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differential equations without reducing it to a system of first-order equations. The method of col-
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optimal order p = 6.
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1. Introduction

Many problems leading to fourth-order differential equations of the form

yiv = f
(
t, y, y1, y′′, y′′′), y(m−1)(t0

)
= μm−1, m = 1, 2, 3, 4, (1.1)

are of great interest to scientists and engineers formulating mathematical models for elastic
bodies. Investigators, both theoretical and numerical analysts, have concerned themselves with
the study and solutions of such equations. However, only a limited number of analytical meth-
ods are available for solving (1.1) directly without reduction to a first-order system of initial
value problems (ivps) of type

y′ = f(t, y), y
(
t0
)
= μ, f ∈ C1[a, b], t ∈ R, y ∈ Rm. (1.2)

The many numerical methods adopted for such higher-order differential equations (1.1) are
only for handling first-order equations (1.2), [1–4].
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The reduction of such problems of type (1.1) to systems of first-order equations, to our
knowledge, leads to serious computational burden as well as wastage in computer time. These
setbacks had been addressed by some authors [5–7]. In recent times, attempts have been made
to formulate numerical algorithms capable of solving problem (1.1) directly using differing
methods of derivation with varying degree of accuracy [8–12]. These attempts are not with-
out their associated limitations, some of which include low stepnumber k, too many function
evaluations, and the combination of lower-order predictors with the correctors in the predictor-
corrector methods [13, 14]. All these have effects on the accuracy of the methods.

The proposed zero-stable order six methods are designed to have higher step number
and reduced function evaluations, in order to address these observed problems. The derived
method is capable of handling problems where f is either linear or nonlinear. The numerical
results of the method are compared with an existing method [3].

2. Description of the method

Let the approximate solution to problem (1.1) be a partial sum of a power series of the form:

y(x) =
k+2∑

j=0

ajx
j . (2.1)

Taking the fourth derivative of (2.1) and using this in (1.1) yields

k+2∑

j=4

j(j − 1)(j − 2)(j − 3)ajx
j−4 = f

(
x, y, y′, y′′, y′′′). (2.2)

To be able to obtain an open method with three function evaluations, collocation points are
taken in (2.2) at all odd grid points x = xn+i, i = 1(2)k. Equation (1.2) is interpolated at all grid
points x = xn+i, i = 0(1)k − 1, x ∈ R, where R is the set of real numbers. The choice of number
of interpolation points was guided by the intended order of the method as well as the number
of collocation points.

The system of equations obtained from the collocation and interpolation above is repre-
sented by the matrix equation:

AX = B, (2.3)

where A, anm by mmatrix, X and B are, respectively, given by

Am×m =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 24 120xn+i · · · ξxk−2
n+1

0 0 0 0 24 120xn+3 · · · ξxk−2
n+3

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 24 120xn+k · · · ξxk−2

n+k

1 xn x2
n x3

n x4
n x5

n · · · xk+2
n

1 xn+1 x2
n+1 x3

n+1 x4
n+1 x5

n+1 · · · xk+2
n+1

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
1 xn+k−1 x2

n+k−1 x3
n+k−1 x4

n+k−1 · · · · · · xk+2
n+k−1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.4)
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X = [ a0 a1 a2 · · · ak+1 ak+2 ]
T
, B = [ fn+1 fn+3 · · · fn+k yn yn+1 · · · yn+k−1 ]

T
, ξ = (k −

1)k(k + 1)(k + 2), fn+i = f(xn+i, yn+i, y
′
n+i, y

′′
n+i, y

′′′
n+i), i = 0, 1, 2, . . . , yn+i = y(xn+i), and T is

the usual matrix transpose.
Using the Gaussian method to solve the matrix (2.3), the values of a′

js, j = 0, 1, . . . , k + 2,
for k = 5, are obtained as shown in Appendix A. These values of a′

js are substituted into (2.1).
By using the transformation x = th + xn+4, t ∈ (0, 1] with h being steplength, in the resulting
equation after the substitution, an open method with variable coefficients is obtained as

y(t) =
k−1∑

j=0

αj(t)yn+j + h4
k∑

j=0

βj(t)fn+j , βk /= 0. (2.5)

Taking k = 5, the coefficients αj(x) and βj(x) as well as their first, second, and third derivatives
in (2.5) are computed and, respectively, obtained as shown in Appendix B.

The values of t could be taken in the interval I = (0, 1] in order to obtain a particular
discrete scheme. In this work, we take t = 1 in (2.5) to have a zero-stable method and its
derivatives as

yn+5 = 4yn+4 − 6yn+3 + 4yn+2 − yn+1 +
h4

24
(
fn+5 + 22fn+3 + fn+1

)
, (2.6)

y′
n+5 =

1
210h

{
853yn+4 − 1767yn+3 + 1128yn+2 − 157yn+1 − 57yn

+
h4

48
(
1319fn+5 + 20738fn+3 + 1679fn+1

)
}
,

(2.7)

y′′
n+5 =

1
60h2

{
119yn+4 − 236yn+3 + 54yn+2 + 124yn+1 − 60yn

+
h4

8
(
159fn+5 + 1526fn+3 + 203fn+1

)
}
,

(2.8)

y′′′
n+5 =

1
40h3

{
− 23yn+4 + 132yn+3 − 258yn+2 + 212yn+1 − 63yn

+
h4

12
(
317fn+5 + 1364fn+3 + 275fn+1

)
}
,

(2.9)

respectively.
The order of the open method (2.6) and its derivatives (2.7), (2.8), (2.9) is the same and

is p = 6. The error constant of (2.6) is found to be Cp+2 ≈ −4.31 × 10−2. The method is consistent
and zero stable, satisfying the necessary and sufficient conditions for convergence of linear
multistep methods [3, 4].

3. Derivation of starting values for the method

Method (2.6) above and its derivatives are open; βk /= 0. This implies that the sample discrete
method (2.6) and its derivatives (2.7), (2.8), (2.9) require additional closed starting values,
βk = 0, for the evaluation of fn+i, i = 1, 2, . . . , k. In this work, efforts are made at obtaining the
main closed predictors of the same order of accuracy as starting values for fn+i, i = 4, . . . , k.
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These predictors are obtained by using the same approach described in Section 2. The follow-
ing consistent and zero-stable closed methods are obtained, for k = 5, 4,

y(t) =
k−1∑

j=0

αj(t)yn+j +
k−1∑

j=0

βj(t)fn+j , k = 5, 4. (3.1)

Taking t = 1 and for k = 5, we have

yn+5 = 4yn+4 − 6yn+3 + 4yn+2 − yn+1 +
h4

6
(
fn+4 + 4fn+3 + fn+2

)
, (3.2)

y′
N+5 =

1
210h

{
898yn+4 − 1947yn+3 + 1398yn+2 − 337yn+1 − 12yn

+
h4

12
(
159fn+4 + 132fn+3 + 115fn+2

)
}
,

(3.3)

y′′
n+5 =

1
15h2

{
38yn+4 − 92yn+3 + 63yn+2 − 2yn+1 − 7yn

+
h4

8
(
159fn+4 + 132fn+3 + 115fn+2

)
}
,

(3.4)

y′′′
n+5 = − 1

10h3

{
11yn+4 − 54yn+3 + 96yn+2 − 74yn+1 + 21yn

+
h4

12
(
317fn+4 − 124fn+3 + 359fn+2

)
}
,

(3.5)

Themain predictors (3.2) and its associated derivatives (3.3), (3.4), and (3.5) are each of order 6
and their error constantsCp+2 are, respectively, 1.389×10−3, 6.948×10−3, 7.0367×10−2, 3.269×10−1.

For k = 4, we have the following:

yn+4 = 4yn+3 − 6yn+2 + 4yn+1 − yn +
h4

6
(fn+3 + 4fn+2 + fn+1), (3.6)

order p = 6, Cp+2 ≈ 1.389 × 10−3;

y
(1)
n+4 =

1
6h

{
26yn+3 − 57yn+2 + 42yn+1 − 11yn +

h4

60
(
185fn+3 + 452fn+2 + 113fn+1

)
}
, (3.7)

order p = 5, Cp+2 ≈ 9.524 × 10−3;

y
(2)
n+4 =

1
h2

{
3yn+3 − 8yn+2 + 7yn+1 − 2yn +

h4

60
(
449fn+3 + 452fn+2 + 149fn+1

)
}
, (3.8)

order p = 5, Cp+2 ≈ 7.778 × 10−2;

y
(3)
n+4 =

1
h3

{
yn+3 − 3yn+2 + 3yn+1 − yn +

h4

24
(
55fn+48fn+2 + 13fn+1

)
}
, (3.9)

order p = 5, Cp+2 ≈ 0.35.
For k < 4.
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To be able to have sufficient collocation and interpolation points at the grid points that
will not produce system of underdetermined equations, the minimum stepnumber k required
for the derivation of any method for fourth-order problem is 4. Therefore, Taylor series expan-
sion was adopted to evaluate yn+i, y

(1)
n+i, y

(2)
n+i, y

(3)
n+i, i = 1, 2, 3; see Appendix C.

The initial values for the problems are used to evaluate y0, y
(1)
0 , y

(2)
0 , y

(3)
0 , where y(r)

0 =
y(r)(x0), r = 0, 1, 2, 3.

4. Numerical experience

The accuracy of the proposed method (2.6) has been tested, and the results of the following
two initial value problems are shown in the tables in Appendix C below.

Test problem 1

y(4) + y(2) = 0, 0 ≤ x ≤ π

2
, y(0) = 0,

y(1)(0) =
−1.1

72 − 50Π
, y(2)(0) =

1
144 − 100Π

,

y(3)(0) =
1.2

144 − 100Π
.

Theoretical solution: y(x) =
(1 − x − cosx − 1.2 sinx)

(144 − 100π)
.

(4.1)

Test problem 2

y(4) =
(
y(1))2 − yy(#) − 4x2 + ex

(
1 − 4x + x2), 0 ≤ x ≤ 1,

y(0) = 1, y(1)(0) = 1, y(2)(0) = 3, y(3)(0) = 1.

Theoretical solution: y(x) = x2 + ex.

(4.2)

The test problems 1 and 2 were solved with method (2.6). The steplength h = 1/32
is used for the purpose of comparison with the existing method Kayode [3]. The maximum
errors obtained are compared with the method in Kayode [3] as shown in Tables 1 and 2.

5. Conclusion

A predictor-corrector method whose main predictors (3.2) and (3.6) have the same order of
accuracy with the corrector (2.6) was formulated. The method was tested to be consistent and
zero stable with order six. It is remarkable to note that the main predictors are of the same
order 6 as that of the method with comparable error constants. This, to a large extent, reduces
the effects that global error could have on the accuracy of the method.

The method was used to solve both linear and nonlinear problems of fourth-order dif-
ferential equations without reduction to system of first order equations.
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Table 1: Comparison of errors in Kayode [3] and new method (2.6) for Problem 1.

X Y -exact Y -computed with
new method (2.6)

Errors in Kayode
[3]

Errors in new
method (2.6)

0.103125 0.13007993D-02 0.13007993D-02 0.49873300D-15 0.48355417D-16
0.206250 0.25317732D-02 0.25317732D-02 0.67654216D-15 0.13933299D-15
0.306250 0.36524788D-02 0.36524783D-02 0.31350790D-14 0.66893539D-15
0.406250 0.46959523D-02 0.46959523D-02 0.94360283D-14 0.20129384D-14
0.506250 0.56576413D-02 0.56576413D-02 0.22116857D-13 0.46736053D-14
0.603125 0.65077534D-02 0.65077534D-02 0.43379363D-13 0.91874598D-14
0.703125 0.72983134D-02 0.72983134D-02 0.77870869D-13 0.16069038D-13
0.803125 0.79985187D-02 0.79985187D-02 0.12863495D-12 0.25407974D-13
0.903125 0.86072451D-02 0.86072451D-02 0.19927116D-12 0.38108926D-13
1.003125 0.91242822D-02 0.91242822D-02 0.29323245D-12 0.54051538D-13

Table 2: Comparison of errors in Kayode [3] and new method (2.6) for Problem 2.

X Y -exact Y -computed with
new method (2.6)

Errors in Kayode
[3]

Errors in new
method (2.6)

0.103125 0.11192647D+01 0.11192647D+01 4.6842974D-11 8.1714635D-12
0.206250 0.12715995D+01 0.12715995D+01 2.0687163D-10 1.4680923D-10
0.306250 0.1452111D+01 0.14521109D+01 9.0421981D-10 7.8813045D-10
0.406250 0.16662167D+01 0.16662169D+01 2.9137912D-09 2.6795135D-09
0.506250 0.19153471D+01 0.19153471D+01 7.5114031D-09 7.0615016D-09
0.603125 0.21915816D+01 0.21915816D+01 1.6231339D-08 1.5438411D-08
0.703125 0.25144403D+01 0.25144403D+01 3.2237145D-08 3.0900764D-08
0.803125 0.28775164D+01 0.28775164D+01 5.8891835D-08 5.6759556D-08
0.903125 0.32829362D+01 0.32829362D+01 1.0079927D-07 9.7549608D-08
1.003125 0.37330495D+01 0.37330495D+01 1.6373663D-07 1.5897083D-07

The methods (3.2) and (3.6) developed as main predictors are of the same order of ac-
curacy with the corrector (2.6). The method in Kayode [3] has predictors of lower order of
accuracy, this accounts for an improvement of method (2.6) over that of [3] as compared in the
maximum errors shown in Tables 1 and 2.

Appendices

A. The values of a′
js

a0 = yn − a1xn − a2x
2
n − a3x

3
n − a4x

4
n − a5x

5
n − a6x

6
n − a7x

7
n,

a1 =
1
h

(
yn+1 − yn

) − a2
(
2xn + h

) − a3
(
3x2

n + 3hxn + h2)

− a4
(
4x3

n + 6hx2
n + 4h2xn + h3) − a5

(
5x4

n + 10hx3
n + 10h2xn + 5h3xn + h4)

− a6
(
6x5

n + 15hx4
n + 20h2x3

n + 15h3x2
n + 6h4xn + h5)

− a7
(
7x6

n + 21hx5
n + 35h2x4

n + 35h3x3
n + 21h4x2

n7h
5xn + h6),
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a2 =
1
2h2

(
yn+2 − 2yn+1 + yn

) − a3
(
3xn + 3h

)

− a4
(
6x2

n + 12hxn + 7h2) − a5
(
10x3

n + 30hx2
n + 35h2xn + 15h3)

− a6
(
15x4

n + 60hx3
n + 105h2x2

n + 90h3xn + 31h4)

− a7
(
21x5

n + 105hx4
n + 245h2x3

n + 315h3x2
n + 217h4xn + 63h5),

a3 =
1
6h3

(
3yn+3 − 3yn+23yn+1 − yn

) − a4
(
4xn + 6h

)

− a5
(
10x2

n + 30hxn + 25h2) − a6
(
20x3

n + 90hx2
n + 150h2xn + 90h3)

− a7
(
35x4

n + 210hx3
n + 525h2x2

n + 630h3xn + 301h4),

a4 =
fn+1
24

− 5a5(xn + h) − 15a6
(
x2
n + 2hxn + h2)

− 35a7
(
x3
n + 3hx2

n + 3h2xn + h3),

a5 =
1

240h
(
fn+3 − fn+1

) − 6a6
(
xn + 2h

) − 21a7

(
x2
n + 4hxn +

91
21

h2
)
,

a6 =
1

2880h
(
fn+5 − 2fn+3 + fn+1

) − 7a6
(
xn + 3h

)
,

a7 =
1

20160h
{12(yn+4 − 4yn+3 + 6yn+2 − 4yn+1 + yn

)
+ h4(fn+5 − 8fn+3 − 5fn+1

)
.

(A.1)

B. Coefficients αj(x) and βj(x)

α0(t) =
1

1680
(
132t + 98t2 − 126t3 − 105t4 − 7t5 + 7t6 + t7

)
,

α1(t) = − 1
420

(
272t + 308t2 − 56t3 − 105t4 − 7t5 + 7t6 + t7

)
,

α2(t) =
1

280
(
552t + 658t2 + 14t3 − 105t4 − 7t5 + 7t6 + t7

)
,

α3(t) = − 1
420

(
1392t + 1148t2 + 84t3 − 105t4 − 7t5 + 7t6 + t7

)
,

α4(t) =
1

1680
(
1680 + 3212t + 1778t2 + 154t3 − 105t4 − 7t5 + 7t6 + t7

)
,

β1(t) =
1

20160
( − 240t + 284t2 + 630t3 + 420t4 + 35t5 − 28t6 − 5t7

)
,

β3(t) =
1

10080
(
1824t + 3920t2 + 2814t3 + 735t4 − 14t5 − 35t6 − 4t7

)
,

β5(t) =
1

20160
(
48t + 196t2 + 294t3 + 210t4 + 77t5 + 14t6 + t7

)
.

(B.1)
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First derivative of αj(x) and βj(x):

α′
0(t) =

1
1680h

(
132 + 196t − 378t2 − 420t3 − 35t4 + 42t5 + 7t6

)
,

α′
1(t) = − 1

420h
(
272 + 616t − 168t2 − 420t3 − 35t4 + 42t5 + 7t6

)
,

α′
2(t) =

1
280h

(
552 + 1316t + 42t2 − 420t3 − 35t4 + 42t5 + 7t6

)
,

α′
3(t) = − 1

420h
(
1392 + 2296t + 252t2 − 420t3 − 35t4 + 42t5 + 7t6

)
,

α′
4(t) =

1
1680h

(
3212 + 3556t + 462t2 − 420t3 − 35t4 + 42t5 + 7t6

)
,

β′1(t) =
1

20160h
( − 240 + 56t + 1890t2 + 1680t3 + 175t4 − 168t5 − 35t6

)
,

β′3(t) =
1

10080h
(
1824 + 7820t + 8442t2 + 2940t3 − 70t4 − 210t5 − 28t6

)
,

β′5(t) =
1

20160h
(
48 + 392t + 882t2 + 840t3 + 385t4 + 84t5 + 7t6

)
.

(B.2)

Second derivative of αj(x) and βj(x):

α′′
0(t) =

1
1680h2

(
196 − 756t − 1260t2 − 140t3 + 210t4 + 42t5

)
,

α′′
1(t) = − 1

420h2

(
616 − 336t − 1260t2 − 140t3 + 210t4 + 42t5

)
,

α′′
2(t) =

1
280h2

(
1316 + 84t − 1260t2 − 140t3 + 210t4 + 42t5

)
,

α′′
3(t) = − 1

420h2

(
2296504t − 1260t2 − 140t3 + 210t4 + 42t5

)
,

α′′
4(t) =

1
1680h2

(
3556924t − 1260t2 − 140t3 + 210t4 + 42t5

)
,

β′′1(t) =
1

20160h2

(
56 + 3780t + 5040t2 + 700t3 − 840t4 − 210t5

)
,

β′′3(t) =
1

10080h2

(
7820 + 16884t + 8820t2 − 280t3 − 1050t4 − 168t5

)
,

β′′5(t) =
1

20160h2

(
392 + 1764t + 2520t2 + 1540t3420t4 + 42t5

)
.

(B.3)
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Third derivative of αj(x) and βj(x):

α′′′
0 (t) =

1
1680h3

( − 756 − 2520t − 420t2 + 840t3 + 210t4
)
,

α′′′
1 (t) = − 1

420h3

( − 336 − 2520t − 420t2 + 840t3 + 210t4
)
,

α′′′
2 (t) =

1
280h3

(
84 − 2520t − 420t2 + 840t3 + 210t4

)
,

α′′′
3 (t) = − 1

420h3

(
5044 − 2520t − 420t2 + 840t3 + 210t4

)
,

α′′′
4 (t) =

1
1680h3

(
924 − 2520t − 420t2 + 840t3 + 210t4

)
,

β′′′1 (t) =
1

20160h4

(
3780 + 10080t + 2100t2 − 3360t3 − 1050t4

)
,

β′′′3 (t) =
1

10080h4

(
16884 + 17640t + 2100t2 − 3360t3 − 1050t4

)
,

β′′′5 (t) =
1

20160h4

(
1764 + 5040t + 4620t2 + 1680t3 + 2100t4

)
.

(B.4)

C. Taylor series

yn+i≡y
(
xn + ih

) ∼=y(xn

)
+ihy(1)(xn

)
+
(ih)2

2!
y(2)(xn

)
+
(ih)3

3!
y(3)(xn

)
+
(ih)4

4!
fn +

(ih)5

5!
f
(1)
n +· · · ,

y
(1)
n+i≡y(1)(xn + ih

) ∼=y(1)(xn

)
+ihy(2)(xn

)
+
(ih)2

2!
y(3)(xn

)
+
(ih)3

3!
fn +

(ih)4

4!
f
(1)
n +

(ih)5

5!
f
(2)
n +· · · ,

y
(2)
n+i≡y(2)(xn + ih

) ∼= y(2)(xn

)
+ ihy(3)(xn

)
+
(ih)2

2!
fn +

(ih)3

3!
f
(1)
n +

(ih)4

4!
f
(2)
n +

(ih)5

5!
f
(3)
n + · · · ,

y
(3)
n+i≡y(3)(xn + ih

) ∼= y(3)(xn

)
+ ihf +

(ih)2

2!
f
(1)
n +

(ih)3

3!
f
(2)
n +

(ih)4

4!
f
(3)
n + · · · .

(C.1)

Noting that in (1.1) y(4)(xn) = fn, y
(4+j)
n = f

(j)
n , j = 0, 1, 2, . . . , f (0)

n = fn, and f
(j)
n = f (j)(xn,

yn, y
(1)
n , y

(2)
n , y

(3)
n ), the values of f (1)

n , f
(2)
n are obtained by partial derivative technique as

f (1) =
df

dx
=
∂f

∂x
+ y(1)∂f

∂y
+ y(2) ∂f

∂y(1)
+ y(3) ∂f

∂y(2)
+ f

∂f

∂y(3)

)
,

f (2) =
d2f

dx2
= 2

(
Ay(1) + By(2) + Cy(3) +Df

)
+ E + F,

(C.2)
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where

A =
∂2f

∂x∂y
+ y(2) ∂2f

∂y∂y(1)
+ y(3) ∂2f

∂y∂y(2)
+ f

∂2f

∂y∂y(3)
,

B =
∂2f

∂x∂y
+ y(3) ∂2f

∂y(1)∂y(2)
+ f

∂2f

∂y(1)∂y(3)
,

C =
∂2f

∂x∂y(2)
+ f

∂2f

∂y(2)∂y(3)
,

D =
∂2f

∂x∂y(3)
,

E = y(2)∂f

∂y
+ y(3) ∂f

∂y(1)
+ f

∂f

∂y(2)
+ f ′ ∂f

∂y(3)
,

F =
∂2f

∂x2
+
(
y(1))2∂

2f

∂y2
+
(
y(2))2 ∂2f

(∂y(1))2
+
(
y(3))2 ∂2f

(∂y(2))
+ (f)2

∂2f
(
∂y(3))2

.

(C.3)
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