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We provide information and explicit formulae for a class of integrals involving Bessel
functions and Gegenbauer polynomials. We present a simple proof of an old formula of
Gegenbauer. Some interesting special cases and applications of this result are obtained. In
particular, we give a short proof of a recent result of A. A. R. Neves et al. regarding the an-
alytical evaluation of an integral of a Bessel function times associated Legendre functions.
These integrals arise in problems of vector diffraction in electromagnetic theory.
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1. Introduction

In the recent article [1], Neves et al. gave an analytical evaluation of the integral

Imn :=
∫ π

0
sinθ exp(iRcosαcosθ)Pm

n (cosθ)Jm(Rsinαsinθ)dθ, (1.1)

where Pm
n (cosθ) is the associated Legendre function and Jm(z) is the Bessel function of

the first kind and order m.
The authors of [1] encountered this integral in their work [2] dealing with the calcu-

lation of the optical force of the optical tweezers in a complete electromagnetic treatment
for any beam shape focused on an arbitrary position. The integral (1.1) appears also in
fields related to vector diffraction theory where computationally intensive methods or
approximations are employed.

As the authors of [1] pointed out, an explicit formula for the integral (1.1) would be a
useful result, making unnecessary any numerical approximations of it. More specifically,



2 International Journal of Mathematics and Mathematical Sciences

Neves et al. showed in [1] that for all integers n, m such that n≥ 0 and −n≤m≤ n, one
has

Imn = 2in−mPm
n (cosα) jn(R), (1.2)

where jn(R) is the spherical Bessel function of order n, that is,

jn(R)=
√

π

2R
Jn+1/2(R). (1.3)

The authors mention in [1] that the integral (1.1) has not been reported in a closed form
and it is not shown in any integral tables. In [3, page 379, formula (1)], however, the
following closely related formula is given:

∫ π

0
exp(iRcosαcosθ)Jν−1/2(Rsinαsinθ)Cν

n(cosθ)sinν+1/2 θdθ

=
(

2π
R

)1/2

in sinν−1/2αCν
n(cosα)Jν+n(R),

(1.4)

where Cν
n(x) is the Gegenbauer (or ultraspherical) polynomial of degree n and order ν

defined by the generating function

1(
1− 2xt+ t2

)ν =
∞∑
k=0

Cν
k(x)tk. (1.5)

The formula (1.4) is due to Gegenbauer and holds for all real numbers ν such that ν >
−1/2.

An equivalent form of (1.4) can also be found in the integral tables [4, pages 838-839,
formula 7.333 (1) and (2)].

In this note we show that (1.2) follows easily from (1.4) using properties of the associ-
ated Legendre functions.

A proof of (1.4) is given in [3, pages 378-379], using a method which is based on
integration over a unit sphere. Since formula (1.4) is important in applications in many
different fields in physics, especially for those that require partial wave decomposition, we
give in the next section a new proof of (1.4) which is simpler than the one given in [3].
We will also present some other consequences of (1.4).

2. Proofs and additional comments

We first show how to obtain (1.2) from (1.4). Suppose first that m, n are nonnegative
integers such that m≤ n. It is well known that the relation between associated Legendre
functions Pm

n (cosθ) and Gegenbauer polynomials is given by the formula

Pm
n (cosθ)= (−1)m

(2m)!
2mm!

sinmθCm+1/2
n−m (cosθ), (2.1)

see for example [4, page 1052, formula 8.936 (2)]. Using the relation (2.1) in (1.1) and
applying (1.4) for ν =m+ 1/2 ≥ 1/2, we immediately obtain (1.2). When the integer m
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is negative such that −n≤m < 0, we cannot apply (1.4) as above, because the condition
ν=m+ 1/2 >−1/2 is not fulfilled. This case can be handled using the formulae

Jm(z)= (−1)mJ−m(z), (2.2)

see [3, page 15, formula (2)], and

Pm
n (x)= (−1)m

Γ(n+m+ 1)
Γ(n−m+ 1)

P−mn (x), −1≤ x ≤ 1, (2.3)

see [4, page 1025, formula 8.752 (2)]. It follows from (2.2) and (2.3) that

Imn =
Γ(n+m+ 1)
Γ(n−m+ 1)

I−mn . (2.4)

Since n ≥ −m > 0, applying (1.2) established in the previous case and using (2.3) and
(2.4), we get

Imn =
Γ(n+m+ 1)
Γ(n−m+ 1)

2in+mP−mn (cosα) jn(R)= 2in−mPm
n (cosα) jn(R), (2.5)

which completes the proof of (1.2).
We next give a simple proof of (1.4). Let ν > −1/2. The Gegenbauer polynomials

Cν
n(cosθ) satisfy the following orthogonality property:

∫ π

0
Cν
n(cosθ)Cν

m(cosθ)sin2ν θdθ

=
⎧⎪⎨
⎪⎩

0, n �=m,√
πΓ(2ν +n)Γ(ν + 1/2)
(ν +n)n!Γ(2ν)Γ(ν)

=
√
πΓ(ν + 1/2)

(ν +n)Γ(ν)
Cν
n(1), n=m.

(2.6)

We will also use the formula

Jν−1/2(Rsinαsinθ)
(Rsinαsinθ)ν−1/2

exp(iRcosαcosθ)

=√2
Γ(ν)

Γ(ν + 1/2)

∞∑
k=0

(k+ ν)ik
Jk+ν(R)Cν

k(cosθ)Cν
k(cosα)

RνCν
k(1)

,
(2.7)

which holds for all ν, see [4, page 1053, formula 8.936 (4)]. A proof of formula (2.7) is
given in [3, pages 369-370]. It should be noted that the series above is absolutely conver-
gent. This follows easily using the standard estimate

∣∣Jν(R)
∣∣≤ Rν

Γ(ν + 1)2ν
, R > 0, ν >−1

2
, (2.8)
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(cf. [3, page 49, formula (1)]), and [5, Theorem 7.33.1] concerning the maximum of
Gegenbauer polynomials on [−1,1]. Therefore, the series in (2.7) can be termwise inte-
grated. Then applying the dominated convergence theorem and the orthogonality rela-
tion (2.6), we obtain
∫ π

0

Jν−1/2(Rsinαsinθ)
(Rsinαsinθ)ν−1/2

exp(iRcosαcosθ)Cν
n(cosθ)sin2ν θdθ

=√2
Γ(ν)

Γ(ν + 1/2)

∫ π

0

[ ∞∑
k=0

(k+ ν)ik
Jk+ν(R)Cν

k(cosθ)Cν
k(cosα)

RνCν
k(1)

]
Cν
n(cosθ)sin2ν θdθ

=√2πin
Jn+ν(R)Cν

n(cosα)
Rν

,

(2.9)

whence (1.4) follows at once.
It is a further confirmation of the importance of formula (1.4) that some other results

are obtained by it as special cases. Indeed, taking the limiting case of (1.4) when α→ 0
using the dominated convergence theorem and the fact that

lim
x→0

x−λJλ(x)= 1
2λΓ(λ+ 1)

, for λ >−1, (2.10)

we obtain

Jν+n(R)= (−i)n√
πΓ(ν + 1/2)

(
R

2

)ν∫ π

0
exp(iRcosθ)

Cν
n(cosθ)
Cν
n(1)

sin2ν θdθ. (2.11)

Formula (2.11) is Gegenbauer’s generalization of the Poisson integral representation of
Bessel functions. For n= 0, it reduces to Poisson’s formula

Jν(R)= 1√
πΓ(ν + 1/2)

(
R

2

)ν∫ π

0
exp(iRcosθ)sin2ν θdθ, when ν >−1

2
, (2.12)

see [4, page 48, formula (6)].
Since

lim
ν→0

Cν
n(cosθ)
Cν
n(1)

= cosnθ, (2.13)

taking the limit in (2.11) as ν→ 0 applying once more the dominated convergence theo-
rem, we deduce that for all nonnegative integers n, we have

inJn(R)= 1
π

∫ π

0
exp(iRcosθ)cosnθdθ

= 1
2π

∫ 2π

0
exp(iRcosθ)exp(inθ)dθ.

(2.14)

In view of (2.2), these equalities hold also for all negative integers n, hence (2.14) gives all
the Fourier coefficients of the function exp(iRcosθ).
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Replacing θ with π/2− θ in (2.14) and using the 2π-periodicity of the integrand, we
get Bessel’s formula

Jn(R)= 1
π

∫ π

0
cos(nθ−Rsinθ)dθ, (2.15)

see [3, page 20, formula (2)].
Finally, we note that the Gouesbet and Lock result [6] for the integral

∫ π

0
sin|m|+1 θ exp(±iRcosθ)P|m|n (cosθ)dθ = 2(±i)n+|m|

(
n+ |m|)!(
n−|m|)!

jn(R)
R|m|

, (2.16)

where n, m are integers such that |m| ≤ n, can be derived from (2.11) in exactly the same
way as (1.2) is obtained from (1.4).
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