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are valid for much broader range of applications than their classical counterparts but
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approach presented in this publication is due to employing the time averaging technique.
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1. Introduction

The persistency of excitation conditions appears in numerous applications related to sys-
tem identification, learning, adaptation, parameter estimation. They guarantee the con-
vergence of the adaptation procedures based on the ideas of gradient and least-squares
algorithms. An introduction into this topic can be found, for example, in [1, Chapter 2].
The classical version of the persistency of excitation conditions can be characterized in
terms of the asymptotic stability of the linear system

ẋ =−P(t)x, P(t)= P(t)T ≥ 0, ∀ t ≥ 0. (0.1)

Namely, the linear system is uniformly asymptotically stable if P(t) is persistently exciting,
that is, there exist positive real numbers α, δ such that

∫ t+δ
t

P(τ)dτ ≥ α·I , ∀t ≥ 0, (0.2)
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where I is the identity matrix. It is also assumed that there exists a positive real number β
such that

∫ t+δ
t

P(τ)dτ ≤ β·I , ∀t ≥ 0. (0.3)

The detailed analysis of the conditions (0.2), (0.3) can be found in many publications
(see, e.g., [1–8]).

We address (0.2) as classical persistency of excitation conditions. They impose the re-
strictions that are uniform in time. Moreover, they tacitly demand the exponential con-
vergence of the corresponding adaptation procedures. On the other hand, due to wide
range of applications the classical conditions might be a burden for solutions of impor-
tant problems. This publication presents the new generalized persistency of excitation
conditions that do not impose any unnatural (uniform in time, exponential convergence)
restrictions. Moreover, the classical version easily follows from the new generalized con-
ditions.

In order to create the generalized version for the persistency of excitation, this paper
uses the approach similar in the spirit to the time-averaging developed in [9]. We for-
mulate our new necessary and sufficient conditions for a time-varying system (0.1) to
be (in general, nonuniformly) asymptotically stable. Finally, we formulate corollaries of
the main result and present examples illustrating the generalized persistency of excitation
conditions.

1. Preliminaries

Consider a system

ẋ =−P(t)x, (1.1)

where x ∈Rn,Rn: n-dimensional linear real space. P(t) is a time-dependent matrix such
that

P(t)= P(t)T ≥ 0, ∀ t ∈R, (1.2)

where the inequality P(t)≥ 0 is understood in the following sense. Given two n×n sym-
metric matrices A and B, we write

A≥ B (1.3)

if

〈x,Ax〉 ≥ 〈x,Bx〉, ∀ x ∈Rn. (1.4)

Throughout the paper, we assume that Rn is equipped with the scalar product and ‖x‖
denotes the magnitude of x, that is ‖x‖ = √〈x,x〉, where 〈x,x〉 is the scalar product of x
with itself.
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We assume that P(t) is a time-dependent L1,loc-matrix in the following sense. For any
real numbers b > a and for any x, y ∈Rn we have

∫ b
a

∣∣〈y,P(t)x
〉∣∣dt <∞. (1.5)

Consider the initial value problem

ẋ(t)=−P(t)x(t),

x(0)= x0,
(1.6)

where P(t)∈ L1,loc. Its solution is defined to be an L1,loc vector function x(t) such that for
any infinitely differentiable function ϕ(t) ∈ C∞ (both x(t) and ϕ(t) take its values from
Rn ) with compact support (that means ϕ(t)= 0 outside an interval from R) we have

−
∫∞

0

〈
d

dt
ϕ(t),x(t)

�
dt = 〈ϕ(0),x0

〉−
∫∞

0

〈
ϕ(t),P(t)x(t)

〉
dt. (1.7)

It is well known (see, e.g., [10, 11]) that the solution x(t,x0) for (1.6) exists and is
unique. Moreover, it is a continuous function of time. Indeed, consider Picard’s sequence

yn(t)= x0−
∫ t

0
P(τ)yn−1(τ)dτ, (1.8)

where y0(t)= x0 and n= 1, 2, . . . . Since P(t)∈ L1,loc, Picard’s sequence {yn(t)}n converges
(pointwise) to a continuous function y(t). Let us show that y(t) satisfies (1.7). Integrating
by parts

−
∫∞

0

〈
d

dt
ϕ(t), yn(t)

�
dt (1.9)

we obtain

−
∫∞

0

〈
d

dt
ϕ(t), yn(t)

�
dt = 〈ϕ(0),x0

〉−
∫∞

0

〈
ϕ(t),P(t)yn−1(t)

〉
dt. (1.10)

Since both yn(t) and yn−1(t) converge to y(t) as n→∞, we arrive at

−
∫∞

0

〈
d

dt
ϕ(t), y(t)

�
dt = 〈ϕ(t0),x0

〉−
∫∞

0

〈
ϕ(t),P(t), y(t)

〉
dt. (1.11)

Hence, y(t)= x(t,x0) is the solution for (1.6) in the sense (1.7).
The goal of this paper is to find necessary and sufficient conditions for the solution

x(t,x0) of the system (1.6) to satisfy

lim
t→∞x(t,x0)= 0, ∀ x0 ∈Rn, (1.12)

and the equilibrium x = 0 is stable.
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2. Necessary and sufficient conditions

Our main goal is to study asymptotic stability of the origin for the system (1.1). Consider
a real positive number S and a continuous real function ωS(t) such that

ωS(t) > 0, for 0≤ t < S
ωS(t)= 0, for t ≥ S. (2.1)

We also assume that ωS(t) is differentiable almost everywhere on R. For the sake of
brevity, we addressωS(t) as a truncation function in the sequel. If the origin for the system
(1.1) is asymptotically stable, then

lim
t→∞

∥∥x(t,x0)
∥∥2 = 0, ∀ x0 ∈Rn. (2.2)

Hence, for any fixed real positive number S we have

lim
t→∞

∫ S
0
ωS(τ)

∥∥x(t+ τ,x0
)∥∥2

dτ = 0, ∀ x0 ∈Rn. (2.3)

Consider more closely the integral

∫ S
0
ωS(τ)

∥∥x(t+ τ,x0
)∥∥2

dτ. (2.4)

It follows from

d

dt

∥∥x(t,x0
)∥∥2 =−2·〈x(t,x0

)
,P(t)x

(
t,x0

)〉≤ 0 (2.5)

that ‖x(t1,x0)‖2 ≥ ‖x(t2,x0)‖2, for t2 > t1. That means

∫ S
0
ωS(τ)·∥∥x(t+ τ,x0

)∥∥2
dτ ≥ ∥∥x(t+ S,x0

)∥∥2·
∫ S

0
ωS(τ)dτ. (2.6)

If we find conditions that guarantee

∫ S
0
ωS(τ)

∥∥x(t+ τ,x0
)∥∥2

dτ −→ 0, as t −→∞, (2.7)

then that will imply the asymptotic stability of the origin for the system (1.1).
Differentiating the integral

∫ S
0
ωS(τ)·∥∥x(t+ τ,x0

)∥∥2
dτ (2.8)

with respect to time yields

d

dt

∫ S
0
ωS(τ)·∥∥x(t+ τ,x0

)∥∥2
dτ =−2·

∫ S
0
ωS(τ)·〈x(t+ τ,x0

)
,P
(
t+ τ

)
x
(
t+ τ,x0

)〉
dτ.

(2.9)
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Replacing P(t+ τ) with

d

dτ

∫ τ
0
P(t+ θ)dθ (2.10)

and integrating by parts leads us to the following important formula:

d

dt

∫ S
0
ωS(τ)·∥∥x(t+ τ,x0

)∥∥2
dτ =−2

∫ S
0

〈
x
(
t+ τ,x0

)
,A(t,τ)x

(
t+ τ,x0

)〉
dτ, (2.11)

where

A(t,τ)=− d

dτ
ωS(τ)·

∫ τ
0
P(t+ θ)dθ +ωS(τ)· d

dτ

(∫ τ
0
P(t+ θ)dθ

)2

. (2.12)

Let

λmin(t,τ), λmax(t,τ) (2.13)

denote minimal and maximal eigenvalues of A(t,τ). Then, the next theorem gives us
necessary and sufficient conditions for the system (1.1) to be (in general nonuniformly)
asymptotically stable at the origin. Notice that one is assured by P(t) ∈ L1,loc that the
integral expressions in the next theorem are well defined.

Theorem 2.1 (generalized persistency of excitation). If there exist a real number S > 0 and
a truncation function ωS(t) such that

lim
t→∞ sup

∫ t
0

∫ S
0
λmin (ν,τ)dτdν=∞, (2.14)

then the system (1.1) is asymptotically stable at the origin. On the other hand, if

lim
t→∞ inf

∫ t
0

∫ S
0
λmax (ν,τ)dτdν <∞, (2.15)

then the system (1.1) is not asymptotically stable at the origin.

Proof. It follows from (2.11) that

∫ S
0
ωS(τ)·∥∥x(t+ τ,x0

)∥∥2
dτ ≤ −

∫ t
0

∫ S
0
λmin(ν,τ)

∥∥x(ν + τ,x0
)∥∥2

dτdν

+
∫ S

0
ωS(τ)

∥∥x(τ,x0
)∥∥2

dτ.

(2.16)

Due to monotonicity of ‖x(t,x0)‖2, we have

(∫ S
0
ωS(τ)dτ

)
·∥∥x(t+ S,x0

)∥∥2 ≤ −
∫ t

0

(∫ S
0
λmin(ν,τ)dτ

)∥∥x(ν + S,x0
)∥∥2

dν

+

(∫ S
0
ωS(τ)dτ

)
·∥∥x0

∥∥2
.

(2.17)
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It follows from the very well-known Gronwall inequality (see, e.g., [12]) that

∥∥x(t+ S,x0
)∥∥2 ≤ ∥∥x0

∥∥2·exp
{
−
∫ t

0

∫ S
0 λmin(ν,τ)dτdν∫ S

0 ωS(τ)dτ

}
. (2.18)

Thus,

lim
t→∞ sup

∫ t
0

∫ S
0
λmin(ν,τ)dτdν=∞ (2.19)

implies that the system (1.1) is asymptotically stable.
On the other hand, (2.11) leads us to

∫ S
0
ωS(τ)·∥∥x(t+ τ,x0

)∥∥2
dτ ≥ −

∫ t
0

∫ S
0
λmax(ν,τ)

∥∥x(ν + τ,x0
)∥∥2

dτdν

+
∫ S

0
ωS(τ)·∥∥x(τ,x0

)∥∥2
dτ.

(2.20)

Since the derivative (d/dt)‖x(t,x0)‖2 is not positive, we have ‖x(ν + τ,x0)‖2 ≤ ‖x(ν,x0)‖2

and
(∫ S

0
ωS(τ)dτ

)
·∥∥x(t,x0

)∥∥2 ≥ −
∫ t

0

(∫ S
0
λmax(ν,τ)dτ

)∥∥x(ν,x0
)∥∥2

dν

+

(∫ S
0
ωS(τ)dτ

)∥∥x(S,x0
)∥∥2

(2.21)

for t ≥ S. After solving this inequality, we obtain

∥∥x(t,x0
)∥∥2 ≥ ∥∥x(S,x0

)∥∥2·exp
{
−
∫ t

0

∫ S
0 λmax(ν,τ)dτdν∫ S

0 ωS(τ)dτ

}
(2.22)

for t ≥ S. Hence, if

lim
t→∞ inf

∫ t
0

∫ §

0
λmax(ν,τ)dτdν <∞, (2.23)

then the system (1.1) is not asymptotically stable. �

Notice that we owe the success in proving Theorem 2.1 to the new idea that suggests
to consider

∫ S
0
ωS(τ)·∥∥x(t+ τ,x0

)∥∥2
dτ (2.24)

instead of ‖x(t,x0)‖2. This approach seems to have further important consequences not
only for control theory but also for studies of general dynamical systems.

After integrating by parts, we have

∫ S
0
A(t,τ)dτ =−

∫ S
0

d

dτ
ωS(τ)·

{∫ τ
0
P(t+ θ)dθ +

(∫ τ
0
P(t+ θ)dθ

)2}
dτ. (2.25)
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Let

γmin(t,τ), γmax(t,τ) (2.26)

denote minimal and maximal eigenvalues of

∫ τ
0
P(t+ θ)dθ. (2.27)

Then, we can reformulate Theorem 2.1 as follows.

Corollary 2.2. If there exist a real number S > 0 and a truncation function ωS(t) such that

d

dτ
ωS(τ)≤ 0, for τ < S,

lim
t→∞ sup

{
−
∫ t

0

∫ S
0

d

dτ
ωS(τ)

(
γmin (ν,τ) +

(
γmin (ν,τ)

)2)
dτdν

}
=∞,

(2.28)

then the system (1.1) is asymptotically stable at the origin. On the other hand, if

lim
t→∞ inf

{
−
∫ t

0

∫ S
0

d

dτ
ωS(τ)

(
γmax (ν,τ) +

(
γmax (ν,τ)

)2)
dτdν

}
<∞, (2.29)

then the system (1.1) is not asymptotically stable at the origin.

Proof. Consider the unit eigenvectors ψmin(ν,τ), ψmax(ν,τ) corresponding to minimal
and maximal eigenvalues of

∫ τ
0 P(ν + θ)dθ,

γmin(ν,τ)=
〈
ψmin,

(∫ τ
0
P(ν + θ)dθ

)
ψmin

〉
,

〈
ψmin(ν,τ),ψmin(ν,τ)

〉= 1,

γmax(ν,τ)=
〈
ψmax,

(∫ τ
0
P(ν + θ)dθ

)
ψmax

〉
,

〈
ψmax(ν,τ),ψmax(ν,τ)

〉= 1.

(2.30)

Then, taking into account that

〈
d

dτ
ψmin,ψmin

�
= 0,

〈
d

dτ
ψmax,ψmax

�
= 0, (2.31)

we obtain

〈
ψmin,

d

dτ

(∫ τ
0
P(ν + θ)dθ

)2

ψmin

〉
= d

dτ

〈
ψmin,

(∫ τ
0
P(ν + θ)dθ

)2

ψmin

〉
,

〈
ψmax,

d

dτ

(∫ τ
0
P(ν + θ)dθ

)2

ψmax

〉
= d

dτ

〈
ψmax,

(∫ τ
0
P(ν + θ)dθ

)2

ψmax

〉
.

(2.32)



8 International Journal of Mathematics and Mathematical Sciences

Consequently,

〈
ψmin,A(ν,τ)ψmin

〉=− d

dτ
ωS(τ)γmin(ν,τ) +ωS(τ)

d

dτ

(
γmin(ν,τ)

)2
, (2.33)

〈
ψmax,A(ν,τ)ψmax

〉=− d

dτ
ωS(τ)γmax(ν,τ) +ωS(τ)

d

dτ

(
γmax(ν,τ)

)2
. (2.34)

Let λmin(ν,τ) and λmax(ν,τ) denote minimal and maximal eigenvalues for A(ν,τ), respec-
tively. Then, after integrating by parts,

∫ S
0
λmin(ν,τ)dτ =−

∫ S
0

d

dτ
ωS(τ)

(
γmin(ν,τ) +

(
γmin(ν,τ)

)2)
dτ (2.35)

follows from (2.33) and

∫ S
0
λmax(ν,τ)dτ =−

∫ S
0

d

dτ
ωS(τ)

(
γmax(ν,τ) +

(
γmax(ν,τ)

)2)
dτ (2.36)

follows from (2.34). �

If

ωS(τ)=
⎧⎨
⎩

(S− τ), for τ < S,

0, for τ ≥ S,
(2.37)

then we obtain the following important corollary of Theorem 2.1.

Corollary 2.3. If there exists a real number S > 0 such that

lim
t→∞ sup

∫ t
0

∫ S
0
γmin(ν,τ)dτdν=∞, (2.38)

then the system (1.1) is asymptotically stable at the origin.

Though Corollary 2.3 gives us only a sufficient condition of (in general nonuniform)
asymptotic stability for the system (1.1), its simple form makes it valuable for practical
applications.

At the conclusion of this section, we present a simple and elegant proof for the classical
persistency of excitation conditions.

Corollary 2.4 (classical persistency of excitation). If there exist real numbers α > 0, δ > 0
such that

∫ δ
0
P(t+ s)ds≥ αI , ∀ t ≥ 0, (2.39)

then the system (1.1) is asymptotically stable.

Proof. It follows from (2.39) that for the minimal eigenvalue γmin(ν,τ) from Corollary 2.3
we have

γmin(ν,τ)≥ α, for τ ≥ δ. (2.40)
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Hence, if we take S > δ, then

∫ t
0

∫ S
0
γmin(ν,τ)dτdν≥

∫ t
0

∫ S
δ
γmin(ν,τ)dτdν≥ (S− δ)tα (2.41)

and asymptotic stability follows from

lim
t→∞ sup

∫ t
0

∫ S
0
γmin(ν,τ)dτdν≥ lim

t→∞(S− δ)tα=∞. (2.42)

�

There is a common belief that the classical persistency of excitation is a very hard con-
dition to check in practice. However, a simplified version of the generalized persistency
of excitation condition presented in Theorem 2.1 can be effectively verified with the help
of the famous Gershgorin circle theorem [13, 14]. Let pi j(t) denote the element of the
matrix P(t) from ith row and jth column. Then, the following statement is true.

Theorem 2.5. If

lim
t→∞

∫ t
0

min
i

(
pii(ν)−

∑
j �=i

∣∣pi j(ν)
∣∣
)
dν=∞, (2.43)

then the system (1.1) is asymptotically stable at the origin.

Proof. Due to Gershgorin circle theorem, the eigenvalue γmin(ν,τ) satisfies the inequality

min
i

(∫ τ
0
pii(ν + θ)dθ−

∑
j �=i

∣∣∣∣∣
∫ τ

0
pi j(ν + θ)dθ

∣∣∣∣∣
)
≤ γmin(ν,τ) (2.44)

which leads us to

∫ S
0

∫ τ
0

min
i

(
pii(ν + θ)−

∑
j �=i

∣∣pi j(ν + θ)
∣∣
)
dθdτ ≤

∫ S
0
γmin(ν,τ)dτ. (2.45)

After integrating this inequality with respect to ν and using Fubini theorem, we obtain

∫ S
0

∫ τ
0

∫ t
0

min
i

(
pii(ν + θ)−

∑
j �=i

∣∣pi j(ν + θ)
∣∣
)
dνdθdτ ≤

∫ t
0

∫ S
0
γmin(ν,τ)dτdν. (2.46)

Hence, due to the condition (2.43) we have

lim
t→∞ sup

∫ t
0

∫ S
0
γmin(ν,τ)dτdν=∞ (2.47)

and by Corollary 2.3 the system (1.1) is asymptotically stable at the origin. �
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3. Examples

Theorem 2.1 and its corollaries find many important applications. This section illustrates
how one can use them in order to verify the persistency of excitation conditions.

Consider the system (see also [6] for a similar example)

ẋ =−
(
Ξ(t) 0

0 1−Ξ(t)

)
x, (3.1)

where Ξ(t) is a characteristic function of a closed subset C ⊂R,

Ξ(t)=
⎧⎨
⎩

1, for t ∈ C,

0, otherwise.
(3.2)

Consider the sequence of real numbers {an}∞n=0 defined as

an+1 = (n+ 1) + an, (3.3)

where a0 = 0. If we define the closed subset C as

C = {t ∈R;∃ n > 1 such that an ≤ t ≤ an + 1
}

, (3.4)

then the classical condition (0.2) is not valid. However, the system is persistently exciting
due to Corollary 2.3. It is worth mentioning here that the system in question is nonuni-
formly asymptotically stable. That is why the classical persistency of excitation condition
fails in this example.

In the literature, it is implicitly or explicitly assumed that the matrix P(t) is bounded
while often, it is only necessary for P(t) to be locally integrable. In other words, one can
omit the condition (0.3) and still have the system with persistency of excitation. However,
this system in general is not uniformly asymptotically stable. To illustrate this statement
consider the system

ẋ =−
(
t 0
0 1

)
x. (3.5)

The condition (0.3) is not valid and no time rescaling can bring this system into a form
where both (0.2) and (0.3) are satisfied. However, the system is persistently exciting due
to Theorem 2.5.

Acknowledgments

The author is very grateful to the referee who made many important suggestions that
allowed to improve the formulation of the main result and the style of the paper. In par-
ticular, Theorem 2.5 was added as a response to the referee remarks.



Sergey Nikitin 11

References

[1] S. Sastry and M. Bodson, Adaptive Control. Stability, Convergence, and Robustness, Prentice Hall,
Englewood Cliffs, NJ, USA, 1989.

[2] B. D. O. Anderson, “Exponential stability on linear equations arising in adaptive identification,”
IEEE Transactions on Automatic Control, vol. 22, no. 1, pp. 83–88, 1977.

[3] D. Janecki, “Persistency of excitation for continuous-time systems—time-domain approach,”
Systems & Control Letters, vol. 8, no. 4, pp. 333–344, 1987.

[4] A. Lorı́a and E. Panteley, “Uniform exponential stability of linear time-varying systems: revis-
ited,” Systems & Control Letters, vol. 47, no. 1, pp. 13–24, 2002.

[5] A. P. Morgan and K. S. Narendra, “On the uniform asymptotic stability of certain linear nonau-
tonomous differential equations,” SIAM Journal on Control and Optimization, vol. 15, no. 1, pp.
5–24, 1977.

[6] A. P. Morgan and K. S. Narendra, “On the stability of nonautonomous differential equations
˙
x= [A+B(t)]x, with skew symmetric matrix B(t),” SIAM Journal on Control and Optimization,
vol. 15, no. 1, pp. 163–176, 1977.

[7] G. Kreisselmeier, “Adaptive observers with exponential rate of convergence,” IEEE Transactions
on Automatic Control, vol. 22, no. 1, pp. 2–8, 1977.

[8] M. M. Sondhi and D. Mitra, “New results on the performance of a well-known class of adaptive
filters,” Proceedings of the IEEE, vol. 64, no. 11, pp. 1583–1597, 1976.

[9] D. Aeyels, R. Sepulchre, and J. Peuteman, “Asymptotic stability for time-variant systems and
observability: uniform and nonuniform criteria,” Mathematics of Control, Signals, and Systems,
vol. 11, no. 1, pp. 1–27, 1998.

[10] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill,
New York, NY, USA, 1955.

[11] G. Sansone, Equazioni differenziali nel compo reale, Nicola Zanichelli, Bologna, Italy, 1949.
[12] N. Rouche, P. Habets, and M. Laloy, Stability Theory by Liapunov’s Direct Method, Springer, New

York, NY, USA, 1977.
[13] F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, NY, USA, 1959.
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