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The main objective in oil production system using gas lift technique is to obtain the op-
timum gas injection rate which yields the maximum oil production rate. Relationship
between gas injection rate and oil production rate is described by a continuous gas lift
performance curve (GLPC). Obtaining the optimum gas injection rate is important be-
cause excessive gas injection will reduce production rate, and also increase the operation
cost. In this paper, we discuss a mathematical model for gas lift technique and the charac-
teristics of the GLPC for a production well, for which one phase (liquid) is flowing in the
reservoir, and two phases (liquid and gas) in the tubing. It is shown that in certain physi-
cal condition the GLPC exists and is unique. Numerical computations indicate unimodal
properties of the GLPC. It is also constructed here a numerical scheme based on genetic
algorithm to compute the optimum oil production.
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1. Introduction

Gas lift is one of the most common artificial lift methods used in oil production system.
During the lift process, gas is injected at a selected point in tubing (see Figure 1.1), re-
sulting in reduction of natural bottomhole pressure which then increases the pressure
difference between the reservoir and the bottomhole. The goal of gas lift is to deliver the
fluid to the top of the wellhead while keeping the bottomhole pressure low enough to
provide high pressure drop between the reservoir and the bottomhole.

Reduction of bottomhole pressure due to gas injection will normally increase liquid
(oil) production rate, because gas injection will lighten the fluid column, therefore larger
amount of fluid will flow along the tubing. However, injecting too much amount of gas
will increase the bottomhole pressure which may decrease the oil production rate. This
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Figure 1.1. Simple gas lift scheme.

happened because too high gas injection rate causes slippage, where gas phase moves
faster than liquid, leaving the liquid phase behind. In this condition, less amount of liq-
uid will flow along the tubing. Hence, there must be an optimum gas injection rate that
yields maximum oil production rate. Finding this optimum gas injection rate is the main
objective of gas lift allocation optimization problem.

Oil production process in natural way can be considered as a combination of two
fluid flows, first in reservoir and second along the tubing. Both fluid flows may be a one-
phase (liquid) or a two-phase (liquid and gas). In this paper, both fluid flows are assumed
naturally single phase (liquid), up to the point of gas injection in the tubing. Above gas
injection point, two-phase flow takes place.

In mathematical formulation, gas lift performance problem (in normalized form) can
be modelled as a two-parameter family of an ordinary differential equation (ODE) rep-
resenting the steady flow equation along the tubing

dP

dz
= F

(
z,P;qg ,ql

)
, (1.1)

with boundary conditions

P(0)= Pwh, (1.2)

P(1)= Pwf. (1.3)

Here, F(z,P;qg ,ql) is a nonnegative real-valued function

F : [0,1]× [Pwh,Pwf
]−→R+, (1.4)

qg and ql, where 0 ≤ qg <∞ and 0 ≤ ql ≤ 1 are gas injection rate and liquid production
rate, respectively, Pwh and Pwf are wellhead pressure and bottomhole pressure, respec-
tively. Here, Pwf is a function of parameter ql. Note that we assume the fluid rate ql is
constant along the tubing. In reality, the fluid rate changes slightly with pressure (see
comment about the effect of changes in ql in Section 3). Solution of (1.1)-(1.2) satisfying
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Figure 1.2. Sketch of experimental GLPC.

(1.3), if exists, will generate the gas lift performance curve (GLPC) in qg − ql plane, in the
form of an implicit function

ζ
(
qg ,ql

)= 0. (1.5)

Therefore, the problem is reduced to a constrained optimization problem in parameter
space (qg ,ql). In this paper, we discuss the existence and uniqueness of GLPC and con-
struct a numerical scheme to compute the maximum value of ql satisfying (1.1)–(1.3).

In practice, GLPC is constructed experimentally for specified wells [1]. By use of this
curve, we can estimate the influence of gas injection rate to the liquid production rate,
and determine gas injection rate required to obtain production rate as desired. Therefore,
the characteristic of the GLPC is important to study, in order to find the optimum gas
injection rate.

For practical purpose, GLPC can be obtained usually by conducting numerical simu-
lation by an appropriate method such as nodal analysis (see [2]), and also can be obtained
from field data by measuring gas injection rate and liquid production rate. Then, based
on the data, curve fitting can be done to obtain the GLPC. As mentioned in [1, 3], a qua-
dratic polynomial function is usually used for fitting GLPC from field data by least square
method. In 2002, Alarcón et al. [3] proposed new function to improve the previous qua-
dratic polynomial for fitting GLPC from field data by adding a logarithmic term to the
quadratic polynomial. Sukarno et al. [4] proposed exponential function for fitting GLPC
from field data. However, the application of exponential GLPC is limited only for gas in-
jection between the lowest value up to the optimum gas injected. Another researcher [5]
uses a piecewise linear function for fitting GLPC from field data.

The GLPC, resulted by curve fitting is usually found to be unimodal as illustrated in
Figure 1.2. So, in case when a large amount of gas is available, the peak of the GLPC,
which corresponds to the possible maximum production rate, can be obtained from gas
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lift. However, none guarantees that GLPC is always unimodal, and there is a lack of theory
for explaining the characteristic of GLPC. For this reason, in this paper, we will show that
GLPC as a solution of boundary value problem (1.1), (1.2), and (1.3) exists and is unique.
Further GLPC is shown to have a maximum point. The latter is important to ensure the
existence of the optimum gas injection rate. So, when we construct a numerical method
to compute the optimum gas injection rate, the numerical solution will converge to the
maximum point.

2. Mathematical formulation of gas lift

Before we derive the mathematical formulation, we list below all symbols with corre-
sponding units (in oil field and SI) used in this paper.

Pwh Wellhead pressure (psi, Pa)
Pwf Bottomhole pressure (psi, Pa)
Pr Reservoir pressure (psi, Pa)
qg Gas injection rate (MSCF/d, m3/s)
ql Liquid production rate (STB/d, m3/s)
qo Oil production rate (STB/d, m3/s)
J Productivity index (STB/d/psi, m3/s/Pa)
yg Void fraction (dimensionless)
ρm In situ average density (lb/ft3, kg/m3)
ρl Liquid density (lb/ft3, kg/m3)
ρg Gas density (lb/ft3, kg/m3)
um Mixture velocity (ft/s, m/s)
usg Superficial gas velocity (ft/s, m/s)
usl Superficial liquid velocity (ft/s, m/s)
Ud Drift velocity (ft/s, m/s)
C0 Parameter distribution (dimensionless)
WOR Water-oil ratio (SCF/SCF, m3/m3)
GLR Gas-liquid ratio (SCF/STB, m3/m3)
f Friction factor (dimensionless)
D Diameter of tubing (ft, m)
g Acceleration of gravity (ft/s2, m/s2)
γg Specific gravity of gas (dimensionless)
γo Specific gravity of oil (dimensionless)
γw Specific gravity of water (dimensionless)
R Universal gas constant (psi ft3/lb-mole-oR)
Z Gas compressibility factor (dimensionless)
T Temperature (oF, oC, oR).

For one-phase fluid flow (liquid) in the reservoir, in steady state, the model leads to
Darcy’s law

Pwf = J Pr − ql
J

. (2.1)
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From (2.1), for fixed value of Pr , we see that lower bottomhole pressure Pwf will result
in higher liquid production rate ql. By assuming that fluid in the reservoir consists of oil
and water only, we have

ql = qo(1 + WOR). (2.2)

Equation for two-phase fluid flow (liquid and gas) along the tubing can be derived
from the mechanical energy balance equation (see [6, 7])

dP

dz
= g

gc
ρ+ 2

f ρu2
m

gcD
+

ρ

2gc

d

dz
u2
m, (2.3)

with an initial condition

P(0)= Pwh. (2.4)

The terms (g/gc)ρ, 2 f ρu2
m/gcD, and (ρ/2gc)(d/dz)u2

m in (2.3) correspond to the pressure
drop due to gravity, friction, and acceleration, respectively. Since the pressure drop due to
acceleration is quite small, here its contribution is neglected. The term ρ is in situ average
density and can be expressed as

ρ= ygρg +
(
1− yg

)
ρl, (2.5)

where gas density ρg depends on the pressure P given by

ρg = γP, with γ = 28.97γg
ZRT

. (2.6)

Average void fraction yg is given by drift-flux model of Zuber and Findlay (see [8–10])

yg =
usg

C0
(
usg +usl

)
+Ud

. (2.7)

Parameter distribution C0 accounts for the effects of the nonuniform distribution of both
velocity and concentration profiles. Drift flux velocity Ud accounts for mean relative ve-
locity between the two phases. There are several drift flux correlations offering procedures
to compute C0 and Ud (see [11]).

Mixture velocity um is given by the sum of liquid and gas superficial velocities

um = usl +usg, (2.8)

where

usl = ql
A

, usg = ZPscT

TscP

qg
A

, A= π
D2

4
(2.9)

is the cross section of the tubing.
Friction factor f is the Fanning friction factor. In laminar flow, the friction factor is a

simple function of the Reynolds number NRe, f = 16/NRe, whereas in turbulent flow, the
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Table 2.1. Behavior of ρ and u with respect to P, qg , and ql .

P qg ql

ρ Increasing Decreasing Increasing

u Decreasing Increasing Increasing

friction factor may depend on both Reynolds number and the relative pipe roughness ε.
The Fanning friction factor is most commonly obtained from Colebrook equation (see
[7]). So, there is a discontinuity of f in the transitional zone (between laminar and tur-
bulent). In this study, we assume the friction factor is constant in any condition.

By scaling,

P̃ = P

Pr
, z̃ = z

L
,

q̃l = ql
JPr

, q̃g =
qg

LD
√
gD

,

ρ̃ = ρLg

gcPr
, ũ= um√

gD
,

(2.10)

(2.3), (2.4), and (2.1) can be written in dimensionless form

dP̃

dz̃
= F

(
z̃, P̃; q̃g , q̃l

)= ρ̃
(
1 + 2 f ũ2), (2.11)

P̃(0)= P̃wh, (2.12)

P̃wf = 1− q̃l, (2.13)

respectively. Since F(z̃, P̃; q̃g , q̃l) is continuously differentiable, the solution P(z;qg ,ql) of
the initial value problem (IVP) (2.11)-(2.12) is continuously differentiable with respect
to q̃g and q̃l.

Next, for simplicity we drop tilde from (2.11), (2.12) and (2.13). It is clear that ρ and
u depend on P, qg , and ql. Their dependence can be described in Table 2.1.

Let us consider the following dimensionless parameters:

α1 = Lρl
Pr

g

gc
, α2 = Lγ

g

gc
,

α3 =Dγ
g

gc
, α4 = Ud√

gD
,

α5 = JPr

π
√
gDD2

, α6 = ZTPsc

πTscPr
.

(2.14)

Note that α1 > α2 since ρl > ρg . Applying (2.14), (2.11) can be written in rational form

dP

dz
= F

(
z,P;qg ,ql

)= a0 + a1P + a2P2 + a3P3

b2P2 + b3P3
, (2.15)
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where

a0 = 128α1α
3
2α

3
6

(
C0− 1

)
f q3

g ,

a1 = 32α2
2α

2
6

(
4α2

2α6qg + 4α1α3α5
(
3C0− 2

)
ql +α1α3α4

)
f q2

g ,

a2 = 4α3α6α2
(
32α1 f α

2
5α3
(
3C0− 1

)
q2
l + 16 f α5

(
4α6α

2
2qg +α1α4α3

)
ql +α1α3

(
C0− 1

))
qg ,

a3 = α2
3

(
4α6α

2
2qg + 4α1C0α5qlα3 +α1α4α3

)(
1 + 32 f α2

5q
2
l

)
,

b2 = 4α2α
2
3α6C0qg ,

b3 =
(
4C0α3α5ql +α3α4

)
α2

3

(2.16)

are nonnegative since C0 ≥ 1.
We see from (2.15), that when no gas flows in the tubing (qg = 0), that is, before gas

lift technique is applied, the flow is one phase (liquid), and

dP

dz
= α1

(
1 + 32 f α2

5q
2
l

)
. (2.17)

This means that pressure in the tubing P is a linear function of z since the right hand side
of (2.17) is constant. On the other hand, when ql = 0, that is, no liquid flows in the tubing
(gas flow only), the flow is one-phase (gas). In this case, C0 = 1, Ud = 0, and yg = 1. Hence
(2.15) reduces to

dP

dz
= F

(
z,P;qg ,0

)=
(
32 f q2

gα
2
6α

2
2 +α2

3P
2
)

α2
3P

. (2.18)

Next, we will examine some properties of (2.18).

Lemma 2.1. Let P(z;qg ,0) be the solution of (2.18) with initial condition (2.12), then
P(z;qg ,0) is increasing with respect to qg . If Pwh < e−α2 then there exists a unique positive
q∗g such that P(1;q∗g ,0)= 1.

Proof. By solving (2.18) with initial condition P(0)= Pwh, we have

P
(
z;qg ,0

)=
√

32 f α2
6α

2
2

(
e2α2z − 1

)
q2
g + e2α2zP2

whα
2
3

α3
. (2.19)

Hence, P(z;qg ,0) is increasing with respect to qg . Particularly at z = 1, we have

P
(
1;qg ,0

)=
√

32 f α2
6α

2
2

(
e2α2 − 1

)
q2
g + e2α2P2

whα
2
3

α3
. (2.20)

So, if Pwh < e−α2 , there exists a unique positive q∗g such that P(1;q∗g ,0)= 1 where

q∗g =
α3

√
2 f
(
e2α2 − 1

)(
1− e2α2P2

wh

)

8α2α6 f
(
e2α2 − 1

) . (2.21)

�
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Rewrite (2.11) with initial condition (2.12) implicitly as

P
(
z;qg ,ql

)=
∫ z

0
F
(
t,P;qg ,ql

)
dt+Pwh, (2.22)

in the following lemma, we examine behavior of pressure function in (2.22) with respect
to ql.

Lemma 2.2. Let P(z;qg ,ql) be a pressure function satisfying (2.22). Then, for any fixed z
and qg , P(z;qg ,ql) is increasing with respect to ql.

Proof. Since for any fixed z, P, and qg , the terms ρ and u in (2.10) are increasing with
respect to ql (see Table 2.1), then for any fixed z, P, and qg , the pressure gradient F(z,P;
qg ,ql) in (2.11) is also increasing with respect to ql. Now, we will show that P(z;qg ,ql) is
also increasing with respect to ql. Let 0 < ql1 < ql2, then

dP
(
0;qg ,ql1

)

dz
= F

(
0,Pwh;qg ,ql1

)
< F
(
0,Pwh;qg ,ql2

)= dP
(
0;qg ,ql2

)

dz
. (2.23)

This means that for some ε > 0, P(z;qg ,ql1)≤ P(z;qg ,ql2) for all z ∈ (0,ε). We will show
that this result is also correct for ε ≤ z ≤ 1. Suppose that the statement is not correct,
that is, P(z∗;qg ,ql1) > P(z∗;qg ,ql2) for some z∗ ≥ ε. Then, there exists z ∈ (ε,z∗) such
that P(z;qg ,ql1) = P(z;qg ,ql2) and P(z;qg ,ql1) > P(z;qg ,ql2) for all z ∈ (z,z∗). Let P∗1 =
P(z;qg ,ql1) and P∗2 = P(z;qg ,ql2), then

dP
(
z;qg ,ql1

)

dz
= F

(
z,P∗1 ;qg ,ql1

)
< F
(
z,P∗2 ;qg ,ql2

)= dP
(
z;qg ,ql2

)

dz
. (2.24)

This means that for some δ > 0, P(z;qg ,ql1)≤ P(z;qg ,ql2) for all z ∈ (z,z+ δ), which leads
to a contradiction. �

3. Gas lift performance curve

Let P(z;qg ,ql) be a two-parameter family of continuous function satisfying the IVP
(2.11)-(2.12). The production rate in gas lift technique can be stated as to find

ql = ϕ
(
qg
)

(3.1)

on interval 0≤ qg ≤ q∗g , such that

P
(
1;qg ,ql

)= Pwf, (3.2)

where Pwf is given by (2.13) and q∗g is given by (2.21). If such a function ϕ(qg) exists, then
the graph of ql = ϕ(qg) is called gas lift performance curve (GLPC).

In Theorem 3.1, we will show the existence and uniqueness of the GLPC on interval
[0,q∗g ].

Theorem 3.1 (existence and uniqueness of GLPC). If Pwh < e−α2 , then GLPC exists and is
unique on interval 0≤ qg ≤ q∗g .
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Proof. Define a function

ζ
(
qg ,ql

)= P
(
1;qg ,ql

)− (1− ql
)
, (3.3)

where P(z;qg ,ql) satisfies (2.22). We will show that there exists a unique curve ql = ϕ(qg),
0≤ qg ≤ q∗g , such that

ζ
(
qg ,ϕ

(
qg
))= 0. (3.4)

Note that from Lemma 2.1, P(1;qg ,0) is increasing with respect to qg and P(1;q∗g ,0)= 1.
Then, for any qg ∈ [0,q∗g ),

ζ
(
qg ,0

)= P
(
1;qg ,0

)− 1 < 0,

ζ
(
qg ,1

)= P
(
1;qg ,1

)
> 0.

(3.5)

By intermediate value theorem, for any qg ∈ [0,q∗g ), there exists a ql ∈ (0,1) such that

ζ
(
qg ,ql

)= 0. (3.6)

Further, since (∂/∂ql)P(1;qg ,ql) > 0 (Lemma 2.2), then (∂/∂ql)ζ(qg ,ql) > 0. Then, by im-
plicit function theorem, there exists a unique curve ql = ϕ(qg) on interval [0,q∗g ] such
that ζ(qg ,ϕ(qg))= 0. �

Based on the assumptions used in Theorem 3.1, the GLPC starts at qg = 0 (with the
corresponding ϕ(0) > 0). This means that without gas injection, some amount of liquid
can still be produced from the well. In this case, only liquid flows across the tubing. In
case the liquid flow rate ql = 1, the bottomhole pressure equals to 0. Physically, ql = 1 is
impossible to reach, since Pwh > 0. Hence ql = 1 here is just an upper bound for ql. In case
of the liquid flow rate ql = 0, the bottomhole pressure equals to reservoir pressure and
only gas flows across the tubing. Physically, as gas in the tubing increases, the bottomhole
pressure will increase. Hence, before ql = 0 (no oil production) occurs, gas lift process
must be stopped.

In the following theorem, we will show that in certain condition, the maximum value
of GLPC occurs at an interior point of (0,q∗g ).

Theorem 3.2 (maximum point of GLPC). Under condition

f <
α1−α2

16α5
(
2α5
(
α2 +α1

(
2C0− 1

))
+α1α4

) , (3.7)

there exists qg ∈ (0,q∗g ) such that the GLPC (3.1) reaches the maximum value at qg = qg .
Namely, constrained oil production maximization problem

Max
{
ql = ϕ

(
qg
) | P(1;qg ,ql

)= Pwf, 0 < qg < q∗g
}

, (3.8)

where P(z;qg ,ql) satisfies (2.22), obtains its maximum point in the interior of (0,q∗g ).
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Proof. From Theorem 3.1, ϕ(0) > 0 and ϕ(q∗g ) = 0. Hence, it is enough to show that
GLPC ql = ϕ(qg) is increasing for small qg . Let F(z,P;qg ,ql) be the pressure gradient
(2.11). Then, at qg = 0, its partial derivative with respect to qg is given by

∂F
(
z,P;0,ql

)

∂qg
=64α2α5α6ql

(
α1
(
2α5
(
2C0− 1

)
ql +α4

)
+ 2α2α5qlP

)
f

α3P
(
4C0α5ql +α4

)

− 4α2α6
(
α1−α2P

)

α3P
(
4C0α5ql +α4

) .

(3.9)

Then, if (3.7) is satisfied, ∂/∂qgF(z,P;qg ,ql) < 0 for small qg , namely, for any fixed z, P,
and ql, F(z,P;qg ,ql) is decreasing with respect to qg for small qg . By the same way as in
the proof of Lemma 2.2, it could be shown that P(z;qg ,ql), particularly P(1;qg ,ql), is also
decreasing with respect to qg for small qg .

Along GLPC, P(1;qg ,ql)= 1− ql, thus

dql
(
qg
)

dqg
= (−∂/∂qg)P

(
1;qg ,ql

)

1 + (∂/∂ql)P
(
1;qg ,ql

) . (3.10)

Since (∂/∂ql)P(1;qg ,ql) > 0 (by Lemma 2.2), then the numerator is always positive. Hence,
for small qg

dql
(
qg
)

dqg
> 0, (3.11)

that is, GLPC ql = ϕ(qg) is increasing for small qg . �

Remark 3.3. In this paper, liquid production rate ql is assumed to be constant along the
tubing. In practical application, liquid production rate may change slightly with pres-
sure. At low pressures, liquid may release gas which is dissolved at higher pressures. This
assumption may fit the application on heavy oil cases.

4. Genetic algorithm for oil production maximization problem

Liquid production rate from a production well can be illustrated from combination of in-
flow performance relationship (IPR) and vertical lift performance (VLP), that is, a com-
bination of ability of reservoir to deliver the fluid into the tubing and ability to deliver the
fluid along the tubing from the bottom to the wellhead at a required wellhead pressure.
Geometrically, for any fixed qg , liquid production rate ql can be obtained from the inter-
section between IPR curve and VLP curve. Here, IPR curve can be plotted from normal-
ized Darcy’s law (2.13) and VLP curve is plotted from bottomhole pressure P(1;qg ,ql),
where P(z;qg ,ql) is given by (2.22). These curves are illustrated in Figure 4.1.

Each intersection point (qg ,ql) of IPR and VLP satisfies ζ(qg ,ql)= 0, where ζ(qg ,ql) is
given by (3.3). GLPC can be constructed from these intersection points. So, the compu-
tation problem can be written as follows.
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Figure 4.1. IPR and VLP curves for fixed qg .

Determining (qg ,ql)∈ R= {(qg ,ql) | 0≤ qg ≤ q∗g , 0≤ ql ≤ 1} such that

ζ
(
qg ,ql

)= P
(
1;qg ,ql

)− (1− ql
)= 0, (4.1)

where q∗g satisfies P(1;q∗g ,0)= 1, P(z;qg ,ql) is solution of the IVP (2.11)-(2.12).
We plot some computational GLPCs obtained by shooting method in Figure 4.2. Con-

stant values C0 = 1.08 and Ud = 0.45m/s = 1.4764ft/s are obtained from Toshiba corre-
lation (see [11]). We see that for friction factor f = 0.002, GLPCs are unimodal for well
data given by Table 4.2. Wells data is obtained from [4]. In order to fit with assumptions in
this paper, we chose here constant wellhead pressure Pwh = 100 psi, constant temperature
T = 595o R, injection depth equals to welldepth and natural gas-to-liquid-ratio GLR= 0.

In this section, we will construct a genetic algorithm to find the solution of constrained
oil production maximization problem (3.8). First, we transform (3.8) into an uncon-
strained optimization problem using a penalty approach.

Let us consider a family of unconstrained minimization problem

Ω
(
qg ,ql

)= 1
ql + 1

+ λ
[
P
(
1;qg ,ql

)− (1− ql
)]2

, (4.2)

where P(z;qg ,ql) is the solution of IVP (2.11)-(2.12) and λ is a positive constant normally
called penalty factor. Then, the solution of unconstrained minimization problems

min
(qg ,ql)∈D

Ω
(
qg ,ql

)
, (4.3)

where

D = {(qg ,ql
) | 0≤ qg ≤ q∗g , 0≤ ql ≤ 1

}
, (4.4)
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Figure 4.2. GLPCs by shooting method.

will converge to the optimal solution of the original problem, that is, the maximum
point of the GLPC (3.1) as λ→∞ (see [12]). Since we do not have explicit formula for
P(z;qg ,ql), then for given (qg ,ql), P(1;qg ,ql) is approximated using fourth-order Runge-
Kutta (RK-4). So, in the numerical scheme we compute the solution of

min
(qg ,ql)∈D

Ω
(
qg ,ql

)= 1
ql + 1

+ λ
[
P
(
1;qg ,ql

)− (1− ql
)]2

(4.5)

in the domain

D = {(qg ,ql
) | 0≤ qg ≤ q∗g , 0≤ ql ≤ 1

}
, (4.6)

where P(z;qg ,ql) is the numerical solution of the IVP (2.11)-(2.12) using RK-4, and q∗g is

the solution of P(1;qg ,0)= 1.
The computational procedure using genetic algorithm (see [13] for more details) can

be written as follows.
(1) Initialize a population of chromosomes v1,v2, . . . ,vr which correspond to pairs

(qg1,ql1),(qg2,ql2), . . . , (qgr ,qlr).
(2) For each pair (qgk,qlk), k = 1,2, . . . ,r, compute P(1;qgk,qlk) using RK-4.
(3) Evaluate the fitness values Ω(qgk,qlk), k = 1,2, . . . ,r.
(4) Create new chromosomes by doing crossover and applying mutation.
(5) Apply a selection to get a new population.
(6) Return to step (2) until stopping criteria is satisfied.

The solution to the penalty problem can be made arbitrarily close to the optimal so-
lution of the original problem by choosing penalty factor λ sufficiently large. However, if
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Table 4.1. Numerical optimum points using genetic algorithm.

Optimum qg Optimum ql

Well A 0.71147 0.040501

Well B 0.72367 0.042929

Well C 0.65975 0.026463

Well D 0.67821 0.030506

Table 4.2. Well data.

Well A Well B Well C Well D Unit

Pr 790 815 750 795 psi

J 11 11 11 11 STB/d/psi

L 6900 7000 7000 7217.8 feet

D 2.875 2.875 2.875 2.875 inch

WOR 1 1 1 1 —

γg 0.65 0.65 0.65 0.65 —

γo 0.876 (30oAPI) 0.876 0.876 0.876 —

γw 1.01 1.01 1.01 1.01 —

Table 4.3. Conversion of numerical optimum points to the field units.

Optimum qg Optimum ql

Well A 1.96006 MMSCF/d 351.95369 STB/d

Well B 2.02257 MMSCF/d 384.85848 STB/d

Well C 1.84392 MMSCF/d 218.31975 STB/d

Well D 1.95449 MMSCF/d 266.77497 STB/d

we choose a very large λ and attempt to solve the penalty problem, we may get into some
computational difficulties. The population will move very quickly toward feasible points
which may be still far from the optimum and difficult to move toward the optimum
point. To overcome with this difficulty, we choose as the penalty factor, a sequence that
increases with respect to generation. In this case, we choose λ= n2, where n is generation
number. Such a penalty, where the current generation number is involved in the compu-
tation of the corresponding penalty factor is known as dynamic penalties. Advantages and
disadvantages of using dynamic penalties can be seen in [14].

The following are computational results using genetic algorithm. The computation
process is conducted until second hundred generation with the numerical optimum
points given in Table 4.1. Conversion of the optimum points into oil field units is shown
in Table 4.3. In case where there is enough amount of gas available for injection, the opti-
mum points in Table 4.3 correspond to the optimum gas injection and liquid production
rate for each well obtained by gas lift technique. Comparing the results as in [4], the re-
sults require higher gas injection rate to obtain maximum oil production for each well
(in [4], the corresponding optimum gas injection rates estimated from the GLPCs are
about 1.3, 1.41, 0.7, and 1.1 MMSCF/d). This different may result from assumptions in
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our model such as contribution of acceleration term, influence of temperature, friction
factor, gas phase in reservoir, injection point, and also wellhead pressure.

5. Conclusion and discussion

Here we obtain existence and uniqueness of GLPC if Pwh < e−α2 . In addition to that, under
condition

f <
α1−α2

16α5
(
2α5
(
α2 +α1

(
2C0− 1

))
+α1α4

) , (5.1)

gas lift performance curve has a maximum point in the interval (0,q∗g ).
In Section 5, we showed that the numerical scheme using genetic algorithm gives a

good estimation for solution of minimization problem (4.3). The flexibility and robust-
ness of the method are potential for handling more complicated gas lift problem such as
Dual gas lift or Multiwells gas lift.
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