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Given an arbitrary measure μ, this study shows that the set of norm attaining multilinear forms is
not dense in the space of all continuous multilinear forms on L1(μ). However, we have the density
if and only if μ is purely atomic. Furthermore, the study presents an example of a Banach space X
in which the set of norm attaining operators from X into X∗ is dense in the space of all bounded
linear operators L(X,X∗). In contrast, the set of norm attaining bilinear forms on X is not dense in
the space of continuous bilinear forms on X.
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1. Introduction

The Bishop-Phelps theorem [1] asserts that the set of norm attaining linear functionals on a
Banach space X is dense in the dual space X∗. Some authors have considered the question
of the density of norm attaining multilinear forms. To present the problem more precisely,
given real Banach spaces X1, . . . , XN , we denote byLN(X1, . . . , XN) the space of all continuous
N-linear mappings from X1 × · · · × XN into the scaler field. We say that ϕ ∈ LN(X1, . . . , XN)
attains its norm if there is xi ∈ BXi

(the unit ball of Xi) for i = 1, 2, . . . ,N, such that

∣
∣ϕ(x1, . . . , xN)

∣
∣ = ‖ϕ‖ = sup

{∣
∣ϕ

(

y1, . . . , yN
)∣
∣ :

(

y1, . . . , yN
) ∈ BX1 × · · · × BXN

}

, (1.1)

and we denote by ALN(X1, . . . , XN) the set of all norm attaining N-linear forms. In the case
where X1 = · · · = XN = X, we write simply LN(X) andALN(X).

Aron et al. [2] posed the question of when ALN(X) is dense in LN(X), and gave
sufficient conditions for this density to hold. The first example of a Banach space X such
that AL2(X) is not dense in L2(X) was given in [3]. Shortly after, Choi [4] showed that
AL2(L1[0, 1]) is not dense in L2(L1[0, 1]). For additional results on this problem, we refer the
reader to [5–9].
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In this paper, we give some improvements on the results in [10]. More concretely, it was
shown in that study that given an arbitrary finite measure μ,AL2(L1(μ)) is dense inL2(L1(μ))
if and only if μ is purely atomic. In this note, we extend the above result to an arbitrary measure.
Namely, we proved that, given any arbitrary measure μ, ALN(L1(μ)) is dense in LN(L1(μ)) if
and only if μ is purely atomic. Also, we present a new example of a Banach space X such that
the set of norm attaining operators from X into X∗ is dense in the space of all bounded linear
operators from X into X∗, but the set AL2(X) is not dense in L2(X). This can be shown by
relating the main result in our work to the following theorem.

Theorem 1.1 (see [11, Theorem 1]). Given an arbitrary measure μ and a localizable measure ν, the
set of norm attaining operators from L1(μ) into L∞(ν) is dense in the space L(L1(μ), L∞(ν)).

2. The results

We begin by recalling the isometric classification of L1-spaces and a technical lemma which
deals with the density of norm attaining bilinear forms on arbitrary l1-sums of Banach spaces
in order to reduce the proof of our problem to the case where μ is a finite measure. Recall that
if μ is an arbitrary measure, L1(μ) can be decomposed in the form

L1(μ) ∼=
(⊕i∈IL1

(

μi
))

�1
(2.1)

where μi is a finite measure for all i ∈ I (see, e.g., [12, Appendix B]). On the other hand, if
ν is a localizable measure we have that L∞(ν) = L1(ν)

∗, and we get a set of finite measures
{νj : j ∈ J} such that

L∞(ν) ∼=
(⊕j∈JL∞

(

νj
))

�∞
. (2.2)

In what follows, we may assume without loss of generality that (Ω,A, μ) is a finite measure
space. The well-known representation of the space L2(L1(μ)) is nothing but L∞(μ ⊗ μ) “the
space of all essential boundedmeasurable functions,” where μ⊗μ denotes the product measure
on Ω ×Ω. More concretely,

L2(L1(μ) ∼= L
(

L1(μ), L1(μ)
∗) ∼= L(L1(μ), L∞(μ)

) ∼= L∞(μ ⊗ μ); (2.3)

see [12, Example 3.27] . In view of the above, we get the integral representation for the
continuous bilinear form ĥ on L2(L1(μ)) as follows:

ĥ(f, g) =
∫

Ω×Ω
h(x, y)f(x)g(y)dμ(x)dμ(y), (2.4)

for f, g ∈ L1(μ), x, y ∈ Ω, and h ∈ L∞(μ⊗μ). Moreover, the application h 	→ ĥ is linear isometric
bijection from L∞(μ ⊗ μ) onto L2(L1(μ)); see [4].

To make the vision more comprehensive, we state the following technical lemmas that
will be needed later. To simplify the notation, we consider the case N = 2. The proof for the
general case is exactly the same.

Lemma 2.1 (see [10, Lemma 2.1]). Let ν be an arbitrary nonzero finite measure and μ = ν⊗m, where
m denotes Lebesgue measure on I = [0, 1]. ThenAL2(L1(μ)) is not dense in L2(L1(μ)).
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The other technical lemma deals with l1-sums of Banach spaces. By Y⊕1Z we denote the
�1-sum of two Banach spaces Y and Z, that is, ‖y + z‖ = ‖y‖ + ‖z‖ for arbitrary y ∈ Y , z ∈ Z.

Lemma 2.2 (see [10, Lemma 2.2]). Let Y, Z be Banach spaces and X = Y⊕1Z. If AL2(X) is dense
in L2(X), thenAL2(Y ) is dense in L2(Y ).

Our first result of this paper is a characterization of those functions h ∈ L∞(μ⊗μ), where
ĥ its corresponding bilinear form in L2(L1(μ)) that attains its norm (see [4]).

Proposition 2.3. Let (Ω,A, μ) be a finite measure space, fixed h ∈ L∞(μ ⊗ μ), and let ĥ be its
corresponding bilinear form as defined in (2.4)

(1) There exist sets A,B ∈ A with μ(A) > 0, μ(B) > 0 and a scalar t with |t| = 1 such that

th(x, y) = ‖h‖∞ (2.5)

for [μ ⊗ μ]-almost every (x, y) ∈ A × B.
(2) There are sets A,B like in (1) and measurable functions ϕ, ψ on Ω such that

∣
∣ϕ(w)

∣
∣ =

∣
∣ψ(w)

∣
∣ = 1, (2.6)

where w ∈ Ω and ϕ(x)ψ(y)h(x, y) = ‖h‖∞, for [μ ⊗ μ]-almost every (x, y) ∈ A × B.
(3) The bilinear form ĥ ∈ L2(L1(μ)) corresponding to h ∈ L∞(μ ⊗ μ) attains its norm.

Then (1) =⇒ (2) ⇐⇒ (3). (2.7)

Moreover, in the real case all three statements are equivalent.

Proof. (1) ⇒ (2) is clear, just take ϕ = t and ψ = 1.
For (2) ⇒ (3), just consider the functions f = ϕχA/μ(A), g = ψχA/μ(B) where f, g are

in the unit sphere of L1(μ), χA, χB denote the characteristic functions on A and B, respectively,
and

ĥ(f, g) =
1

μ(A)μ(B)

∫

A×B
h(x, y)ϕ(x)ψ(y)dμ(x)dμ(y) =

1
μ(A)μ(B)

∫

A×B
‖h‖∞d(μ ⊗ μ) = ‖h‖∞.

(2.8)

(3) ⇒ (2) Let f, g ∈ L1(μ) be such that ‖f‖1 = ‖g‖1 = 1 and ĥ(f, g) = ‖h‖∞. Take

A =
{

x ∈ Ω : f(x) /= 0
}

, B =
{

y ∈ Ω : g(y) /= 0
}

(2.9)

to be two measurable sets in Ω with μ(A) > 0, μ(B) > 0, and write f, g in the forms f =
ϕ|f |, g = ψ|g| where ϕ, ψ are measurable functions on Ω with |ϕ| = 1, |ψ| = 1, then we have

‖h‖∞ = ĥ(f, g) =
∫

A×B
h(x, y)ϕ(x)

∣
∣f(x)

∣
∣ψ(y)

∣
∣g(y)

∣
∣dμ(x)dμ(y) ≤ ‖h‖∞‖f‖1‖g‖1 = ‖h‖∞,

(2.10)
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from which we conclude that

h(x, y)ϕ(x)ψ(y) = ‖h‖∞ (2.11)

for [μ ⊗ μ]-almost every (x, y) ∈ A × B.
In the real case, the functions ϕ, ψ have only the values ±1, then we can choose

measurable subsets A0 ⊆ A and B0 ⊆ B such that μ(A0)μ(B0) > 0, where ϕ, ψ are constants
on A0, B0, respectively. If t = ±1 is the product of these constants, then we have clearly
th(x, y) = ‖h‖∞ for [μ ⊗ μ]-almost every (x, y) ∈ A0 × B0, so we get that (3) ⇒ (1), as
required.

In the special case h = χE, the characteristic function of a measurable set E ∈ A ×A, we
have the following result.

Corollary 2.4. Let (Ω,A, μ) be a finite measure space, let E ∈ A × A be a measurable set with (μ ⊗
μ)(E) > 0, and consider the following bilinear form χ̂E corresponding to the characteristic function of
E. The following statements are equivalent:

(1) χ̂E ∈ AL2(L1(μ));

(2) χ̂E ∈ AL2(L1(μ));

(3) There exist subsetsA,B ∈ A with μ(A)μ(B) > 0 such that [μ⊗μ]((A×B)∩E) = μ(A)μ(B).

Note that we can say that the measurable rectangle A × B is contained in the set E.

Proof. (1) ⇒ (2). This is trivial.
(2) ⇒ (3). Let h ∈ L∞(μ ⊗ μ) be such that ‖χE − h‖∞ < 1/2, and ĥ ∈ AL2(L1(μ)),

then it is clear that ‖h‖∞ > 1/2. From the implication (3) ⇒ (2) of Proposition 2.3 , we have
two measurable sets A,B ∈ A with μ(A)μ(B) > 0, and measurable functions ϕ, ψ on Ω with
|ϕ(x)| = |ψ(y)| = 1, such that

ϕ(x)ψ(y)h(x, y) = ‖h‖∞, (2.12)

then

∣
∣h(x, y)

∣
∣ = ‖h‖∞ >

1
2
, (2.13)

for [μ ⊗ μ]-almost every (x, y) ∈ A × B. Hence

∣
∣χE(x, y)

∣
∣ ≥ ∣

∣h(x, y)
∣
∣ − ∣

∣h(x, y) − χE(x, y)
∣
∣ >

1
2
− ∥
∥h − χE

∥
∥
∞ > 0. (2.14)

for [μ⊗μ]-almost every (x, y) ∈ A×B, from which we get that χE = 1, for [μ⊗μ]-almost every
(x, y) ∈ A × B,which means that (3) holds.

(3) ⇒ (1). If A, B are the sets that satisfy the conditions of the statement (3), then we
may clearly see that the function χE = 1 = ‖χE‖∞, for [μ ⊗ μ]-almost every (x, y) ∈ A × B, then
the function f = χE verifies the statement (1) of Proposition 2.3 including the case t = 1.
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Remark 2.5. Let us point out the following consequence of the representation theory for L1-
spaces. Indeed, if ν is a finite measure, we may write

L1(ν) =
(⊕iIXi

)

�1
, (2.15)

where each spaceXi is either 1-dimensional or of the form L1([0, 1]
Λ) andΛ is a finite or infinite

set. For each coordinate interval, we consider the Lebesgue measure on the Borel subsets of
[0, 1] and [0, 1]Λ provided with the product measure on the Borel σ-algebra (see [13]).

We are now ready to provide the main result.

Theorem 2.6. Given an arbitrary measure μ, the following statements are equivalents.

(1) μ is purely atomic.

(2) ALN(L1(μ)) is dense in LN(L1(μ)) for any numberN.

(3) ALN(L1(μ)) is dense in LN(L1(μ)) for any numberN ≥ 2.

(4) AL2(L1(μ)) is dense in L2(L1(μ)).

Proof. (1) ⇒ (2). If μ is purely atomic, then L1(μ) has the Radon-Nikodym property, and (2)
follows from [2, Theorem 1].

(2) ⇒ (3). This is trivial.
(3) ⇒ (4). This follows from [8, Proposition 2.1].
(4) ⇒ (1). Given an arbitrary nonempty set Λ, consider the product [0, 1]Λ of so many

copies of [0, 1] as indicated by Λ with product measure. We have clearly μ = ν ⊗ m, where
ν is an arbitrary nonzero finite measure and m denotes the Lebesgue measure on [0, 1]. Then
it follows form Lemma 2.1 that AL2(L1[0, 1]

Λ) is not dense in L2(L1[0, 1]
Λ). Indeed, if μ is

a finite measure satisfying statement (4) of the above theorem, then by Remark 2.5, L1(μ) ∼=
(⊕i∈IXi)�1 for each i ∈ I, where Xi is 1-dimensional or of the form L1[0, 1]

Λi for appropriate
nonempty setΛi (see [13, Theorem 14]). It follows then from Lemma 2.2 thatAL2(Xi) is dense
inL2(Xi) for all i ∈ I. But in view of Remark 2.5, none of the spacesXi are of the form L1[0, 1]

Λi .
Then all Xi are 1-dimensional, and then L1(μ) ∼= �1(I), which means that μ is purely atomic.
Finally, if μ is not necessarily a finite measure satisfying (4) of our theorem, we recall that
L1(μ) ∼= (⊕i∈IL1(μi))�1 , where μi is a finite measure for all i ∈ I. So by Lemma 2.2, we get that
AL2(L1(μi)) is dense in L2(L1(μi)), and this proves that μi is purely atomic for each i ∈ I,
which clearly means that μ is purely atomic.

Remark 2.7. Let us mention the relation between theL2(X), the space of all continuous bilinear
forms on the Banach space X, and L(X,X∗), the space of all bounded linear operators from
X into X∗, to see that just consider the canonical identification of L2(X) with L(X,X∗). The
operator T ∈ L(X,X∗) corresponding to a bilinear form ϕ ∈ L2(X) is given by

[T(x)](y) = ϕ(x, y) (x, y ∈ X). (2.16)

The bilinear form ϕ attains its norm if and only if the operator T attains its norm at a point
x ∈ BX, that is, T(x) also attains its norm as a functional on X, therefore, T ∈ NA(X,X∗)
whenever ϕ ∈ ALN(X), but the converse is not true (see [4, 14, 15]). Connecting our main
result in this paper with Theorem 1.1, we get a new example of a Banach space X such that
the set of norm attaining bounded linear operators from X into X∗ is dense in the space of all
bounded linear operators from X into X∗, but AL2(X) is not dense in L2(X).
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Therefore, the following result is inevitable.

Corollary 2.8. If μ is a localizable and not purely atomic measure, then the set of norm attaining
bounded linear operators from L1(μ) into L∞(μ) is dense in the space L(L1(μ), L∞(μ)) but
AL2(L1(μ)) is not dense in L2(L1(μ)).
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