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A vertex coloring f of a graph G is nonrepetitive if there are no integer r ≥ 1 and a simple
path v1, . . . ,v2r in G such that f (vi) = f (vr+i) for all i = 1, . . . ,r. This notion is a graph-
theoretic variant of nonrepetitive sequences of Thue. The paper surveys problems and
results on this topic.
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1. Introduction

Let f be a coloring of the vertices of a graph G. A simple path v1, . . . ,v2r in G is repetitive if
f (vi)= f (vr+i) for all i= 1, . . . ,r. A coloring f is nonrepetitive if no path in G is repetitive.
The minimum number of colors needed is denoted by π(G) and is called occasionally the
Thue chromatic number of a graph G. Notice that it is not obvious that this parameter is
bounded even for paths Pn. A motivation for studying nonrepetitive colorings came from
the following theorem of Thue.

Theorem 1.1 (Thue [1]). If Pn is a path on n≥ 4 vertices, then π(Pn)= 3.

This result has wide applications in different branches of mathematics. Rediscovered
many times, it is presently regarded as the starting point of Combinatorics on Words, or
Symbolic Dynamics. We refer the interested reader to several monographs or surveys on
this topic, restricting ourselves here to graph-theoretic aspects (cf. [2–6]).

The original proof of Theorem 1.1 supplies explicit construction of a nonrepetitive
coloring of Pn. Suppose C = {a,b,c} is the set of colors and let s(a) = abcab, s(b) =
acabcb, s(c) = acbcacb. It can be proved that if c1 ···cn is a nonrepetitive coloring of
Pn, with ci ∈ C, then s(c1)···s(cn) is a nonrepetitive coloring of the longer path. The
theorem follows by induction.
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A different proof was given by Shelton and Soni [7–9]. Their method is nonconstruc-
tive and gives a stronger assertion that the set of 3-colorings of an infinite path is perfect
(with a natural product topology).

Theorem 1.1 is clearly the best possible, but it is worth mentioning that a finite (though
weaker) bound can be obtained by a probabilistic argument, based on the Lovász local
lemma (cf. [10]). This approach works well in more general situations, where no other
method is known, whether constructive or not (cf. [10–13]).

2. Bounded degree

Let Cn be a cycle on n vertices. Theorem 1.1 implies easily that π(Cn)≤ 4. By inspection,
one may find that π(Cn)= 4 for n= 5,7,9,10,14,17. Curiously, these are the only values
where the equality holds, as proved by Currie [14]. So, the picture is complete for graphs
of maximum degree at most 2. For graphs of higher degree, the situation is not so clear.

Let π(d) be the supremum of π(G), whereG ranges over all graphs of maximum degree
at most d. The above remarks show that π(2)= 4. This is the only known exact value of
π(d) for d ≥ 2. Notice that it is not obvious a priori that π(d) is finite for any d ≥ 3.

Theorem 2.1 (Alon et al. [15]). There exist absolute constants c1, c2 such that for every
integer d ≥ 1,

c1
d2

logd
≤ π(d)≤ c2d

2. (2.1)

The upper bound was proved by the local lemma while the lower bound follows from
a construction based on random graphs (cf. [10]). We give here the proof of the upper
bound providing an explicit constant. Recall that a dependency graph of random events
A1, . . . ,An is any graph D = (V ,E) on the set of vertices V = {A1, . . . ,An}, such that each
event Ai is mutually independent of the events {Aj : AiAj /∈ E}.
Lemma 2.2 (The local lemma, cf. [10]). Let A1, . . . ,An be events in any probability space
with dependency graph D = (V ,E). Let V = V1 ∪ ··· ∪ Vk be a partition such that all
members of each part Vr have the same probability pr . Suppose that the maximum num-
ber of vertices from Vs adjacent to a vertex from Vr is at most Δrs. If there are real numbers
0≤ x1, . . . ,xk < 1 such that pr ≤ xr

∏k
s=1(1− xs)Δrs , then Pr(

⋂n
i=1Ai) > 0.

Theorem 2.3. If G is a graph of maximum degree at most d, then π(G)≤ 16d2.

Proof. Let G be a graph of maximum degree at most d. Consider a random coloring of
the vertices of G with N = 16d2 colors. For each path P in G, let AP be the event that the
first half of P is colored the same as the second half. Define a dependency graph so that AP

is adjacent to AQ if and only if the paths P and Q have a common vertex. Let Vr be the set
of all events AP with P having 2r vertices. Clearly we have pr =N−r . Now, for each fixed
vertex v, there are at most sd2s paths going through v in G. Hence, a fixed path with 2r
vertices intersects at most 2rsd2s paths with 2s vertices in G, and we may take Δrs = 2rsd2s.
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Next set xs = (3d)−2s, and notice that (1− xs)≥ e−2xs , as xs ≤ 1/2. We get

xr
∏

s

(
1− xs

)Δrs ≥ (3d)−2r
∏

s

e−4rs5−2s
> (3d)−2r exp

(

− 2r
∞∑

s=1

2s
32s

)

. (2.2)

Now for every θ > 1, the series
∑∞

s=1(s/θs) converges to θ/(θ− 1)2 (substitute x = 1/θ in
the identity

∑∞
s=1 sx

s=x/(1− x)2 which follows by differentiating 1 + x+ x2 + ··· = 1/(1−
x), and multiplying the resulting identity by x). Hence the series

∑∞
s=1(2s/32s) converges

to 9/32, and we get

xr
∏

s

(
1− xs

)Δrs ≥ (3e9/32d
)−2r

> (4d)−2r = pr . (2.3)

By Lemma 2.2, the proof is complete. �

3. Bounded treewidth

We start with a simple result for trees. A palindrome is a sequence that reads the same
forward and backward. A sequence a1 ···an is palindrome-free if none of its blocks is
a palindrome. For this property to hold, it is sufficient and necessary that ai, ai+1, ai+2

are pairwise different for each 1 ≤ i ≤ n− 2. If a1 ···an is a nonrepetitive sequence,
with ci ∈ {a,b,c}, then a1a2da3a4d ···an is nonrepetitive and palindrome-free. Hence by
Theorem 1.1, every path Pn has a 4-coloring which is nonrepetitive and palindrome-free.

Theorem 3.1. π(T)≤ 4 for every tree T .

Proof. Choose a root v0 of T and arrange the vertices into levels Li according to the
distance from v0, that is, v ∈ Li if and only if d(v,v0) = i, 0 ≤ i ≤ n. Let a = a0a1 ···an
be a nonrepetitive and palindrome-free sequence, with ai ∈ {a,b,c,d}. Define a vertex
coloring f by f (v) = ai if v ∈ Li. We claim that f is nonrepetitive. Indeed, suppose
that there is a path P = v1 ···v2r in T such that w′ = f (v1)··· f (vr) is the same as
w′′ = f (vr+1)··· f (v2r). Since a is nonrepetitive, there must be a vertex in P, say vh, whose
neighbors vh−1, vh+1 are on the same level Li. Without loss of generality, we may assume
that 1 < h≤ r and that vh is the root of T . Then the sequence w =w′w′′ looks as follows:

w = ah−1 ···a1a0a1 ···ah−1ah ···a2r−h. (3.1)

If h < r, then a palindrome a1a0a1 lies entirely in the first half w′ of w. Since w′ =w′′, this
palindrome appears in w′′ and hence in a, which is a contradiction. If h= r, we get

w′ = ar−1 ···a1a0, w′′ = a1 ···ar−1ar . (3.2)

Again, the equality w′ = w′′ implies that ai = ar−i for all 0 ≤ i ≤ r. Hence the word
a0 ···an is a palindrome, which is a contradiction. This completes the proof. �
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In [16] Kündgen and Pelsmajer extended this theorem to k-trees. A k-tree is any graph
that can be obtained, starting from a clique on k vertices, by repeating the following
recursive step: add a new vertex and join it to k vertices of any existing clique. Thus, 1-
trees are just the usual trees. The treewidth of a graph G is the least integer k such that G
is a subgraph of a k-tree.

Let v0 be any vertex of a connected graph G. A levelling with root v0 is a function
λ : V(G)→ Z defined by λ(v)= d(v,v0). The following lemma can be proved similarly as
Theorem 3.1, using a nonrepetitive and palindrome-free sequence over 4 symbols.

Lemma 3.2 (palindrome lemma [16]). For every levelling λ of a graph G, there is a 4-
coloring of the vertices of G such that every repetitive path u1, . . . ,u2r satisfies λ(vi)= λ(vi+r)
for all i= 1, . . . ,r.

The following theorem asserts that π(G) is bounded for graphs of bounded treewidth.

Theorem 3.3 (Kündgen and Pelsmajer [16]). π(G)≤ 4k for every k-tree G.

Proof. We proceed by induction on k. The case k = 1 was proved in the previous the-
orem. So assume that the assertion holds up to k − 1, for some k ≥ 2. Let v0,v1, . . . ,vn
be a simplicial ordering of a k-tree G, that is, for every 1 ≤ i ≤ n, the neighbors of vi
with indices smaller than i induce a clique in G. Let λ be a levelling of G with root v0.
Let Li = {v ∈ V(G) : λ(v) = i} and let Gi be a subgraph of G induced by the set Li. No-
tice that each graph Gi is a subgraph of a (k− 1)-tree. So by the inductive assumption,
there exists a coloring h of the vertices of G by at most 4k−1 colors such that each sub-
graph Gi is colored nonrepetitively. Let g be a 4-coloring satisfying Lemma 3.2. Define a
new coloring f by f (v) = (g(v),h(v)) for every vertex v ∈ V(G). Clearly f uses at most
4k colors. We claim that f is nonrepetitive. To prove this, assume that P = u1, . . . ,u2r

is a shortest repetitive path in G. Let m = max{λ(ui) : 1 ≤ i ≤ 2r} and let ui, . . . ,uj be
a connected component of P ∩ Lm, for some 1 ≤ i ≤ j ≤ 2r. By the inductive assump-
tion and Lemma 3.2, we may assume that 1 ≤ i ≤ j ≤ r and 1 < i or j < r. Suppose that
1 < i ≤ j < r. Then ui−1,uj+1 ∈ Lm−1. By the simplicial ordering property, ui−1 and uj+1

are adjacent. By Lemma 3.2, the same happens in the second half of P. Hence the path
u1, . . . ,ui−1,uj+1, . . . ,ui−1+r ,uj+1+r , . . . ,u2r is a shorter repetitive path in G. Verification of
other cases is similar. �

A similar result (with a weaker bound) was obtained independently by Barát and Varjú
[17] (cf. [18]). The proof uses fraternal orientations of k-trees, obtained by directing
edges according to a simplicial ordering of G.

4. Planar graphs

Perhaps the most intriguing problem about nonrepetitive colorings is to decide whether
π(G) is bounded for planar graphs.

Conjecture 4.1. There exists an integer N such that π(G)≤N for every planar graph G.

There are some heuristic arguments supporting Conjecture 4.1. Let χk(G) be the least
number of colors needed for a coloring of G so that no path on at most 2k vertices is
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repetitive. Thus, χ1(G) = χ(G) is the usual chromatic number, while χ2(G) is known as
the star-chromatic number. As observed independently by Kierstead and Kündgen and
Nešetřil and Ossona de Mendez (personal communication), χk(G) is bounded for planar
graphs, for every fixed k ≥ 1. This is not trivial even for k ≥ 2. To see this, suppose that
v1, . . . ,vn is a linear ordering of the vertices of G. Let S(vj) be the set of vertices vi, with
i < j, such that there is a path vj = vj1 , . . . ,vjr = vi satisfying r ≤ k+ 1 and i < jm for all 1≤
m≤ r − 1. Define col∗k (G)=minL max1≤ j≤n(|S(vj)|+ 1) over all linear orderings L of G.
Thus for k = 1, the number col∗1 (G) is the usual coloring number col(G) (e.g., col(G)≤ 6
for every planar graph G).

Theorem 4.2. χk(G)≤ col∗k (G), for every k ≥ 1 and for every graph G.

Proof. Let L = {v1 < ··· < vn} be a linear ordering of the vertices of G witnessing that
col∗k (G)=N . Color the vertices by N colors greedily in that order so that each vertex vj is
colored differently than any of the vertices in Sj . We claim that this coloring is nonrepet-
itive on paths with at most 2k vertices. Suppose there is a repetitive path P = u1, . . . ,u2r ,
r ≤ k. Let uj be the earliest vertex on P in the order L. We may assume that 1 ≤ j ≤ r.
Then the vertex uj+r is joined to uj by a path of length at most k all of whose vertices are
not earlier than uj in the order L. Hence uj ∈ S(uj+r), and therefore the vertices uj and
uj+r are colored differently. This contradicts repetitivity of P. �

A result of Kierstead and Yang [19] asserts that col∗k (G) is bounded for every class
of graphs closed under taking topological minors and having bounded coloring number
col(G). In particular χk(G) is bounded for planar graphs, for every k ≥ 1. The resulting
bounds grow with k to infinity, but this may be due to the fact that the greedy coloring
from the proof of Theorem 4.2 has much stronger properties. Indeed, it guarantees that
every path of length at most k has a uniquely colored vertex.

Moreover, the proof of Theorem 4.2 works also for the list version of the problem,
where a color for every vertex v is chosen from a preassigned list of colors Lv. A desired
coloring exists for every k ≥ 1, provided that |Lv| ≥ col∗k (G) for every vertex v ∈ V(G).
For the list version of π(G), a greedy coloring argument will not work, even for the sim-
plest case of paths. However, notice that the probabilistic proof of Theorem 2.3 is still
valid if the colors are chosen from arbitrary lists of sufficiently large size.

Conjecture 4.3. Every path Pn has a nonrepetitive coloring from lists of size at least three.

Let F be a fixed graph and let �(F) be the class of graphs not containing F as a minor.
Nešetřil and Ossona de Mendez [20] proved (by a different method) that for every such
class and for every integer k ≥ 1, there is a constant N = N(F,k) such that every graph
from the class satisfies χk(G) ≤ N . Again, a stronger property holds guaranteeing that
every path of bounded length has a uniquely colored vertex.

Conjecture 4.4. The Thue chromatic number π(G) is bounded in every proper minor-
closed class of graphs.

A deep theorem of Robertson and Seymour asserts that if F is a planar graph, then
�(F) has bounded treewidth. Hence Theorem 3.3 implies that planar graphs form the
smallest minor-closed class for which π(G) may be unbounded.
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5. Subdivided graphs

Theorem 1.1 implies that every graph G has a subdivision which has a nonrepetitive 5-
coloring. Indeed, subdivide each edge uv of G with a different odd number of vertices.
Color the original vertices red, the middle vertices blue, and the remaining paths by colors
{a,b,c} in a nonrepetitive way. If there is a repetitive path P, then red and blue vertices
must occupy the same positions in both halves of P. But this is impossible since any two
subdivided edges have different numbers of vertices. Barát and Wood [21] improved this
bound using Lemma 3.2.

Theorem 5.1 (Barát and Wood [21]). Every graph G has a subdivision S such that π(S)≤4.

Proof. Define a subdivision S of a graph G in the following way. Draw the vertices of
a graph G in any order v1, . . . ,vn on a straight line l in the plane, and join the adjacent
vertices by simple arcs. For each 1 ≤ i ≤ n, draw a line li through vi perpendicular to l.
Subdivide the edges of G by adding vertices at the intersection points of the lines li with
the arcs of a drawing. Let Li be the set of vertices of S on the line li. This gives a levelling λ
defined by λ(v)= i if and only if v ∈ Li. Let f be a 4-coloring of S satisfying Lemma 3.2.
If there is a repetitive path, then it must cross the lowest level twice, which is clearly
impossible. �

The following conjecture would be a nice generalization of Theorem 1.1.

Conjecture 5.2. Every graph has a subdivision which is nonrepetitively 3-colorable.

In [22], Conjecture 5.2 was confirmed for trees by using specific properties of Thue
sequences. Clearly no result of the above type can hold in general if we restrict the num-
ber of vertices subdividing an edge of a graph. It would be interesting to find out if the
following conjecture holds.

Conjecture 5.3. There are constants k and N such that every planar graph has a subdivi-
sion, with at most k vertices subdividing an edge, which is nonrepetitively N-colorable.

It is not excluded that the above statement actually implies Conjecture 4.1.

6. The rhythm threshold

Let k ≥ 2 be a fixed integer. A vertex coloring f of a graph G is k-repetitive if there are
an integer r ≥ 1 and a path on kr vertices v1,v2, . . . ,vkr such that f (vi)= f (vi+r)= ··· =
f (vi+(k−1)r) for all 1≤ i≤ r. Otherwise, f is called k-nonrepetitive. In such a coloring, at
most k− 1 identical blocks may appear consecutively on a path in G. Let πk(G) denote
the least number of colors in a k-nonrepetitive coloring of G. Notice that for k ≥ 3, a k-
nonrepetitive coloring may not be proper in the usual sense. Another classical result of
Thue asserts that every path has a 3-nonrepetitive 2-coloring.

Theorem 6.1 (Thue [23]). π3(Pn)= 2 for every n≥ 3.

The proof is constructive and uses the substitutions S(a)= ab and S(b)= ba in a sim-
ilar way. Based on this construction, Currie and Fitzpatrick [24] proved that π3(Cn)= 2
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for all n≥ 3. Let πk(d) denote the supremum of πk(G), where G ranges over all graphs of
maximum degree d. Extending the results of [15], we proved the following.

Theorem 6.2 (Alon and Grytczuk [25]). There exist absolute positive constants c1, c2 such
that for all k ≥ 2,

c1

k

dk/(k−1)

(logd)1/(k−1)
≤ πk(d)≤ c2d

k/(k−1). (6.1)

We also considered what happens if we fix d and let k be large. Define t = t(d) as
the minimum number such that πk(d)≤ t for some huge k. By the results for paths and
cycles, it follows that t(2)= 2. No other value of t(d) is known for d ≥ 2, but one tempts
to conjecture the following.

Conjecture 6.3. t(d)= d for every d ≥ 1.

The conjecture is supported by the following probabilistic result.

Theorem 6.4 (Alon and Grytczuk [25]). t(d)≤ d+ 1 for every d ≥ 1.

From below, the function t(d) is bounded by (d+ 1)/2. This can be seen by considering
d regular graphs of sufficiently large girth. Using at most d/2 colors, long paths which are
either monochromatic or alternating will appear.

Let � be any class of graphs. Define the rhythm threshold of � as the least number
t = t(�) for which there exists a finite number k such that πk(G) ≤ t for every graph G
in �. In other words, for every k there is a graph Gk in � such that any vertex coloring
of Gk using less than t colors is k-repetitive. The main problem is to decide whether t(�)
is finite for a given class �. In [25], we proved that finiteness of t(�) implies that � has
bounded average degree, but t(�)=∞ already for 2-degenerate graphs.

Conjecture 6.5. t(�) is finite for every proper minor-closed class of graphs �.

At present, it is not known if the rhythm threshold is finite for planar graphs. By
Theorem 3.3, t(�) is finite if � has bounded treewidth, which implies as before that t(�)
is finite if � consists of graphs not containing a fixed planar graph as a minor. Therefore,
planar graphs form the smallest minor-closed class of graphs for which the problem is
open.

Conjecture 6.6. The rhythm threshold of planar graphs is finite.

Curiously, the least possible candidate number is four. Indeed, the class of triangular
graphs (obtained iteratively from the triangle by inserting a new vertex into a face and
joining it to the three vertices of that face) shows that three colors do not suffice. On
the other hand, as proved by Berman and Paul [26], four colors suffice to avoid long
monochromatic paths for graphs of arbitrary genus g.

7. Orientations and edge colorings

Let �G be any orientation of a graph G and let P = v1 ···vn, n≥ 2, be a path in G. Denote
by s(P) = s1 ···sn−1 a sequence of signs, defined by si = + if vivi+1 is a directed edge in
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�G, and si = − otherwise. An orientation �G of a graph G is k-repetitive if there is a path
P = v1 ···vkr+1 in G such that the sequence s(P) consists of k identical blocks, that is,
si = sr+i = s2r+i = ··· = s(k−1)r+i for all i= 1, . . . ,r. Let �π(G) be the least integer k such that
G admits an orientation without k-repetitive paths. Let�t(�)= sup{�π(G) : G∈�} be the
oriented rhythm threshold of a class of graphs �.

By Theorem 6.1, we have �π(Pn)= 3 for every n, and the fact that π3(Cn)= 2 shows that
�t(�)= 3 for graphs of maximum degree at most two. However, as noticed by Alon (per-
sonal communication), the oriented rhythm threshold is infinite for 8-regular graphs. It
is not clear what happens for planar graphs.

Conjecture 7.1. The oriented rhythm threshold for planar graphs is finite.

We show now that the above statement implies Conjecture 6.6. A vertex coloring f of

G is consistent with orientation �G if it is a proper coloring of G and all edges between any
two color classes are oriented in the same direction (there are no two oriented edges ab,

xy in �G such that f (a)= f (y) and f (b)= f (x)). The minimum number k, such that for

every orientation �G there is a k-coloring consistent with �G, is called the oriented chromatic
number of G, denoted by χo(G).

Theorem 7.2. Let � be a class of graphs with bounded oriented chromatic number and
finite oriented rhythm threshold�t(�). Then the rhythm threshold t(�) is finite.

Proof. Let m=max{χo(G) : G∈�} and let k =�t(�). Let �G be an orientation of a graph

G∈� avoiding k-repetitive paths and let f be a vertex m-coloring consistent with �G. We
claim that f is a (k + 1)-nonrepetitive coloring of G. Indeed, suppose P = v1, . . . ,v(k+1)r

is a (k + 1)-repetitive path in G. By consistency of coloring f , the sequence s(P)= s1 ···
s(k+1)n−1 must satisfy si = sr+i = s2r+i = ··· = s(k−1)r+i for all i = 1, . . . ,r. But this means

that the path v1, . . . ,vkr+1 is k-repetitive in the orientation �G, a contradiction. �

It is well known that χo(G) ≤ 80 for every planar graph G (cf. [27]). This bound is a
consequence of the famous result of Borodin [28] asserting that every planar graph has an
acyclic 5-coloring (where the acyclic coloring is a proper vertex coloring with no 2-colored
cycles).

A stronger connection holds in case of edge version of the rhythm threshold. Let t′(�)
be the edge rhythm threshold of the class of graphs � (defined analogously to t(�)). Using
a result of Alon and Marshall [29], one can prove (similarly as Theorem 7.2, cf. [25]) that
the finiteness of t′(�) implies the finiteness of t(�), provided that the acyclic chromatic
number is bounded in �. It is not hard to see that the reverse implication always holds,
so the following statement is equivalent to Conjecture 6.6.

Conjecture 7.3. The edge rhythm threshold for planar graphs is finite.

8. Conclusion

There exist many interesting variants of nonrepetitive colorings of graphs. One can con-
sider walks, induced paths, or other subgraphs instead of simple paths (cf. [21, 30–32]).
We may also investigate Thue type colorings of other combinatorial structures, like
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hypergraphs, integer lattices, or Euclidean spaces (cf. [33–36]). In general, we look for
colorings of a large structure distinguishing specified substructures that are in some sense
“adjacent.” From this perspective, the topic seems close to traditional graph coloring (at
least in spirit). We conclude the paper with a problem illustrating this general philosophy.

Let G be a simple graph and let f be a coloring of its vertices. Two vertex disjoint
subgraphs of G are adjacent if there is at least one edge between their vertex sets. For two
subgraphs A, B of G, we write f (A) = f (B) if there is a color preserving isomorphism
between A and B. Consider a coloring f such that f (A) �= f (B) for each two adjacent
connected induced subgraphs A, B of G, and let μ(G) be the minimum number of colors
needed. Thue’s theorem gives μ(Pn) = 3 for every n ≥ 4. Is it possible that μ(G) stays
bounded for planar graphs?
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LaCIM, Université du Québec a Montréal, Montreal, Quebec, Canada, 1995.

[4] J. Berstel, “Axel Thue’s work on repetitions in words,” in Séries Formelles et Combinatoire
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