ 3. Now since Rj is an integral domain, then for each fixed j ≥ 3,
there exists at least one i j with 1≤ i≤ k such that aij j = 0. Let I be the set of all i j ’s such
that aij j = 0 for the smallest i in the set {1,2, . . . ,k}. Thus, we have x1

∏
i∈I xi = 0 and since

|I| ≤ k− 2, we have a contradiction. Now let x1 = (a1,a2, . . . ,ak)∈ R such that exactly one
and only one of the components is zero. Without loss of generality, assume that a1 = 0.
Let xi = (1,1, . . . ,1,0,1,1, . . . ,1), where the ith component is the only zero component of xi
for 2≤ i≤ k. It is obvious that {x1,x2, . . . ,xk} ∈ E(Hk(R)) and the claim is true. Consider
the function c : V(Hk(R))→ {1,2} given by

c(x)=
⎧
⎨

⎩
1 the first component of x is zero,

2 otherwise.
(2.4)

It is easy to see that c is a 2-coloring of Hk(R), and since Hk(R) has at least one edge,
χ(Hk(R))= 2.

For the proof of part 2, assume n = k + t with t ≥ 0 a fixed integer. The proof is by
induction on t. From part 1, the first step of induction for t = 0 is true. Now, assume that
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t ≥ 1 and the result is true for k + t. Let c : V(Hk(R1×R2×···×Rk+t))→ {1,2, . . . , t + 2}
be a t + 2-coloring of Hk(R1 × R2 × ··· × Rk+t). Consider the function c′ : V(Hk(R1 ×
R2×···×Rk+t+1))→ {1,2, . . . , t+ 3} given by

c′(x)=
⎧
⎨

⎩
c(x) the last component of x is zero,

t+ 3 otherwise.
(2.5)

From this, it is not difficult to show that c′ is a (t + 3)-coloring of Hk(R1 × R2 × ··· ×
Rk+t+1), and the proof is complete. �

As a very special case of the above theorem, it is easy to show that the chromatic num-
ber of H3(Z4

2 ) and H3(Z5
2 ) is 3. Note that the chromatic number of H3(Z5

2 ) is strictly less
than 2 + (5− 3), and the chromatic number of H3(Z4

2 ) equal to 3 shows that the bound is
sharp.

3. 3-zero-divisor hypergraphs

In this section, we only focus on some graph-theoretic properties of H3(R). We show that
H3(R) is connected with diameter at most 4 provided that x2 /= 0 for all 3-zero-divisors x
in R. We find a necessary and sufficient condition for its completeness, and we also find a
lower bound for its clique number.

Theorem 3.1. Let H3(R) be the 3-zero-divisor hypergraph of a ring R such that x2 /= 0 for
every 3-zero-divisor x ∈ R. Then H3(R) is connected and

diam
(
H3(R)

)≤ 4. (3.1)

Proof. For the proof of the theorem, it is enough to show that for each two edges e1 =
{a1,a2,a3} and e2 = {b1,b2,b3} of H3(R), there exist edges e3 and e4 which satisfy one of
the following conditions:

e3∩ e1 /=∅, e3∩ e2 /=∅, (∗1)

or

e3∩ e1 /=∅, e4∩ e2 /=∅, e4∩ e3 /=∅. (∗2)

Consequently, for the rest of the proof, we can always assume that ai /= bj and ai /=−bj for
all i, j ∈ {1,2,3}. Let G be the bipartite graph constructed as follows: V(G)= e1∪ e2 and
aibj ∈ E(G) if and only if aibj = 0 in the ring R.

Suppose G has two isolated vertices, one in e1 and the other in e2. For example,
degG(a3)= degG(b3)= 0. If there exists an element c ∈ {a1,a2,b1,b2} such that a3b3c = 0,
then e3 = {a3,b3,c} satisfies (∗1). Suppose that this is not the case. If a3b3 /∈ {a1,a2,b1,
b2}, then e3 = {a1,a2,a3b3} and e4 = {b1,b2,a3b3} satisfy (∗2). Otherwise without loss
of generality, assume that a3b3 = a1. Then e3 = {a1,b1,b2} satisfies (∗1). The rest of our
proof depends on the number of edges of G.

Case 1. Suppose |E(G)| ≤ 2. Then G has two isolated vertices, one in e1 and the other in
e2.
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Case 2. Suppose |E(G)| = 3. We study this case for four different subcases as follows.

Case 2.1. Assume the degree of each vertex of G is one and

E(G)= {a1b1,a2b2,a3b3
}
. (3.2)

Consider the set {a1,a2b3,b1 + b2}. If a1 = a2b3, then a1b2 = 0 is a contradiction. If a1 =
b1 + b2, then b1a2a3 = 0, and e3 = {b1,a2,a3} satisfies (∗1). If b1 + b2 = a2b3, then
a1b2a3 = 0, and e3 = {a1,b2,a3} satisfies (∗1). Otherwise, e3 = {a1,a2b3,b1 + b2} is an
edge. Similarly if we consider the set {b1,a2b3,a1 + a3}, then we find an edge e3 which
satisfies (∗1) or e4 = {b1,a2b3,a1 + a3} is an edge with e3 and e4 satisfying (∗2).

Case 2.2. Assume that the degree of exactly one of the vertices of G is one. Without loss
of generality, suppose that

E(G)= {a1b1,a1b2,a2b3
}
. (3.3)

Consider the set {a2,a3b1,a1 + b3}. If a2 = a3b1, then a1a2 = 0 implies a contradiction. If
a2 = a1 + b3, then a2b2b1 = 0, and e3 = {a2,b2,b1} satisfies (∗1). If a1 + b3 = a3b1, then
a3b1b2b1 = 0. In this case if a3 = b1b2, then a1a3 = 0, also, b1 = b1b2 implies that b1b3 =
0, which in both cases we have a contradiction. Therefore, e3 = {a3,b1b2,b1} is an edge
which satisfies (∗1). If none of the above conditions holds, then the set e3 = {a2,a3b1,a1 +
b3} is an edge. Now consider the set {b2,a3b1,b3}. Similarly, we find an edge e3 which
satisfies (∗1), or e4 = {a2,a3b1,a1 + b3} is an edge where e3 and e4 satisfy (∗2).

Case 2.3. Let the degree of two vertices of G be two. Without loss of generality, suppose
that

E(G)= {a1b1,a1b2,a2b2
}
. (3.4)

In this case, degG(a3)= degG(b3)= 0, and the proof is complete.

Case 2.4. Assume that the degree of one vertex of G is three. Without loss of generality,
suppose

E(G)= {a1b1,a1b2,a1b3
}
. (3.5)

Suppose that a2
1a2 /= 0. Consider the set {a1a2− b1,a1,a3}. If a1a2− b1 = a1, then b2b1 = 0

is a contradiction. If a1a2 − b1 = a3, then a3b3b2 = 0, and therefore e3 = {a3,b2,b3} is
an edge satisfying (∗1). In the other case, e3 = {a1a2− b1,a1,a3} is an edge. Similarly, if
we consider the set {a1a2− b1,b2,b3}, we will find an edge e3 that satisfies (∗1), or e4 =
{a1a2− b1,b2,b3} is an edge with e3 and e4 that satisfy (∗2). Now let a2

1a2 = 0. Consider
the set {a1− b1,a1,a2}. If a1− b1 = a2, then a2b3b2 = 0, and therefore e3 = {a2,b2,b3} is
an edge satisfying (∗1). In the other case, e3 = {a1− b1,a1,a2} is an edge. Similarly, if we
consider the set {a1− b1,b2,b3}, we will find a contradiction, or e4 = {a1a2− b1,b2,b3} is
an edge with e3 and e4 that satisfy (∗2).

Case 3. Suppose |E(G)| = 4. We study this case using four different subcases as follows.
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Case 3.1. Assume the degree of one vertex of G is three. Without loss of generality, sup-
pose that

E(G)= {a1b1,a1b2,a1b3,a2b3
}
. (3.6)

Consider the set {a3b1,a2,a1 + b3}. If a3b1 = a2, then a3b3b1 = 0, and therefore e3 =
{a3,b1,b3} is an edge satisfying (∗1). If a3b1 = a1 + b3, then a2

1 = 0 is a contradiction.
If a2 = a1 + b3, then b2

3 = 0 is a contradiction. In the other case, e3 = {a3b1,a2,a1 + b3} is
an edge. Similarly, if we consider the set {a3b1,b2,b3}, we will find an edge e3 that satisfies
(∗1), or e4 = {a3b1,b2,b3} is an edge with e3 and e4 that satisfy (∗2).

Case 3.2. Assume that the degree of four vertices of G is two. Without loss of generality,
suppose that

E(G)= {a1b1,a1b2,a2b1,a2b2
}
. (3.7)

In this case, degG(a3)= degG(b3)= 0, and the proof is complete.

Case 3.3. Let the degree of three vertices of G be two. Suppose without loss of generality
that

E(G)= {a1b1,a1b2,a2b2,a2b3
}
. (3.8)

Consider the set {a3b3,a1,a2}. If a3b3 = a1 or a2, then a3b3b2 = 0, and therefore e3 =
{a3,b2,b3} is an edge that satisfies (∗1). In the other case, e3 = {a3b3,a1,a2} is an edge.
Similarly, if we consider the set {a3b3,b1,b2}, we will find an edge e3 that satisfies (∗1), or
e4 = {a3b3,b1,b2} is an edge with e3 and e4 that satisfy (∗2).

Case 3.4. Assume that the degree of two vertices of G is two. In this case, there might be
two different nonisomorphic cases. Without loss of generality, for one case we can assume
that

E(G)= {a1b1,a1b2,a2b2,a3b3
}

, (3.9)

and in the other case

E(G)= {a1b1,a1b2,a2b3,a3b3
}
. (3.10)

In the first case, consider the set {a3b1,a2,a1 + b2}. If a3b1 = a2, then a3b1b2 = 0, and
therefore e3 = {a3,b1,b2} is an edge that satisfies (∗1). If a3b1 = a1 + b2, then a2

1 = 0 is a
contradiction. Also, a2 = a1 + b2 implies that b2

2 = 0, which is a contradiction. In the other
case, e3 = {a1 + b2,a2,b1a3} is an edge. Similarly, if we consider the set {a3b3,b1,a1 + b2},
we will find an edge e3 that satisfies (∗1), or e4 = {a3b3,b1,a1 + b2} is an edge with e3 and
e4 that satisfy (∗2).

Similarly, for the second case, by considering the sets {a1 + b1,a2,a3} and
{a1 + b1,b2,b3}, we find an edge e3 that satisfies (∗1), or two edges e3 and e4 that sat-
isfy (∗2).
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Case 4. Suppose |E(G)| = 5. We continue our investigation for five different nonisomor-
phic subcases as follows.

Case 4.1. Without loss of generality, we can assume that

E(G)= {a1b1,a1b2,a1b3,a2b1,a2b2
}
. (3.11)

Consider the set {a3b3,a2,a1 + b2}. If a3b3 = a2, then a3b3b2 = 0, and therefore e3 =
{a3,b2,b3} is an edge that satisfies (∗1). If a3b3 = a1 + b2, then a2

1 = 0, which is a con-
tradiction. If a1 + b2 = a2, then b1b2 = 0 is a contradiction. In the other case, e3 = {a1 +
b2,a2,a3b3} is an edge. Similarly, if we consider the set {a3b3,b1,b2}, we will find an edge
e3 which satisfies (∗1), or e4 = {a3b3,b1,b2} is an edge with e3 and e4 that satisfy (∗2).

Case 4.2. Assume without loss of generality that

E(G)= {a1b1,a1b2,a1b3,a2b1,a3b2
}
. (3.12)

Consider the set {a1 + b1,a2,b2}. If a1 + b1 = a2, then b2
1 = 0 is a contradiction. If a1 + b1 =

b2, then a2
1 = 0 implies a contradiction. In the other case, e3 = {a1 + b2,a2,a3b3} is an edge

that satisfies (∗1).

Case 4.3. Assume without loss of generality that

E(G)= {a1b1,a1b2,a1b3,a2b1,a3b1
}
. (3.13)

Consider the set {a1 + b1,a2,b2}. If a1 + b1 = a2, then b2
1 = 0 is a contradiction. If a1 + b1 =

b2, then a2a3b2 = 0, and e3 = {a2,b2,a3} is an edge which satisfies (∗1). In the other case,
e3 = {a1 + b1,a2,b2} is an edge that satisfies (∗1).

Case 4.4. Without loss of generality, we can assume that

E(G)= {a1b1,a1b2,a2b1,a2b2,a3b3
}
. (3.14)

Consider the set {a3 + b1,a1,b3}. If a3 + b1 = a1 or a3 + b1 = b3, then a1a2b3 = 0, and
e3 = {a1,a2,b3} is an edge that satisfies (∗1). In the other case, e3 = {a3 + b1,a1,b3} is an
edge which satisfies (∗1).

Case 4.5. Assume without loss of generality that

E(G)= {a1b1,a1b2,a2b2,a2b3,a3b3
}
. (3.15)

Consider the set {a1 + b2,a2,b1}. If a1 + b2 = a2, then b2
2 = 0. If a1 + b2 = b1, then a2

1 = 0,
which is a contradiction. Therefore e3 = {a1 + b2,a2,b1} is an edge that satisfies (∗1).

Case 5. Suppose |E(G)| = 6. We study three different nonisomorphic subcases as follows.

Case 5.1. Without loss of generality, we can assume that

E(G)= {a1b1,a1b2,a1b3,a2b1,a2b2,a3b1
}
. (3.16)
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Consider the sets {a1 + b1,a2,a3} and {a1 + b1,b2,b3}. If a1 + b1 = a2, then b1b2 = 0. If a1 +
b1 = a3, then b2

1 = 0. Also, a1 + b1 = b2 or a1 + b1 = b3 implies that a2
1 = 0, and in either

case, we have a contradiction. Therefore, e3 = {a1 + b1,a2,a3} and e4 = {a1 + b1,b2,b3}
are two edges that satisfy (∗2).

Case 5.2. Without loss of generality, we can assume that

E(G)= {a1b1,a1b2,a1b3,a2b1,a2b2,a3b3
}
. (3.17)

Consider the set {a1 + b3,a3,b1}. If a1 + b3 = a3, then b2
3 = 0. Also a2

1 = 0 whenever a1 +
b3 = b1, which is a contradiction. Therefore, e3 = {a1 + b3,a3,b1} is an edge that satisfies
(∗1).

Case 5.3. Assume without loss of generality that

E(G)= {a1b1,a1b3,a2b1,a2b2,a3b2,a3b3
}
. (3.18)

In this case, similar to the above subcase, e3 = {a1 + b3,a3,b1} is an edge which satisfies
(∗1).

Case 6. Suppose that 7 ≤ |E(G)| ≤ 9. In this case, there always exist two vertices with
degree three, one from e1 and the other from e2. Let dG(a1) = dG(b1) = 3. Consider the
sets {a1 + b1,a2,a3} and {a1 + b1,b2,b3}. If a1 + b1 = a2 or a3, then b2

1 = 0; and if a1 + b1 =
b2 or b3, then a2

1 = 0, which is a contradiction in all cases. Therefore, e3 = {a1 + b1,a2,a3}
and e4 = {a1 + b1,b2,b3} are two edges that satisfy (∗2). �

Remark 3.2. From the above theorem and the fact that

gr
(
H3(R)

)≤ 2diam
(
H3(R)

)
+ 1, (3.19)

we can conclude that the diameter and girth of any hypergraph H3(R) containing a cycle
and satisfying the conditions in the above theorem are bounded by 4 and 9, respectively.
Note that a similar result for a zero-divisor graph Γ(R) is studied in [5, 8, 9, 14] as follows.

(1) Γ(R) is connected and diam(Γ(R))≤ 3.
(2) If Γ(R) contains a cycle, then gr(Γ(R))≤ 4.

Lemma 3.3. Let R be a finite ring with |R| ≥ 4. Then R∼= Z2×Z2, or there exist two distinct
elements x and y in R−{0,1} such that xy /= 0.

Proof. For the case |R| = 4, it is clear that R is isomorphic to either Z2 ×Z2, Z2[x]/〈x2〉
or Z4, which implies the desired result. Next, we study the case for |R| ≥ 5 by a contrary
method. Suppose R−{0,1} = {a1,a2, . . . ,am}, m ≥ 3, and aiaj = 0 for all 1 ≤ i /= j ≤m.
It is clear that a2 + 1 is different from 0 and 1. Otherwise, a1 = 0 or a2 = 0, which is a
contradiction to the choice of a1 and a2. If a2 + 1 /= a1, then a1(a2 + 1) = 0, and we have
a1 = 0, which is a contradiction. Thus, a2 + 1 = a1. Similarly, a1a3 = 0, and a3 + 1 = a1

implies that a3 = a2, which is a contradiction. �

In the next theorem, we give a necessary and sufficient condition for a hypergraph
H3(R) to be complete. In the process of the following proof, we consider the obvious fact
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that H3(Z2 × Z2 × Z2) has only one edge, and necessarily it is a complete hypergraph.
Note that for a detailed study of the completeness of a zero-divisor graph Γ(R), the reader
is referred to [5].

Theorem 3.4. Let R be a finite nonlocal ring. Then H3(R) is complete if and only if R =
Z2×Z2×Z2.

Proof. The sufficient part of the theorem is trivial, because H3(R) has only one edge, and
therefore is complete whenever R= Z2×Z2×Z2. Suppose that H3(R) is complete. It is a
well-known fact that any finite ring R is isomorphic to the product of local rings. Thus,
assume that R = R1 × R2 × ··· × Rn, where each Ri is a local ring for all i = 1,2, . . . ,n.
Now, we study the following cases for different values of n.

Case 1. Suppose n≥ 4. It is clear that e1 = {x1,x2,x3} and e2 = {y1, y2, y3} with

x1 = (1,1,0,0, . . . ,0), x2 = (1,0,1,0, . . . ,0), x3 = (0,1,1,0, . . . ,0),

y1 = (1,0,0,1, . . . ,0), y2 = (1,1,0,0, . . . ,0), y3 = (0,1,0,1, . . . ,0)
(3.20)

are two edges of H3(R). Clearly, H3(R) is not complete since {x1,x2, y1} is not an edge of
H3(R).

Case 2. Let R = R1 ×R2 ×R3. Without loss of generality, suppose that |R1| ≥ 3. Let x ∈
R1 − {0,1}. Obviously, {(1,1,0),(1,0,1),(0,1,1)} ∈ E(H3(R)) and {(x,1,0),(1,0,1),
(0,1,1)}∈E(H3(R)). But {(x,1,0),(1,0,1),(1,1,0)} /∈E(H3(R)), which implies thatH3(R)
is not complete. Hence, we can conclude that |Ri| ≤ 2 and R= Z2×Z2×Z2.

Case 3. Let R = R1 ×R2. If H3(R) does not have any vertices, we do not have anything
to prove. Therefore, first we assume that |Ri| ≥ 4 for each 1 ≤ i ≤ 2 and investigate the
following subcases.

Case 3.1. The square of one of the components of some 3-zero-divisor of R is zero. Let
(a,b) be a 3-zero-divisor in R with a2 = 0 and let e = {(a,b),(c,d),( f ,g)} be an edge of
H3(R). Since Z2 × Z2 is not a local ring, by Lemma 3.3 there exist distinct elements x
and y in R2 − {0,1} such that xy /= 0. Now, from the fact that {(a,1),(a,x),(1,0)} and
{(a,1),(a, y),(1,0)} are in E(H3(R)) and {(a,x),(a, y),(a,1)} /∈ E(H3(R)), we can con-
clude that H3(R) is not complete.

Case 3.2. The square of none of the components of any 3-zero-divisor of R is zero. Sup-
pose that e = {(a1,b1),(a2,b2),(a3,b3)} is an edge ofH3(R). In this case, there always exists
i∈ {1,2,3}, say i= 1, such that a1a2 /= 0 and a1a3 /= 0, or similarly, b1b2 /= 0 and b1b3 /= 0.
Otherwise, the product of two elements of e will be zero, which contradicts the defini-
tion for e to be an edge in H3(R). Without loss of generality, we assume that a1a2 /= 0 and
a1a3 /= 0. By using Lemma 3.3, similar to Case 3.1, there exist distinct elements x and y in
R2−{0,1} such that xy /= 0. Since {(a1,0),(a2,x),(a3,1)} and {(a1,0),(a2, y),(a3,1)} are
the edges of H3(R), and {(a2,x),(a2, y),(a3,1)} is not an edge of H3(R), then H3(R) is not
complete.

Next, we assume that the size of one of the rings Ri’s is 2, where i= 1,2. Without loss
of generality, assume that R2 = Z2. It is clear that R does not have any 3-zero-divisors
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whenever R1 is an integral domain. Thus, R1 has at least four elements. Obviously, the
edges of H3(R) cannot be different from the following forms:

{
(a,0),(b,0),(c,0)

}
,

{
(a,1),(b,0),(c,0)

}
,

{
(a,1),(b,1),(c,0)

}
. (3.21)

Case 3.3. Let H3(R) have an edge of the form {(a,0),(b,0),(c,0)}.
Then {(a,1),(b,0),(c,0)} ∈ E(H3(R)), {(a,0),(b,1),(c,0)} ∈ E(H3(R)), and {(a,0),

(b,0),(c,1)} ∈ E(H3(R)). In this case, the completeness of H3(R) implies that {(a,1),
(b,1),(c,1)} ∈ E(H3(R)), which is a contradiction.

Case 3.4. Suppose {(a,1),(b,0),(c,0)} is an edge of H3(R). Therefore, b /= c, ab /= 0, ac /= 0,
and bc /= 0. In this subcase, we study two different cases:

(a) The first components of two elements of {(a,1),(b,0),(c,0)} are equal. For exam-
ple, assume a = b. Thus, {(a2,1),(1,0),(c,1)} ∈ E(H3(R)) whenever a2 /= c. In this case,
c /= 1, and the completeness of H3(R) implies that {(a,1),(1,0),(c,0)} ∈ E(H3(R)), which
contradicts ac /= 0.

On the other hand if a2 = c, we have a4 = 0, which implies a3 /= a. Therefore, {(a,1),
(a3,1),(1,0)} is an edge of H3(R), which contradicts ac /= 0.

(b) Let a /= b and a /= c. In this case, {(a,1),(b,1),(c,0)} and {(a,1),(b,0),(c,1)} are in
E(H3(R)). Consequently, the completeness of H3(R) implies that {(a,1),(b,1),(c,1)} ∈
E(H3(R)), which is a contradiction.

Case 3.5. Let all the edges of H3(R) be of the form {(a,1),(b,1),(c,0)}. Assume that
{(a,1),(b,1),(c,0)} and {(a′,1),(b′,1),(c′,0)} are two edges of H3(R). Therefore, by the
completeness of H3(R), one of the sets

{
(a,1),(b,1),(a′,1)

}
,

{
(a,1),(b,1),(b′,1)

}
,

{
(a,1),(c,0),(c′,0)

}
(3.22)

should be an edge of H3(R). This is a contradiction to the definition of an edge or to
Case 3.4. Now, we can conclude that H3(R) has only one edge of the form {(a,1),
(b,1),(c,0)}, where ac /= 0 and bc /= 0. Furthermore, if ab /= 0, then {(a,1),
(b,0),(c,0)} is an edge of H3(R), which is a contradiction. Thus, ab = 0. Consequently,
c /= 1 implies that {(a,1),(b,1),(c,0)}, {(a,1),(b,1),(1,0)} and {(a,1),(b,1),(−1,0)} are
edges inH3(R), which is a contradiction. Hence, we can conclude that {(a,1),(b,1),(1,0)}
is the only edge of H3(R) and 1=−1 in R1. Next, we show that a2 = a and b2 = b. Since
{(a,1),(b,1),(a+ 1,0)} is not an edge in H3(R), ba= 0, and b /= 0, then b(a+ 1) /= 0, and
we must have a(a+ 1)= 0, which implies that a2 = a. By a similar argument, we can con-
clude that b2 = b. Suppose x ∈ R1−{0,1,a,b}. Since {(a,1),(b,1),(x,0)} is not an edge of
H3(R), then ax = 0 or bx = 0. Without loss of generality, suppose that ax = 0. Now, since
b+ x /= b, {(a,1),(b+ x,1),(1,0)} is not an edge ofH3(R). Therefore, b+ x = 0 or b+ x = a.
If b + x = 0, we have b = x, which is a contradiction. Let b + x = a. Then x = b + a, and
therefore a(b + a) = 0, which implies that a = a2 = 0, a contradiction. Thus, {0,1,a,b}
are the only elements of R1. Since R1 is a local ring with 4 elements, then R1 = Z4 or
R1 = Z2[x]/〈x2〉. In either case, R = R1 ×Z2 does not have any edges, and H3(R) is not
complete.
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Finally, since the proof of the case R2 = Z3 is similar to the above argument, we leave
the rest of the proof to the reader. �

Remark 3.5. Bounds for ω(Γ(R)) are given by using nilpotent elements of R as studied
in [6] as follows. Let R be a commutative ring and 0 /= x ∈ nil(R), and let n be the least
positive integer such that xn = 0.

(1) If n= 2t, then ω(Γ(R))≥ 2t − 1.
(2) If n= 2t+ 1, then ω(Γ(R))≥ 2t.

Similarly, in the next theorem, we give a lower bound for the clique number of H3(R)
using the index of nilpotence as studied in [6] for a zero-divisor graph Γ(R).

Theorem 3.6. Let x be an element of a commutative ring R such that xn = 0 and x(n−1) /= 0.
Then

ω
(
H3(R)

)≥
⎧
⎪⎨

⎪⎩

22t−2 if n= 3t,
22t−1 + 1

2
otherwise.

(3.23)

Proof. For n= 3t, the set

A= {xt(1 + a1x+ a2x
2 + ···+ a2t−1x

2t−1) | ai ∈ {0,1}, 1≤ i≤ 2t− 1
}

(3.24)

is a clique of size 22t−1.
Similarly, for n= 3t+ 1 and n= 3t+ 2, the set

A= {xt+1(1 + a1x+ a2x
2 + ···+ a2t−1x

2t−1) | ai ∈ {0,1}, 1≤ i≤ 2t− 1
}∪ {xt}

(3.25)

is a clique of size 22t−1 + 1. �

Theorem 3.7. For any integer m≥ 3, there exists an integer n such that

ω
(
H3
(
Zn

2

))≥ m

2
, (3.26)

where Zn
2 = Z2×Z2×···×Z2 (n times).

Proof. For m = 3, it is clear that the set {(1,1,0),(1,0,1),(0,1,1)} is a clique of size 3 in
H3(Z3

2 ). Suppose that {a1,a2, . . . ,am} is a clique of size m in H3(Zn′
2 ). Let n= n′ +m. We

define bi in H3(Zn
2 ) to be the n-tuple whose first n′ components are exactly ai and all the

other components are 0, except the (n′ + i)th component, which is 1 for all 1≤ i≤m. Let
bm+1 be the n-tuple whose first n′ components are 0 and all the other m components are
1. Now, it is easy to see that {b1,b2, . . . ,bm+1} is a clique of size m+ 1 in H3(Zn

2 ). Note that
n satisfies the recursion relation xm = xm−1 +m− 1, where m≥ 4 and x3 = 3. �

The following corollary is an immediate consequence of the above theorem.
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Corollary 3.8. The chromatic number of H3(Zn
2 ) goes to infinity as n approaches infinity.

That is,

lim
n �→∞χ

(
H3
(
Zn

2

))=∞. (3.27)

We conclude this section by posing a question on the isomorphism of the rings of
3-zero-divisor hypergraphs. In [6], it is shown that for any finite reduced commutative
rings A and B which are not fields, then Γ(A) ∼= Γ(B) as graphs if and only if A ∼= B as
rings. Furthermore, in [3], this result is generalized to the case that if A is a finite reduced
ring which is not isomorphic to Z2×Z2 or Z6 with B a ring such that Γ(A)∼= Γ(B), then
A ∼= B. Also, in [7], it is shown that A and its total quotient ring T(A) have isomorphic
zero-divisor graphs.

Question 2. Let A and B be two commutative rings. Under what condition(s) does the
isomorphism of H3(A) and H3(B) imply the isomorphism of A and B?

Acknowledgments

The authors would like to thank the referees for interest in the subject and making useful
suggestions and comments which led to improvement and simplification of the first draft.
This research was in part supported by Grant no. 84050015 from Institute for Studies in
Theoretical Physics and Mathematics (IPM).

References

[1] I. Beck, “Coloring of commutative rings,” Journal of Algebra, vol. 116, no. 1, pp. 208–226, 1988.

[2] D. D. Anderson and M. Naseer, “Beck’s coloring of a commutative ring,” Journal of Algebra,
vol. 159, no. 2, pp. 500–514, 1993.

[3] S. Akbari and A. Mohammadian, “On the zero-divisor graph of a commutative ring,” Journal of
Algebra, vol. 274, no. 2, pp. 847–855, 2004.

[4] S. Akbari, H. R. Maimani, and S. Yassemi, “When a zero-divisor graph is planar or a complete
r-partite graph,” Journal of Algebra, vol. 270, no. 1, pp. 169–180, 2003.

[5] D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring,” Journal of
Algebra, vol. 217, no. 2, pp. 434–447, 1999.

[6] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, “The zero-divisor graph of a com-
mutative ring. II,” in Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999),
vol. 220 of Lecture Notes in Pure and Applied Mathematics, pp. 61–72, Marcel Dekker, New York,
NY, USA, 2001.

[7] D. F. Anderson, R. Levy, and J. Shapiro, “Zero-divisor graphs, von Neumann regular rings, and
Boolean algebras,” Journal of Pure and Applied Algebra, vol. 180, no. 3, pp. 221–241, 2003.

[8] F. DeMeyer and K. Schneider, “Automorphisms and zero divisor graphs of commutative rings,”
International Journal of Commutative Rings, vol. 1, no. 3, pp. 93–106, 2002.

[9] S. B. Mulay, “Cycles and symmetries of zero-divisors,” Communications in Algebra, vol. 30, no. 7,
pp. 3533–3558, 2002.

[10] R. Diestel, Graph Theory, Springer, New York, NY, USA, 1991.
[11] Ch. Eslahchi and A. Rafiey, “Circular chromatic number of hypergraphs,” Ars Combinatoria,

vol. 73, pp. 239–246, 2004.
[12] Ch. Eslahchi and A. Rafiey, “C-perfect K-uniform hypergraphs,” Ars Combinatoria, vol. 79, pp.

235–244, 2006.



Ch. Eslahchi and A. M. Rahimi 15

[13] N. Ganesan, “Properties of rings with a finite number of zero divisors—II,” Mathematische An-
nalen, vol. 161, no. 4, pp. 241–246, 1965.

[14] M. Axtell, J. Coykendall, and J. Stickles, “Zero-divisor graphs of polynomials and power series
over commutative rings,” Communications in Algebra, vol. 33, no. 6, pp. 2043–2050, 2005.

Ch. Eslahchi: Department of Mathematical Sciences, Shahid Beheshti University,
P.O. Box 19834, Tehran, Iran
Email address: ch-eslahchi@sbu.ac.ir

A. M. Rahimi: School of Mathematics, Institute for Studies in Theoretical Physics and Mathematics,
P.O. Box 19395-5746, Tehran, Iran
Email address: amrahimi@ipm.ir

mailto:ch-eslahchi@sbu.ac.ir
mailto:amrahimi@ipm.ir

	1. Introduction
	2. k-zero-divisor hypergraphs
	3. 3-zero-divisor hypergraphs
	Acknowledgments
	References

