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Let � be a C∗-algebra with identity 1, and let s(�) denote the set of all states on �. For
p,q,r ∈ [1,∞), denote by �r(�) the set of all infinite matrices A= [ajk]∞j,k=1 over � such

that the matrix (ϕ[A[2]])
[r]

:= [(ϕ(a∗jkajk))r]
∞
j,k=1

defines a bounded linear operator from

�p to �q for all ϕ∈ s(�). Then �r(�) is a Banach algebra with the Schur product opera-

tion and norm ‖A‖ = sup{‖(ϕ[A[2]])
r‖1/(2r)

: ϕ∈ s(�)}. Analogs of Schatten’s theorems
on dualities among the compact operators, the trace-class operators, and all the bounded
operators on a Hilbert space are proved.

Copyright © 2007 Pachara Chaisuriya et al. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The Schur product operation has been studied by many authors since the seminal work
of Schur [1]. The idea has been used in the studies of completely positive maps, analytic
function theory, matrix analysis, operator theory, and operator algebras, and so forth.
Recently there has been work done on the Schur product of matrices over Banach alge-
bras (see [2–4]) and operators on Hilbert spaces [4]. Here we consider another direction:
matrices with entries from a fixed C

∗
-algebra �. The Gelfand-Naimark-Segal construc-

tion gives a representation of the elements in � as bounded linear operators on a Hilbert
space. Rather than having the whole matrix considered as an operator on the direct sum
of the underlying Hilbert space [4], we use states on the C

∗
-algebra to convert the matrix

into a nonnegative numerical matrix and consider it as a bounded linear transformation
from �

p
to �

q
(1 ≤ p, q <∞). Using the norm of the nonnegative matrix as an operator

from �
p

to �
q

to define a norm on a certain set of matrices over �, we show that the set of
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all matrices that define bounded operators is a Banach algebra. We then consider analogs
of Schatten’s theorems on these new Banach algebras, as in [3, 5].

2. Notation and preliminaries

For 1≤ p, q <∞, the space of all pth power absolutely summable sequences of complex
numbers is denoted by �

p
, and the space of all bounded linear transformations (or oper-

ators) from �
p

to �
q

is denoted by �(�
p
,�

q
). Elements in �(�

p
,�

q
) will be represented as

matrices with respect to the standard bases for �
p

and �
q
.

For a given matrix A = [ajk ] (over the complex field C or a Banach algebra), and a
positive integer n ∈N, An� denotes the matrix whose ( j,k)-entry is ajk for 1 ≤ j, k ≤ n,
and is 0 otherwise. We will also use the same notation for the n× n matrix obtained by
erasing all kth rows and kth columns, for k > n, from A. We include the following lemmas
concerning the norm of operators in �(�

p
,�

q
) for the convenience of reference.

Lemma 2.1. Let [αjk ] and [βjk ] be matrices over C such that |αjk | ≤ βjk for all j and k.
Suppose that [βjk ]∈�(�

p
,�

q
). Then [αjk ]∈�(�

p
,�

q
) and ‖[αjk ]‖ ≤ ‖[βjk ]‖.

Lemma 2.2. Let Λ= [αjk ] be a complex matrix. Then
(1) Λ defines a bounded operator from �

p
to �

q
if and only if Λx exists as a sequence for

every x ∈ �p , and the sequence of norms {‖Λν� ‖p,q}∞ν=1
is bounded;

(2) if (1) holds, ‖Λν� ‖p,q ↗ ‖Λ‖p,q as ν→∞.

Let � be a C
∗
-algebra with identity 1, and let s(�) be the set of all states on � (i.e.,

the set of all positive linear functionals of norm 1 (or taking the value 1 at the identity),
see [6, 7, page 256, Theorem 4.3.2]). Then ‖a‖ = supϕ∈s(�)ϕ(a)=maxϕ∈s(�)ϕ(a) for all
selfadjoint (positive, in particular) a∈� [6, 7, page 261, Theorem 4.3.4]. By convention
|x| = √x∗x for every x ∈�.

Lemma 2.3 (Minkowski’s inequality). Let a,b ∈�, and ϕ∈ s(�). Then

[
ϕ
(|a+ b|2)]1/2 ≤ [ϕ(|a|2)]1/2

+
[
ϕ
(|b|2)]1/2

. (2.1)

This is just the triangle inequality for the seminorm induced by the semi-inner product
defined by 〈a,b〉

ϕ
= ϕ(b

∗
a) for all a,b ∈�.

Lemma 2.4. Let x, y ∈� and ϕ∈ s(�). Then

ϕ
(|xy|2)≤ ‖x‖2

ϕ
(|y|2)

. (2.2)

The is also a well-known standard result.

3. The Schur algebras

For a matrix A= [ajk ] with entries from � (a C
∗
-algebra with identity 1) and r ∈ [1,∞),

the absolute Schur rth power of A is the matrix

A
[r] = [∣∣ajk

∣
∣
r ]= [(a∗

jk
ajk

)r/2]
. (3.1)
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(It is the matrix with ( j,k)-entry (a
∗
jk
ajk )

r/2
.) In particular, if Λ= [λjk ] is a complex or real

matrix, then Λ
[r] = [|λjk |r ]. Note that since � contains an identity, each matrix Λ= [λjk ]

over R or C can be treated as one over � via the identification λjk ↔ (λjk · 1). Let �
r
(�)

be the set of all matrices A= [ajk ] with ajk ∈� such that

ϕ
[
A

[2]][r]

:= [ϕ(∣∣ajk

∣
∣

2)][r]

:= [(ϕ(∣∣ajk

∣
∣

2))r ]

= [(ϕ(a∗
jk
ajk

))r ]∈�
(
�
p
,�

q) ∀ϕ∈ s(�).
(3.2)

That is, for all ϕ∈ s(�), the matrix ϕ[A
[2]

]
[r]

, with (ϕ(a
∗
jk
ajk ))

r
as its ( j,k)-entry, defines a

bounded linear operator from �
p

to �
q
. This is also equivalent to saying that ϕ[A

[2]
] is in

�
r

(the Schur algebra of matrices over C with Schur rth power defining bounded linear
operator from �

p
to �

q
, see [2]) for all ϕ∈ s(�). For each A= [ajk ]∈�

r
(�), define

‖A‖ := sup
ϕ∈s(�)

∥
∥(ϕ

[
A

[2]])[r]∥
∥

1/(2r)

p,q
= sup

ϕ∈s(�)

∥
∥[(ϕ

(
a
∗
jk
ajk

))r ]∥∥
1/(2r)

p,q
, (3.3)

where ‖ · ‖p,q denotes the norm on �(�
p
,�

q
). We will prove in Theorem 3.2 that this in-

deed defines a norm on �
r
(�). In the sequel, we will suppress the subscripts p,q in ‖ · ‖p,q ,

and use ‖ · ‖ to denote both the norm on �
r
(�) and the norm on �(�

p
,�

q
), letting the

context determine which one is intended.

Lemma 3.1. Let A= [ajk ]∈�
r
(�).

(1) ‖A‖ <∞.
(2) For each (μ,ν)∈N×N, ‖aμν‖ ≤ ‖A‖.
(3) For each subset S of N×N, denote by A(S) the matrix obtained from A by replacing

by 0 for all ( j,k)-entries with ( j,k) �∈ S. Then ‖A(S)‖ ≤ ‖A‖.
(4) ‖Aν� ‖ ↗ ‖A‖ as ν→∞.

Proof. (1) Let �
#

be the dual space of �. By [6, 7, Corollary 4.3.7, page 260], each f ∈�
#

is a linear combination of at most four states, that is, for some αν = αν ( f ) ∈ C, ϕν =
ϕν ( f )∈ s(�), ν= 1,2,3,4, f =∑4

ν=1ανϕν . For each A= [ajk ]∈�
r
(�), [ϕν (|ajk |2

)]∈�
r
,

for ν = 1,2,3,4. Since �
r

is a Banach algebra under the Schur multiplication and usual
addition [2],

f
[
A

[2]]=
4∑

ν=1

ανϕν

[
A

[2]]∈�
r
. (3.4)

Thus �A : f �→ f [A
[2]

]=∑4

ν=1αν (ϕν [A
[2]

]) defines a linear transformation from �
#

to
�

r
. Since both the domain �

#
and the codomain �

r
of �A are Banach spaces, and �A

is linear, it suffices to show that the graph ��A
of �A is closed in �

# ⊕∞ �
r

to conclude

that �A is bounded. To that end, let { fn}∞n=1
be a sequence in �

#
such that fn → f in

�
#

and �A( fn)→ Λ = [λjk ] in �
r
. Then, for each ( j,k) ∈ N×N, fn(|ajk |2

)→ f (|ajk |2
).

From the convergence of �A( fn) to Λ in �
r
, we also have fn(|ajk |2

) → λjk . Therefore,
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λjk = f (|ajk |2
) for all ( j,k)∈N×N. It then follows that �A( f )= f [A

[2]
]= [ f (|ajk |2

)]=
[λjk ]=Λ. Therefore �A has a closed graph, and hence bounded. This implies that

‖A‖ = sup
ϕ∈s(�)

∥
∥(ϕ

[
A

[2]])[r]∥
∥

1/(2r) = sup
ϕ∈s(�)

∥
∥�A(ϕ)

∥
∥

1/2

�r

≤ sup
ϕ∈s(�)

∥
∥�A

∥
∥

1/2‖ϕ‖1/2 ≤ ∥∥�A

∥
∥

1/2

<∞.
(3.5)

(2) By [6, 7, Theorem 4.3.4, page 261],

∥
∥aμν

∥
∥

2 = ∥∥a∗
μν
aμν

∥
∥= sup

ϕ∈s(�)
ϕ
(
a
∗
μν
aμν

)

≤ sup
ϕ∈s(�)

∥
∥[(ϕ

(
a
∗
jk
ajk

))r ]∥∥
1/r = ‖A‖2

.
(3.6)

(3) follows directly from Lemma 2.1.
(4) Let ν∈N and ϕ∈ s(�). By Lemmas 2.1 and 2.2, and since (ϕ[A

[2]
])

[r] ∈�(�
p
,�

q
),

we have

∥
∥
∥
(
ϕ
[(
Aν�

)[2]])[r]∥∥
∥=

∥
∥
∥
[(
ϕ
[
A

[2]])[r]]
ν�

∥
∥
∥↗

∥
∥
∥
[(
ϕ
[
A

[2]])[r]]∥∥
∥

=
∥
∥
∥
(
ϕ
[
(A)

[2]])[r]∥∥
∥.

(3.7)

Taking suprema, as ϕ runs over the set s(�), on both sides of this inequality, we have,
after taking the (2r)th roots, ‖Aν� ‖ ↗ ‖A‖. �

Theorem 3.2. Let �
r
(�) be as defined above. Then ‖ · ‖ as defined in (3.3) is a norm on

�
r
(�). Equipped with this norm, �

r
(�) is a Banach algebra under the Schur product and

usual addition and scalar multiplication.

Proof. By Lemma 3.1(1), the function ‖ · ‖ as defined in (3.3) satisfies ‖A‖ <∞ for all
A ∈ �

r
(�). To see that ‖ · ‖ is indeed a norm, we first note that for each ϕ ∈ s(�) and

each α∈ C,

∥
∥(ϕ

[
(αA)

[2]])[r]∥
∥

1/(2r) = ∥∥[{ϕ((αa∗
jk

)(
αajk

))}r ]∥∥
1/(2r)

= |α|∥∥[(ϕ(a∗
jk
ajk

))r ]∥∥
1/(2r)

.
(3.8)

Taking suprema on both end expressions in the above equality, we have ‖αA‖ = |α|‖A‖.
For the triangle inequality, let A = [ajk ], B = [bjk ] ∈ �

r
(�). For each ϕ ∈ s(�), since
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[ϕ[A
[2]

]]
[1/2] = [(ϕ(a

∗
jk
ajk ))

1/2
] and [ϕ[B

[2]
]]

[1/2] = [(ϕ(b
∗
jk
bjk ))

1/2
] are in �

2r
, we have

[
ϕ
[
A

[2]]][1/2]

+
[
ϕ
[
B

[2]]][1/2] = [{ϕ(a
∗
jk
ajk )

}1/2

+
{
ϕ(b

∗
jk
bjk )
}1/2]∈�

2r
,

∥
∥(ϕ

[
(A+B)

[2]]
)

[r]∥∥
1/(2r) = ∥∥[{ϕ((ajk + bjk

)∗(
ajk + bjk

))}r ]∥∥
1/(2r)

≤ ∥∥[{({ϕ(a
∗
jk
ajk )

}1/2

+
{
ϕ
(
b
∗
jk
bjk

)}1/2)2}r ]∥∥
1/(2r)

(by Lemmas 2.1 and 2.3)

= ∥∥[({ϕ(a
∗
jk
ajk )

}1/2

+
{
ϕ
(
b
∗
jk
bjk

)}1/2)2r ]∥∥
1/(2r)

≤ ∥∥[{ϕ(a∗
jk
ajk

)}r ]∥∥
1/(2r)

+
∥
∥[{ϕ

(
b
∗
jk
bjk

)}r ]∥∥
1/(2r)

(
by the triangle inequality for the norm on �

2r)

≤ ‖A‖+‖B‖.

(3.9)

Since this is true for all ϕ∈ s(�), we have

‖A+B‖ = sup
ϕ∈s(�)

∥
∥(ϕ

[
(A+B)

[2]])r∥∥
1/(2r) ≤ ‖A‖+‖B‖. (3.10)

Thus ‖ · ‖ is a norm on �
r
(�).

To see submultiplicativity of ‖ · ‖, let A= [ajk ],B = [bjk ]∈�
r
(�):

‖A•B‖2r = sup
ϕ∈s(�)

∥
∥[(ϕ

(
b
∗
jk
a
∗
jk
ajk bjk

))r ]∥∥

≤ sup
ϕ∈s(�)

∥
∥[{ϕ

(‖ajk‖
2(
b
∗
jk
bjk

))}r ]∥∥

(by Lemmas 2.1 and 2.4)

≤ sup
ϕ∈s(�)

∥
∥[{ϕ

(‖A‖2(
b
∗
jk
bjk

))}r ]∥∥

= ‖A‖2r
(

sup
ϕ∈s(�)

∥
∥[(ϕ

(
b
∗
jk
bjk

))r ]∥∥
)

(by Lemmas 2.1 and 3.1)

≤ ‖A‖2r‖B‖2r
.

(3.11)

This submultiplicativity of the norm also shows that �
r
(�) is closed under the Schur

multiplication. We next show that �
r
(�) is complete in this norm. To that end, let {A(n) =

[a
(n)

jk
]} be a Cauchy sequence in �

r
(�). Then by Lemma 3.1, for each ( j,k) ∈ N×N,

{a(n)

jk
}∞
n=1

is a Cauchy sequence in �. Thus the completeness of � provides an ajk ∈� such

that a
(n)

jk
→ ajk , in �, as n→∞. For each ϕ ∈ s(�), since the sequence {(ϕ[(A

(n)
)

[2]
])

[r] =
[(ϕ((a

(n)

jk
)
∗
a

(n)

jk
))

r
]}∞

n=1
of matrices is a Cauchy sequence in �(�

p
,�

q
), there is a matrix

Λ
(ϕ) = [λ

(ϕ)

jk
]∈�(�

p
,�

q
) such that (ϕ[(A

(n)
)

[2]
])

[r] →Λ
(ϕ)

in �(�
p
,�

q
). Thus, for each ( j,k)∈

N×N, (ϕ(|a(n)

jk
|2

))
r → λ

(ϕ)

jk
as n → ∞. But we also have, by the convergence a

(n)

jk
→ ajk ,
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ϕ(|a(n)

jk
|2

)→ ϕ(|ajk |2
) as n→∞. Thus (ϕ(|ajk |2

))
r = λ

(ϕ)

jk
for each ( j,k) ∈N×N and each

ϕ ∈ s(�). With A = [ajk ], we see that (ϕ[A
[2]

])
[r] = Λ

(ϕ) ∈�(�
p
,�

q
), for each ϕ ∈ s(�).

Therefore A∈�
r
(�).

To see that A
(n) → A in �

r
(�), let ε > 0. Choose N ∈N such that

∥
∥A

(n) −A(m)∥∥ <
ε
2

∀n,m≥N. (3.12)

Let ν∈N be arbitrarily fixed. Since for each ( j,k)∈N×N, ‖a(n)

jk
− ajk‖→ 0 as n→∞, we

have, by Lemma 2.1,

∥
∥A

(n)

ν�
−Aν�

∥
∥= ∥∥(A(n) −A)

ν�

∥
∥≤ ∥∥[∥∥a(n)

jk
− ajk

∥
∥]

ν�

∥
∥

1/(2r)

�(�
p

,�
q

)
−→ 0 (3.13)

as n→∞. Thus there is an nν > N such that

∥
∥(A

(n))
ν�
−Aν�

∥
∥ <

ε
3

∀n≥ nν . (3.14)

For n≥N , we have

∥
∥(A

(n) −A)
ν�

∥
∥= ∥∥(A(n))

ν�
−Aν�

∥
∥

≤ ∥∥(A(n))
ν�
− (A(nν ))

ν�

∥
∥+

∥
∥(A

(nν ))
ν�
−Aν�

∥
∥

<
ε
2

+
ε
3
= 5ε

6
.

(3.15)

That is, for each n ≥ N , ‖(A
(n) −A)ν� ‖ < 5ε/6 for all ν ∈ N. Thus after taking limit as

ν→∞, we have, by Lemma 3.1(4),

∥
∥A

(n) −A∥∥≤ 5ε
6
< ε ∀n≥N. (3.16)

This completes the proof. �

4. The dual of a Schur algebra

In this section, we will prove a Schur algebra version of Schatten’s theorem about the
decomposition of the dual of the algebra of bounded operators on a Hilbert space as the
direct sum of “singular functionals” and functionals given by the trace-class operators.
Denote by (��) the space of all matrices [αjk ] with entries from the complex field C such
that

∥
∥[αjk

]∥∥
(��)

:= ∥∥[αjk

]∥∥ :=
∑

( j,k)∈N×N

∣
∣αjk

∣
∣ <∞. (4.1)
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(This is just the Banach space �
1
(N×N).) Let � be the space of all matrices Φ = [ϕjk ]

over �
#
, the dual space of �, such that

‖Φ‖ := ‖Φ‖� := ∥∥[ϕjk

]∥∥
�

:= sup

{
∑

( j,k)∈N×N

∣
∣ϕjk (ajk )

∣
∣ :A= [ajk

]∈�
r
(�), ‖A‖ ≤ 1

}

<∞. (4.2)

That is, Φ regarded as a map from �
r
(�) to (��) given by

Φ :
[
ajk

] �−→ [ϕjk

(
ajk

)]=: Φ[A] (4.3)

is a bounded linear transformation from �
r
(�) to (��). We also think of this as the

Schur product of the two matrices, one over �
#

and one over �, resulting in a matrix
with entries from C.

Lemma 4.1. Let Φ= [ϕjk ]∈�.
(1) For each (μ,ν)∈N×N, ‖ϕμν‖ ≤ ‖A‖.
(2) ‖Φν� ‖ ↗ ‖Φ‖ as ν→∞.

Proof. (1) For each a ∈�, denote by Eμν (a) the matrix whose (μ,ν)-entry is a and all
other entries are 0. Then Eμν (a)∈�

r
(�) and ‖Eμν (a)‖ = ‖a‖:

∥
∥ϕμν

∥
∥= sup

{∣∣ϕμν (a)
∣
∣ : a∈�, ‖a‖ ≤ 1

}

≤ sup
{∥∥Φ

[
Eμν (a)

]∥∥ : a∈�,
∥
∥Eμν (a)

∥
∥≤ 1

}≤ ‖Φ‖. (4.4)

(2) For each A=[ajk ]∈�
r
(�) and ν∈N, Φ[Aν� ]=Φν� [A]= (Φ[A])ν� . Since Φ[A]∈

(��),

∥
∥Φν� [A]

∥
∥

(��)
=

ν∑

j,k=1

∣
∣ϕjk

(
ajk

)∣∣≤
ν+1∑

j,k=1

∣
∣ϕjk

(
ajk

)∣∣= ∥∥Φ(ν+1)� [A]
∥
∥

(��)
. (4.5)

Taking supremum over all A∈� with ‖A‖ ≤ 1, we have ‖Φν� ‖ ≤ ‖Φ(ν+1)� ‖, showing the
monotonicity of {‖Φν� ‖}ν∈N .

To see the convergence, let ε > 0. There is an A = [ajk ] ∈� with ‖A‖ ≤ 1 such that
∑∞

j,k=1 |ϕjk (ajk )| > ‖Φ‖− ε/2. By the convergence of the series on the left-hand side of the
preceding inequality, there is an N such that

N∑

j,k=1

∣
∣ϕjk

(
ajk

)∣∣ >
∞∑

j,k=1

∣
∣ϕjk

(
ajk

)∣∣− ε
2
> ‖Φ‖− ε. (4.6)

Since ‖ΦN� ‖ ≥
∑N

j,k=1 |ϕjk (ajk )| ≥ ‖Φ‖− ε, we see that ‖Φν� ‖ ↗ ‖Φ‖ as ν→∞. �

Next we show that ‖ · ‖� is indeed a norm on � and that (�,‖ · ‖� ) is a Banach space.
Then an analog of a theorem of Schatten will also be proved.

Proposition 4.2. The function ‖ · ‖� on � as defined in (4.2) is a norm on the space �
and (�,‖ · ‖� ) (with entry-wise addition and scalar multiplication) is a Banach space.
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Proof. Treat � as a subspace of the space �(�
r
(�),(��)) of all bounded linear maps

from �
r
(�) to (��) as follows. For each A= [ajk ]∈�

r
(�) and Φ= [ϕjk ]∈�, define

Φ : A �−→Φ[A]=Φ•A= [ϕjk

(
ajk

)]
. (4.7)

Then Φ[A]∈ (��) and

‖Φ‖� = sup
{∥∥Φ[A]

∥
∥

(��)
: A∈�(�), ‖A‖ ≤ 1

}
(4.8)

is just the norm on the space �(�
r
(�),(��)) restricted to �. Thus ‖ · ‖� is a norm.

It remains to prove that the space � is closed in �(�
r
(�),(��)). To that end, suppose

that {Φn = [ϕ
(n)

jk
]}∞

n=1
⊆� is sequence such that Φn → T for some T ∈�(�

r
(�),(��)).

By Lemma 4.1(1), for each fixed ( j,k), the sequence {ϕ(n)

jk
}∞
n=1

is a Cauchy sequence in �
#
,

and thus by the completeness of �
#
, there is a ϕjk ∈�

#
such that ϕ

(n)

jk
→ ϕjk in �

#
. Let

Φ = [ϕjk ]. We show that Φ ∈� and Φ[A] = T(A) for all A ∈ �
r
(�). Let ε > 0, ν ∈ N,

and A = [ajk ] ∈ �
r
(�) with ‖A‖ ≤ 1. Since {Φn} is a Cauchy sequence, there is an N

such that

∥
∥Φn −Φm

∥
∥

�
< ε ∀n,m≥N. (4.9)

Thus
∥
∥Φn

[
Aν�

]−Φm

[
Aν�

]∥∥
(��)

≤ ∥∥Φn[A]−Φm[A]
∥
∥

(��)

≤ ∥∥Φn −Φm

∥
∥‖A‖ < ε ∀n,m≥N , ∀ν∈N. (4.10)

It then follows that

ν∑

j,k=1

∣
∣ϕ

(n)

jk

(
ajk

)−ϕ(m)

jk

(
ajk

)∣∣

= ∥∥Φn

[
Aν�

]−Φm

[
Aν�

]∥∥
(��)

< ε ∀n,m≥N , ∀ν∈N.
(4.11)

Since the left-hand side is a finite sum, we may take the limits in the preceding inequality,
as m→∞, to obtain

ν∑

j,k=1

∣
∣ϕ

(n)

jk

(
ajk

)−ϕjk

(
ajk

)∣∣

= ‖Φn

[
Aν�

]−Φ
[
Aν�

]‖(��) ≤ ε ∀n≥N , ∀ν∈N.
(4.12)

Therefore, Φn[Aν� ] → Φ[Aν� ] as n → ∞ for all ν ∈ N. Since we also have Φn[Aν� ] →
T(Aν� ) as n→∞, Φ[Aν� ]= T(Aν� ). Furthermore, for each ν∈N,

∥
∥Φ
[
Aν�

]∥∥
(��)

≤ ∥∥Φ[Aν�

]−ΦN

[
Aν�

]∥∥
(��)

+
∥
∥ΦN

[
Aν�

]∥∥
(��)

< ε+
∥
∥ΦN [A]

∥
∥

(��)
≤ ε+‖ΦN‖.

(4.13)
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Taking supremum over all ν∈N, we have

∥
∥Φ[A]

∥
∥

(��)
= sup

ν∈N

∥
∥(Φ[A])ν�

∥
∥

(��)
≤ ε+

∥
∥ΦN

∥
∥, (4.14)

and hence Φ[A]∈ (��). Taking suprema on both sides of inequality (4.12) over all ν∈
N, we also have

∥
∥Φn[A]−Φ[A]

∥
∥

(��)
= sup

ν∈N

∥
∥(Φn[A]−Φ[A]

)
ν�

∥
∥

(��)

= sup
ν∈N

∥
∥Φn

[
Aν�

]−Φ
[
Aν�

]∥∥
(��)

≤ ε ∀n≥N. (4.15)

Thus Φn[A]→Φ[A]. But, since we also have by our assumption on {Φn} that Φn[A]→
T(A), therefore T(A)=Φ[A] for all A ∈�

r
(�). Thus, � is closed in �(�

r
(�),(��)),

and hence complete. �

5. � as the dual of �
r
(�)

Let �
r
(�) be the set of all A= [ajk ]∈�

r
(�) such that ‖A−Aν� ‖→ 0 as ν→∞. We first

identify the dual of � :=�
r
(�) with �.

Theorem 5.1. The dual space of � is isometrically isomorphic to �.

Proof. Let ϕ∈ (�)
#
. For each j,k ∈N, define ϕjk on � by

ϕjk (a)= ϕ(Ejk (a)
) ∀a∈�, (5.1)

where Ejk (a) is the matrix whose ( j,k) entry is a and all others are 0. Then it is readily seen

that ϕjk ∈�
#

for all ( j,k). We show that [ϕjk ]∈� and that ‖ϕ‖(= ‖ϕ‖
(�)# )= ‖[ϕjk ]‖� .

Let A = [ajk ] ∈ �
r
(�). Let Ã = [(sgn(ϕjk (ajk ))ajk )]. Then Ã ∈ �

r
(�). For each ν ∈ N,

since Aν� ∈�
r
, ϕ((Ã)ν� ) is defined and

∑

1≤ j,k≤ν

∣
∣ϕjk (ajk )

∣
∣= ϕ((Ã)ν�

)≤ ‖ϕ‖∥∥(Ã)ν�

∥
∥

= ‖ϕ‖∥∥Aν�

∥
∥≤ ‖ϕ‖‖A‖.

(5.2)

Since this is true for all ν∈N, we have
∑∞

j,k=1 |ϕjk (ajk )| <∞, and hence [ϕjk ]∈� by the
arbitrariness of A ∈ �

r
(�). By the inequalities in (5.2), we also see that ‖[ϕjk ]‖ ≤ ‖ϕ‖.

To see the opposite inequality, let ε > 0, and choose A= [ajk ]∈� such that ‖A‖ = 1 and
|ϕ(A)| ≥ ‖ϕ‖− ε. It suffices to show that |ϕ(Aν� )− ϕ(A)| → 0, as ν→∞. We first note
that ϕ(Aν� ) = [ϕjk ] •Aν� =

∑ν
j,k=1ϕjk (ajk ) for all ν ∈ N. Since A ∈�, ‖Aν� −A‖ → 0 in

�, as ν→∞, and hence ϕ(Aν� )→ ϕ(A) as required. Though not required for the proof of
this theorem, we also note that by the absolute convergence of the series

∑∞
j,k=1ϕjk (ajk ),

which follows from (5.2), ϕ(A)=∑∞
j,k=1ϕjk (ajk ). �

A bounded linear functional ψ ∈ (�
r
(�))

#
on �

r
(�) is said to be singular if ψ ∈

(�
r
(�))

⊥
. Denote by (�

r
(�))

#

s
the space of all bounded singular linear functionals on
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�
r
(�). Elements Φ= [ϕjk ]∈� will also be regarded as elements in (�

r
(�))

#
by the con-

vention Φ(A)=∑ j,k ϕjk (ajk ) for all A= [ajk ]∈�
r
(�), where the convergence of the se-

ries is guaranteed by the absolute convergence of the series from the membership Φ∈�.
The following is an analog of a theorem by Schatten.

Theorem 5.2. The dual space (�
r
(�))

#
of �

r
(�) has the Banach space direct sum decom-

position

(
�

r
(�)

)# =�⊕ (�
r
(�))

#

s
. (5.3)

Proof. Let Ψ∈(�
r
(�))

#
. Set Ψ1 :=Ψ|

�r (�)
∈(�

r
(�))

#=�, and Ψ2=Ψ−Ψ1∈(�
r
(�))

⊥ =
(SrA)

#

s
. Then we clearly have the decomposition Ψ=Ψ1 +Ψ2 . �

Schatten’s theorem also states that ‖Ψ0‖+ ‖Ψs‖ = ‖Ψ‖ for each Ψ in the dual of the
algebra of bounded linear operators on a Hilbert space, where Ψ0 is given by a trace-class
operator and Ψs is singular such that Ψ = Ψ0 +Ψs . We do not know, however, whether
this is true in this setting. In [3, 5] it has been proved to hold in their respective settings.

6. The Schur algebra as a dual space

It is not hard to see that if �
r
(�) is to be the dual space of some normed space, then so

must be � itself. Therefore, for the discussions in this section to make sense, we make the
standing assumption that the C

∗
-algebra � is the dual space of some normed space (and

hence the dual of the Banach space completion of the normed space). That is, we make
the standing assumption in this section that � is a von Neumann algebra.

Let �# be the predual of �. From the results in [6, 7, pages 454–485], instead of using
the whole dual space �

#
and the set s(�) of all states on � to define �

r
(�), here we will

use the predual of � (the space of all normal, or ultraweakly continuous, linear function-
als on �) and s(�) will be the set of all normal states on �. Then by polarization each
element in �# is a linear combination of at most four normal states. Since �# is also com-
plete (as a space of bounded linear functionals on �), and each selfadjoint a∈� also has
‖a‖ = supϕ∈s(�)ϕ(a), what holds true for �

r
(�) defined previously holds for this new

setting. We will show that the Schur algebra �
r
(�) is also the dual space of some Banach

space, another analog of a theorem of Schatten.
Since each ξ ∈�# is an ultraweakly continuous linear functional on �; that is, there

are sequences {xn}n∈N and {yn}n∈N in the underlying Hilbert space on which � acts,
such that

∑∞
n=1(‖xn‖2

+‖yn‖2
) <∞ and ξ(a)=∑∞

n=1〈axn , yn〉 for each a∈�, thus rather
than writing each element in � as a function on �# , we will use this fact to express each
element in �# as a function on �. For each infinite matrix Ξ = [ξjk ] with entries from
�# , and for each A= [ajk ] with entries from �, denote by A •Ξ the matrix whose ( j,k)
entry is ξjk (ajk ) for all ( j,k)∈N×N,

A•Ξ= [ξjk
(
ajk

)]
. (6.1)

Note that A•Ξ is just an infinite matrix, and it may not be “bounded” in any sense.
Let �(�# ) be the space of all matrices Ξ = [ξjk ] over �# such that A • Ξ ∈ (��)

for all A ∈ �
r
(�), that is,

∑
jk |ξjk (ajk )| <∞ for all A = [ajk ] ∈ �

r
(�). Define, for each
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Ξ= [ξjk ]∈�(�# ),

‖Ξ‖# = ‖Ξ‖ := sup
{‖A•Ξ‖(��) : A∈�

r
(�), ‖A‖ ≤ 1

}

= sup

{ ∞∑

j,k=1

∣
∣ξjk (ajk )

∣
∣ : A= [ajk

]∈�
r
(�), ‖A‖ ≤ 1

}

.
(6.2)

We will prove that ‖ · ‖# is indeed a norm on �(�# ), and that �(�# ) is a Banach space.

Proposition 6.1. (1) The function as defined in (6.2) is a norm on the space �(�# ).
(2) For each Ξ= [ξjk ]∈�(�# ) and for each (μ,ν)∈N×N,

∥
∥ξμν

∥
∥≤ ‖Ξ‖. (6.3)

(3) For each Ξ= [ξjk ]∈�(�# ), and each ν∈N,

∥
∥Ξν�

∥
∥≤ ‖Ξ‖. (6.4)

(4) The space �(�# ) is a Banach space with this norm (and the usual entry-wise addition
and scalar multiplication).

Proof. (1) Let Ξ= [ξjk ]∈�(�# ). By the definition of �(�# ),

�Ξ(A)=A•Ξ= [ξjk (ajk )
] ∀A= [ajk

]∈�
r
(�) (6.5)

defines a linear map �Ξ : �
r
(�)→ (��). We show that �Ξ is a bounded linear trans-

formation by the closed-graph theorem. Let {An ,�Ξ(An)}∞
n=1

be a sequence in �
r
(�)⊕

(��) such that An → A for some A = [ajk ] in �
r
(�) and �Ξ(An) → B for some B =

[bjk ]∈ (��). Let An = [a
(n)

jk
]. Since A∈�

r
(�), A •Ξ∈ (��). From An → A, we see that

‖a(n)

jk
− ajk‖ → 0, and hence a

(n)

jk
→ ajk ultraweakly, as n→∞, for all ( j,k) ∈ N×N. Thus

ξjk (a
(n)

jk
)→ ξjk (ajk ), as n→∞, for all ( j,k) ∈N×N. Since �Ξ(An)→ B in (��), for each

( j,k)∈N×N,

∣
∣ξjk

(
a

(n)

jk

)− bjk

∣
∣≤

∞∑

s,t=1

∣
∣ξst
(
a

(n)

st

)− bst
∣
∣= ∥∥�Ξ

(
An

)−B∥∥
(��)

−→ 0 (6.6)

as n→∞. Hence bjk = ξjk (ajk ) for all j,k ∈N. Therefore B =�Ξ(A). Thus �Ξ has a closed
graph, and hence �Ξ is bounded.

We will identify each Ξ∈�(�# ) with �Ξ ∈�(�
r
(�),(��)). We then have �(�# )⊆

�(�
r
(�),(��)). We also note that the norm ‖Ξ‖ of Ξ ∈�(�# ) as defined in (6.2) is

exactly the norm of �Ξ ∈�(�
r
(�),(��)). Therefore, the function Ξ �→ ‖Ξ‖ is a norm

on �(�# ).
(2) Let a ∈� be such that ‖a‖ ≤ 1. For a fixed ( j,k) ∈ N×N, denote by Ejk (a) the

matrix whose ( j,k)-entry is a and all others are 0. Then Ejk (a)∈�
r
(�) and ‖Ejk (a)‖ =

‖a‖ ≤ 1. We also have, for each Ξ= [ξjk ]∈�# and μ,ν∈N, Eμν (a) •Ξ= Eμν (ξμν (a)), the
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matrix whose (μ,ν) entry is the number ξμν (a) and all others are 0. Then

∣
∣ξμν (a)

∣
∣= ∥∥Eμν

(
ξμν (a)

)∥∥
(��)

= ∥∥Eμν (a)•Ξ∥∥
(��)

≤ ∥∥Eμν (a)
∥
∥

�r (�)
‖Ξ‖

�(�r (�),(��))
= ‖Ξ‖. (6.7)

Since this is true for all a∈� with ‖a‖ ≤ 1, we have ‖ξμν‖ ≤ ‖Ξ‖ for all (μ,ν)∈N×N.
(3) We omit the straightforward modification of the preceding argument that can give

a proof of this statement.
(4) To see that �(�# ) is complete in the norm, let {Ξn = [ξ

(n)

jk
]}∞

n=1
be a sequence in

�(�# ) such that �Ξn
→� for some � ∈�(�

r
(�),(��)). Then, by the inequality just

established in part (2), each {ξ (n)

jk
}∞
n=1

is a Cauchy sequence in �# , and hence converges to

some ξjk . Let Ξ= [ξjk ]. For each A= [ajk ]∈�
r
(�), since �(A)∈ (��), �(A)= [tjk ], an

infinite matrix. For each (μ,ν)∈N×N,

∣
∣ξ

(n)

μν

(
aμν

)− tμν

∣
∣= ∥∥[�Ξn

(A)
]•Eμν (1)− [�(A)

]•Eμν (1)
∥
∥

= ∥∥[(�Ξn
−�

)
(A)
]•Eμν (1)

∥
∥

≤ ∥∥[(�Ξn
−�

)
(A)
]∥∥

≤ ∥∥�Ξn
−�

∥
∥‖A‖ −→ 0 as n−→∞.

(6.8)

But we also have ξ
(n)

μν
(aμν )→ ξμν (aμν ). Thus tμν = ξμν (aμν ). Since this is true for all μ,ν ∈N,

�(A)=�Ξ(A). Since this is true for all A∈�
r
(�), � =�Ξ and �Ξ ∈�(�

r
(�),(��)).

By the definition of �(�# ), Ξ∈�(�# ). This completes the proof. �

Since the algebra of bounded linear operators on a Hilbert space is the dual of the trace
class operators under the trace norm, which is the closure in the trace norm of the set of
matrices with finitely many nonzero entries, by analogy we define �# to be the closure
in the norm, defined above, of all matrices in �(�# ) with finitely many nonzero entries.
Then it is readily seen that, for each element Ξ = [ξjk ] ∈�# , ‖Ξν� − Ξ‖ → 0 as ν→∞,
where ‖ · ‖ = ‖ · ‖# is the norm on �(�# ) defined in (6.2). We do not know, however,
whether the inclusion �# ⊆�(�# ) is proper. However by the definition of �# , we have
the following.

Proposition 6.2. The space �# is a Banach space under the norm ‖ · ‖ defined in (6.2)
and the usual entry-wise addition and scalar multiplication.

Theorem 6.3. The Schur algebra �
r
(�) is isometrically isomorphic to the dual of �# .

Proof. Note that each A= [ajk ]∈�
r
(�) defines a linear functional ΦA on �# as follows:

ΦA(Ξ)=
∞∑

j,k=1

ξjk
(
ajk

) ∀Ξ= [ξjk
]∈�# . (6.9)

The series converges by its absolute convergence, which is guaranteed by the definition
of membership in �# . That ΦA is also bounded on �# follows also from (6.2). Thus



Pachara Chaisuriya et al. 13

�
r
(�)↩ (�# )

#
. Furthermore, since

∥
∥ΦA

∥
∥= sup

{∣∣
∣
∣
∣

∞∑

j,k=1

ξjk
(
ajk

)
∣
∣
∣
∣
∣ : Ξ= [ξjk

]∈�# , ‖Ξ‖ ≤ 1

}

≤ sup

{ ∞∑

j,k=1

∣
∣ξjk

(
ajk

)∣∣ : Ξ= [ξjk
]∈�# , ‖Ξ‖ ≤ 1

}

= sup
{‖A•Ξ‖(��) : Ξ∈M# , ‖Ξ‖ ≤ 1

}

≤ sup
{‖A‖‖Ξ‖ : Ξ∈�# , ‖Ξ‖ ≤ 1

}≤ ‖A‖,

(6.10)

we may identify each element A of �
r
(�) with the linear functional ΦA ∈ (�# )

#
, treating

them as the same element, then we have the actual inclusion �
r
(�)⊆ (�# )

#
.

Let �′ be the unit ball of the dual (�# )
#

of �# , and let � be the unit ball of �
r
(�) (un-

der the norm on �
r
(�)). From the above convention, we see that �⊆�′. We show that

� =�′, and the result follows. The weak
∗

topology σ((�# )
#
,�# ) on (�# )

#
is a locally

convex topology, and since � separates points in �# , σ((�# )
#
,�# ) induces a locally con-

vex topology σ on �. We show that (�,σ) is complete so that it is a closed convex subset
of the locally convex space ((�# )

#
,σ((�# )

#
,�# )). To that end, let {Aα} = {[a(α)

jk
]}α∈Λ be a

Cauchy net in (�,σ). Then, for each fixed ( j,k)∈N×N, ε > 0, and unit vectors ξm ∈�#

(m= 1,2, . . . , l) Ξm = Ej,k (ξm)∈�# (m= 1,2, . . . , l) are unit vectors. Thus there is a γ such
that for all α,β � γ,

∣
∣ξm
(
a

(α)

jk

)− ξm
(
a

(β)

jk

)∣∣= ∣∣Φ
Aα

(
Ξm

)−Φ
Aβ

(
Ξm

)∣∣ < ε ∀m= 1,2, . . . , l. (6.11)

Thus, for each fixed j,k ∈N, {a(α)

jk
}α is a Cauchy net in ((�)1 ,σ(�,�# )), where (�)1 is the

unit ball of �. By Alaoglu’s theorem, (�)1 is weak
∗

compact (i.e., (�)1 is compact in the
topology σ(�,�# )). Thus there is an ajk ∈ (�)1 such that limα(a

(α)

jk
)= ajk in the topology

σ(�,�# ). Let A= [ajk ]. We show that A∈� and A
(α) → A in σ . For each ν∈N and each

Ξ= [ξjk ]∈�# ,

lim
α

(
Φ

(Aα )ν�
(Ξ)
)= lim

α

( ν∑

j,k=1

ξjk
(
a

(α)

jk

)
)
=

ν∑

j,k=1

ξjk (ajk )=Φ
Aν�

(Ξ). (6.12)

Thus (Aα)ν� → Aν� in σ . Since ‖Φ
(Aα )ν�

‖ ≤ ‖(Aα)ν� ‖ ≤ ‖Aα‖ ≤ 1 for all α, ‖Φ
Aν�
‖ ≤ 1 also

follows.
Here we digress to show that ‖Bν� ‖ = ‖ΦBν�

‖ for all B ∈�
r
(�) and all ν∈N. Let �′

ν�
and �ν� be the sets of all matrices in �′ and � that have all ( j,k)-entries 0 for j > ν or
k > ν. The duality between the upper ν× ν corners of �# and �

r
(�) will be established

once we prove that �′
ν�
=�ν� . Suppose the inclusion �ν� ⊂�′

ν�
is proper. Since �′

ν�
is a

closed convex subset (from what we just established), and there is a Φ∈�′
ν�
\�ν� , by a

version of Hahn-Banach separation theorem [6, 7, Theorem 1.2.10], there are an element
Ξ ∈ (�# )ν� (the space of ν× ν truncations of elements in �# ), an ε > 0, and a constant
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c ∈R such that

	e
(
ΦB (Ξ)

)≤ c < c+ ε ≤	e
(
Φ(Ξ)

) ∀B ∈�ν� . (6.13)

For each B ∈�ν� , let B̃ = (sgn(ΦB (Ξ)))B. Then B̃ ∈�ν� , and

‖Ξ‖ = sup
B∈�

∣
∣ΦB (Ξ)

∣
∣= sup

B∈�
Φ

B̃
(Ξ)≤ c < c+ ε ≤	e(Φ(Ξ))≤ ∣∣Φ(Ξ)

∣
∣≤ ‖Ξ‖, (6.14)

a contradiction. Therefore �ν� =�′
ν�

, and hence ‖ΦBν�
‖ = ‖Bν� ‖ for all B ∈�

r
(�).

Now we have, for the limit A above, ‖A‖ = supν∈N‖Aν� ‖ = supν∈N‖ΦAν�
‖ ≤ 1. Thus

A∈�. Let Ξ= [ξjk ]∈�# , and ε > 0. Then there exists γ such that

∣
∣ΦAα

(Ξ)−ΦAβ
(Ξ)
∣
∣=

∣
∣
∣
∣
∣

∞∑

j,k=1

(
ξjk
(
a

(α)

jk

)− ξjk
(
a

(β)

jk

))
∣
∣
∣
∣
∣ <

ε
3

∀α, β � γ. (6.15)

By the definition of �# , there is a ν0 ∈ N such that ‖Ξ−Ξν� ‖ < ε/3 for all ν ≥ ν0 . Fix a

ν ≥ ν0 . Since a
(α)

jk
→ ajk in σ(�,�# ) for all ( j,k) ∈ N×N, and since ν is finite, we may

choose β0 � γ such that for all β � β0

∣
∣
∣
∣
∣

ν∑

j,k=1

(
ξjk
(
a

(β)

jk

)− ξjk
(
ajk

))
∣
∣
∣
∣
∣ <

ε
3
. (6.16)

Thus for β � β0 ,

∣
∣ΦAβ

(Ξ)−ΦA(Ξ)
∣
∣=

∣
∣
∣
∣
∣

∞∑

j,k=1

(
ξjk
(
a

(β)

jk

)− ξjk (ajk )
)
∣
∣
∣
∣
∣

≤ ∣∣ΦAβ
(Ξ)−ΦAβ

(
Ξν�

)∣∣+
∣
∣ΦAβ

(
Ξν�

)−ΦA(Ξν� )
∣
∣

+
∣
∣ΦA

(
Ξν�

)−ΦA(Ξ)
∣
∣

≤ ∥∥Aβ

∥
∥
∥
∥Ξ−Ξν�

∥
∥+

∣
∣
∣
∣
∣

ν∑

j,k=1

(
ξjk
(
a

(β)

jk

)− ξjk
(
ajk

))
∣
∣
∣
∣
∣

+‖A‖∥∥Ξν� −Ξ
∥
∥

<
ε
3

+
ε
3

+
ε
3
= ε.

(6.17)

Therefore, Aα → A in σ , and hence � is a σ((�# )
#
,�# ) closed convex subset of �′. The

proof of � = �′ is exactly the same as that of �ν� = �′
ν�

above. This completes the
proof. �

We conclude with some natural questions, for which we do not know the answers.
(1) Is it possible to express �

r
(�) as a topological tensor product of �

r
and �?

(2) When � is a von Neumann algebra, do we have

�
(
�#

)= �1
(N×N)⊗γ A# , (6.18)

(where
⊗

γ
denotes the projective Banach space tensor product)?
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(3) For a von Neumann algebra �, is �# the unique predual of �
r
(�)?

(4) When is �
r
(�) an operator algebra? With this regard, the paper “On quotients

of function algebras and operator algebra structures on �
p
,” J. Operator Theory 34

(1995), 315-346, by D. P. Bleecher and C. Le Merdy, may be of interest.
(5) To what extent does the theory of Schatten ideals on a Hilbert space carry over to

the present context?
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