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We study the global stability, the periodic character, and the boundedness character of the positive
solutions of the difference equation xn+1 = (α − βxn)/(γ − δxn − xn−k), n = 0, 1, 2, . . . , k ∈ {1, 2, . . .},
in the two cases: (i) δ ≥ 0, α > 0, γ > β > 0; (ii) δ ≥ 0, α = 0, γ, β > 0, where the coefficients
α, β, γ, and δ, and the initial conditions x−k, x−k+1, . . . , x−1, x0 are real numbers. We show that the
positive equilibrium of this equation is a global attractor with a basin that depends on certain
conditions posed on the coefficients of this equation.
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1. Introduction

The asymptotic stability of the rational recursive sequence,

xn+1 =
α + βxn

γ +
∑k

i=0γixn−i
, n = 0, 1, 2, . . . , (1.1)

was investigated when the coefficients α, β, γ, and γi are nonnegative real numbers (see
[1–3]). Studying the asymptotic behavior of the rational sequence (1.1) when some of the
coefficients are negative was suggested in [3]. Recently, Aboutaleb et al. [4] studied the rational
recursive sequence,

xn+1 =
α − βxn
γ + xn−1

, n = 0, 1, 2, . . . , (1.2)
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where α, β, and γ are nonnegative real numbers and obtained sufficient conditions for the
global attractivity of the positive equilibria. Yan et al. [5] studied recently the rational recursive
sequence,

xn+1 =
α − βxn
γ − xn−k

, n = 0, 1, 2, . . . , (1.3)

where α ≥ 0, γ, β > 0 are real numbers while k ≥ 1 is an integer number, and the initial
conditions x−k, x−k+1, . . . , x−1, x0 are arbitrary real numbers. They proved that the positive
equilibrium x of (1.3) is a global attractor with a basin that depends on certain conditions
of the coefficients. He et al. [6] studied recently the rational recursive sequence,

xn+1 =
a − bxn−k
A + xn

, n = 0, 1, 2, . . . , (1.4)

where a ≥ 0, A, b > 0 are real numbers while k ≥ 1 is an integer number and the initial
conditions x−k, x−k+1, . . . , x−1, x0 are arbitrary real numbers. They proved the global attractivity
and periodic character of the positive solution of (1.4). Stević [7] studied recently the rational
recursive sequence,

xn+1 =
α + βxn
γ − xn−k

, n = 0, 1, 2, . . . , (1.5)

where the parameters α, β, and γ are nonnegative real numbers and k ≥ 1 is an integer
number while the initial conditions x−k, x−k+1, . . . , x−1, x0 are arbitrary real numbers. Other
related results can be found in [8–19].

Our aim in this paper is to study the global attractivity, the periodicity, and the
boundedness of the positive solution of the following rational recursive sequence:

xn+1 =
α − βxn

γ − δxn − xn−k
, n = 0, 1, 2, . . . , (1.6)

in the two cases (i) δ ≥ 0, α > 0, γ > β > 0, (ii) δ ≥ 0, α = 0, γ, β > 0, where the coefficients
α, β, γ, and δ are real numbers and k ≥ 1 is an integer number, while the initial conditions
x−k, x−k+1, . . . , x−1, x0 are arbitrary real numbers. We will prove that the positive equilibrium x
of (1.6) is a global attractor with a basin that depends on certain conditions of these coefficients.

2. Local stability and permanence

We first recall some results which will be useful in the sequel. Let I be some real interval and let
F be a continuous function defined on Ik+1. Then, for initial conditions x−k, x−k+1, . . . , x−1, x0 ∈ I,
it is easy to see that the difference equation,

xn+1 = F
(
xn, xn−1, . . . , xn−k

)
, n = 0, 1, 2, . . . , k ≥ 1, (2.1)

has a unique solution {xn}.
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Definition 2.1. A point x is called an equilibrium of (2.1), if x = F(x, . . . , x). That is, xn = x for
n ≥ 0 is a solution of (2.1), or equivalently, is a fixed point of F.

Definition 2.2. An interval J ⊂ I is called an invariant interval of (2.1) if the initial conditions
x−k, x−k+1, . . . , x−1, x0 ∈ J imply that the solution xn ∈ J for n > 0. That is, every solution of (2.1)
with initial conditions in J remains in J.

Definition 2.3. The difference equation (2.1) is said to be permanent if there exist numbers P
and Q with 0 < P ≤ Q <∞ such that for any initial conditions x−k, x−k+1, . . . , x−1, x0 there exists
a positive integer N which depends on the initial conditions such that P ≤ xn ≤ Q, for all
n ≥N.

The linearized equation associated with (2.1) about the equilibrium x is

yn+1 =
k∑

i=0

∂F
(
x, . . . , x

)

∂ui
yn−i, n = 0, 1, 2, . . . . (2.2)

Its characteristic equation is

λn+1 =
k∑

i=0

∂F
(
x, . . . , x

)

∂ui
λn−i, n = 0, 1, 2, . . . . (2.3)

Theorem 2.4 (see [3]). Assume that F is a C1-function and let x be an equilibrium of (2.1). Then, the
following statements are true:

(a) if all the roots of (2.3) lie in the open unit disk |λ| < 1, then the equilibrium x of (2.1) is
locally asymptotically stable;

(b) if at least one root of (2.3) has absolute value greater than one, then the equilibrium x of (2.1)
is unstable.

Theorem 2.5 (see [3, 8]). Assume that p, q ∈ R, and k ∈ {1, 2, . . .}. Then,

|p| + |q| < 1 (2.4)

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 − pxn + qxn−k = 0, n = 0, 1, 2, . . . . (2.5)

Suppose in addition that one of the following two cases holds: (i) k is odd and q < 0, or (ii) k is even
and pq < 0. Then, (2.4) is also a necessary condition for the asymptotic stability of (2.5) (see [6]).

First, we study the rational recursive sequence

xn+1 =
α − βxn

γ − δxn − xn−k
, n = 0, 1, 2, . . . , (2.6)

together with the conditions

δ ≥ 0, α > 0, γ > β > 0, k ∈ {1, 2, . . .}. (2.7)
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The unique positive equilibrium point x of (2.6) is the solution of the equation

x =
α − βx

γ − (δ + 1)x
, (2.8)

which is given by

x =
(γ + β) ±

√
T

2(δ + 1)
, (2.9)

where

T = (γ + β)2 − 4α(δ + 1). (2.10)

If (2.7) holds and α = (γ + β)2/4(δ + 1), then (2.6) has a unique positive equilibrium x0 =
(γ + β)/2(δ + 1). If (2.7) holds and α < (γ + β)2/4(δ + 1) then (2.6) has two positive equilibria
x1,2 given by (2.9).

The linearized equation of (2.6) about the equilibrium xi (i = 0, 1, 2) is given by

yn+1 +
β − δ xi

[
γ − (δ + 1)xi

]yn −
xi

[
γ − (δ + 1)xi

]yn−k = 0. (2.11)

The characteristic equation associated with (2.6) about x0 is

λk+1 +
[

2β
γ − β −

δ(γ + β)
(δ + 1)(γ − β)

]

λk −
γ + β

(δ + 1)(γ − β) = 0. (2.12)

Now, we have the following results:

(a) if 0 ≤ δ < 2β/(γ − β), then (γ + β)/(δ + 1)(γ − β) > 1 and hence the equilibrium x0 of
(2.6) is unstable (see Figure 1);

(b) if δ > 2β/(γ − β), then

∣
∣
∣
∣

2β
γ − β −

δ(γ + β)
(δ + 1)(γ − β)

∣
∣
∣
∣ +

∣
∣
∣
∣

γ + β
(δ + 1)(γ − β)

∣
∣
∣
∣ = 1. (2.13)

Thus, the linearized stability analysis fails. On the other hand, the characteristic equation
associated with (2.6) about x1 is

λk+1 +
[

2β

γ − β −
√
T
−

δ
(
γ + β +

√
T
)

(δ + 1)
(
γ − β −

√
T
)

]

λk −
γ + β +

√
T

(δ + 1)
(
γ − β −

√
T
) = 0. (2.14)
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x0 = 1.333, α = 8/3, β = 1, γ = 3, δ = 0.5, x−1 = e−1, x0 = 1

Figure 1

Now, we have the following results:

(a) if 0 ≤ δ < 2β/(γ − β), then it is obvious that

∣
∣
∣
∣

γ + β +
√
T

(δ + 1)
(
γ − β −

√
T
)

∣
∣
∣
∣ ≥

(
γ − β
γ + β

)
[γ + β +

√
T]

[γ − β −
√
T]

> 1, (2.15)

hence the equilibrium x1 of (2.6) is unstable;

(b) if δ ≥ 2β/(γ −β), then it is easy to see that 2β(δ+ 1) < δ[γ +β+
√
T], and consequently,

we have

∣
∣
∣
∣

2β

γ − β −
√
T
−

δ
[
γ + β +

√
T
]

(δ + 1)
[
γ − β −

√
T
]

∣
∣
∣
∣ +

∣
∣
∣
∣

γ + β +
√
T

(δ + 1)
[
γ − β −

√
T
]

∣
∣
∣
∣ =

γ − β +
√
T

γ − β −
√
T
> 1, (2.16)

and hence the equilibrium x1 of (2.6) is unstable.

For the positive equilibrium x2, in view of conditions (2.7) and α < (γ + β)2/4(δ + 1), we
have

x2 =
γ + β −

√
T

2(δ + 1)
<

γ + β
2(δ + 1)

<
γ

δ + 1
. (2.17)

Hence, if

0 < α ≤
β(γ − β)
δ + 1

, (2.18)

then

√
T ≥

√

(γ + β)2 − 4β(γ − β) >
√

(γ + β)2 − (γ + 3β)(γ − β) =
√

(γ + β)2 − (γ + β)2 + 4β2 = 2β.
(2.19)
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Figure 2

Consequently, we have

∣
∣
∣
∣

β − δx2

γ − (δ + 1)x2

∣
∣
∣
∣ +

∣
∣
∣
∣

x2

γ − (δ + 1)x2

∣
∣
∣
∣ <

β + (δ + 1)x2

γ − (δ + 1)x2
=

3β + γ −
√
T

γ − β +
√
T

<
3β + γ − 2β
γ − β + 2β

= 1, (2.20)

which by Theorem 2.5 implies that x2 is locally asymptotically stable (see Figure 2).

Lemma 2.6. Let f(u, v) = (α − βu)/(γ − δu − v) and assume that conditions (2.7) and (2.18) hold.
Then, the following statements are true:

(a) 0 < x2 < α/β, α/β < x1 <∞;

(b) f(x, x) is a strictly decreasing function in (−∞, α/β);

(c) let u, v ∈ (−∞, α/β), then the function f(u, v) is a strictly decreasing function in u and a
strictly increasing function in v.

Proof. We prove (a) only. The proofs of (b) and (c) are omitted here. In view of (2.7) and (2.18),
we have

x2 =
γ + β −

√
T

2(δ + 1)
<

γ + β
2(δ + 1)

<
γ

δ + 1
. (2.21)

From (2.8) and (2.21), we have α − β x2 > 0 and so x2 < α/β. Also, in view of (2.7) and (2.18),
we have

0 <
α − β x1

γ − (δ + 1)x1
= x1 =

γ + β +
√
T

2(δ + 1)
≥
γ + β +

√
(γ + β)2 − 4β(γ − β)
2(δ + 1)

=
γ + β +

√
(γ − β)2 + 4β2

2(δ + 1)
>
γ + β +

√
(γ − β)2

2(δ + 1)
=

γ

δ + 1
,

(2.22)
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and so γ − x1(δ + 1) < 0. Consequently, α − βx1 < 0 which implies that x1 > α/β. The proof is
completed.

Theorem 2.7. Assume that the conditions (2.7) and (2.18) hold. Let {xn} be any solution of (2.6). If
xi ∈ (−∞, α/β], for i = −k,−k + 1, . . . ,−1 and if x0 ∈ [0, α/β], then

0 ≤ xn ≤
α

β
, n = 1, 2, . . . . (2.23)

That is the solution {xn} is bounded.

Proof. By part (c) of Lemma 2.6, we have

0 =
α − β·(α/β)
γ − δx0 − x−k

≤ x1 =
α − βx0

γ − δx0 − x−k
≤

α − β·0
γ − δ·0 − α/β =

α

γ − α/β =
βα

γβ − α. (2.24)

From (2.18), we deduce that γβ − α > β2, and then we have

0 ≤ x1 ≤
α

β
. (2.25)

Also, we have

0 =
α − β·(α/β)

γ − δx1 − x−k+1
≤ x2 =

α − βx1

γ − δx1 − x−k+1
≤

α − β·0
γ − δ·0 − α/β <

α

β
. (2.26)

Thus,

0 ≤ x2 ≤
α

β
. (2.27)

The result (2.23) now follows by induction. The proof is completed.

3. Global attractivity

In this section, we will study the global attractivity of positive solutions of (2.6). We show that
the positive equilibrium x of (2.6) is a global attractor with a basin that depends on certain
conditions imposed on the coefficients.

Theorem 3.1. Assume that conditions (2.7) and (2.18) hold. Then, the equilibrium point x2 of (2.6)
is globally asymptotically stable.

Proof. In Section 2, we have shown under the assumptions (2.7) and (2.18) that the equilibrium
x2 is locally asymptotically stable. It remains to prove that the equilibrium x2 is a global
attractor. To this end, set I = limn→∞ infxn and S = limn→∞ supxn which by Theorem 2.7 exist
and are positive numbers. Then, from (2.6) we deduce that

S ≤
α − βS

γ − (δ + 1)I
, I ≥

α − βI
γ − (δ + 1)S

. (3.1)

Consequently, we have

−α + (γ + β)S ≤ (δ + 1)IS ≤ −α + (γ + β)I, (3.2)

from which it follows that I = S. Thus, the the proof of Theorem 3.1 is completed.
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Lemma 3.2 (see [8]). Consider the difference equation

xn+1 = f
(
xn, xn−k

)
, k ≥ 1, n = 0, 1, 2, . . . . (3.3)

Let [a, b] be some interval of real numbers, and assume that f : [a, b] × [a, b]→[a, b] is a continuous
function satisfying the following properties:

(a) f(u, v) is a nonincreasing function in u, and a nondecreasing function in v;

(b) if (m,M) ∈ [a, b] × [a, b] is a solution of the system

m = f(M,m), M = f(m,M), (3.4)

then,m =M.

Then, (3.3) has a unique equilibrium point x and every solution of (3.3) converges to x.

Theorem 3.3. Assume that conditions (2.7) and (2.18) hold. Then, the positive equilibrium x of (2.6)
is a global attractor with a basin S∗ = [0, α/β]k+1.

Proof. For u, v ∈ [0, α/β], set

f(u, v) =
α − βu

γ − δu − v . (3.5)

We claim that f : [0, α/β] × [0, α/β]→[0, α/β]. In fact, if we set a = 0, b = α/β, then

f(b, a) =
α − βb

γ − δb − a =
α − α

γ − δ(α/β) = 0 = a, (3.6)

and in view of the condition (2.18), we have

f(a, b) =
α − βa

γ − δa − b =
α

γ − α/β =
βα

γβ − α <
α

β
= b. (3.7)

Since f(u, v) is decreasing in u and increasing in v, it follows that a ≤ f(u, v) ≤ b, for all
u, v ∈ [a, b], which implies that our assertion is true. On the other hand, conditions (a) and
(b) of Lemma 3.2 are clearly true. Let {xn} be a solution of (2.6) with the initial conditions
(x−k, x−k+1, . . . , x−1, x0) ∈ S. By Lemma 3.2, we have limn→∞xn = x. The proof is completed.

Theorem 3.4. Assume that the conditions (2.7) and (2.18) hold. Then, the positive equilibrium x of
(2.6) is a global attractor with a basin S∗ = (−∞, α/β]k × [0, α/β].

Proof. Let {xn} be a solution of (2.6) with the initial conditions x−k, x−k+1, . . . , x−1, x0 ∈ S∗. Then,
by Theorem 2.7, we have

xn ∈
[

0,
α

β

]

, n = 1, 2, . . . . (3.8)

By Theorem 3.3, we have limn→∞xn+k = x and so limn→∞xn = x. The proof is completed.
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Theorem 3.5. Assume that conditions (2.7) hold with 0 ≤ δ < 1. Also, assume that k is an odd positive
integer. Then, the necessary and sufficient condition for (2.6) to have positive solutions of prime period
two is that

β(γ − β) < α <
(γ − β)

4
[
γ + 3β − δ(γ − β)

]
. (3.9)

Proof. First, suppose that there exist distinctive positive solutions of prime period two,

. . . , P,Q, P,Q, . . . , (3.10)

of the difference equation (2.6).
If k is odd, then xn+1 = xn−k. It follows from the difference equation (2.6) that

P =
α − βQ

γ − δQ − P , Q =
α − βP

γ − δP −Q. (3.11)

Consequently, we obtain

P +Q = γ − β, PQ =
α − β(γ − β)

1 − δ . (3.12)

Thus, we deduce that

α > β(γ − β), 0 ≤ δ < 1. (3.13)

Now it is clear that P, Q are two positive distinct real roots of the quadratic equation

t2 − (P +Q)t + PQ = 0. (3.14)

Therefore, we have

(γ − β)2 >
4
[
α − β(γ − β)

]

1 − δ . (3.15)

From (3.13) and (3.15) we obtain condition (3.9). Conversely, suppose that the condition (3.9)
is valid. Then, we deduce that (3.13) and (3.15) hold. Consequently, there exists two positive
distinct real numbers P and Q such that

P =
γ − β

2
−
√
K

2
, (3.16)

Q =
γ − β

2
+

√
K

2
, (3.17)

where K > 0 is given by

K = (γ − β)2 − 4
[
α − β(γ − β)

1 − δ

]

, 0 ≤ δ < 1. (3.18)
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Thus, P and Q given by (3.16) and (3.17) represent two positive distinct real roots of the
quadratic equation (3.14). Now, we are going to prove that P and Q given by (3.16) and (3.17)
are positive solutions of prime period two of the difference equation (2.6). To this end, we
assume that x−k = P, x−k+1 = Q, . . . , x−1 = P, x0 = Q. We wish to prove that x1 = P and x2 = Q.

It follows from the difference equation (2.6) and the formulas (3.16) and (3.17) that

x1 =
α − βx0

γ − δx0 − x−k

=
α − βQ

γ − δQ − P

=
2α − β

[
γ − β +

√
K
]

2γ − δ
[
γ − β +

√
K
]
−
[
γ − β −

√
K
]

=
β
[
2α/β − (γ − β) −

√
K
]

2γ − (1 + δ)(γ − β) + (1 − δ)
√
K

=
(

β

1−δ

) {
2α/β−(γ − β)−

√
K
}{

2γ/(1 − δ)−
(
(1+δ)/(1 − δ)

)
(γ−β)−

√
K
}

{
2γ/(1 − δ)−

(
(1+δ)/(1−δ)

)
(γ−β)+

√
K
}{

2γ/(1−δ)−
(
(1+δ)/(1−δ)

)
(γ−β)−

√
K
}.

(3.19)

After some reduction, we deduce that

x1 =
(

β

1 − δ

)[
α(1 − δ) + β2][γ − β −

√
K
]
/β(1 − δ)

2
[
α(1 − δ) + β2

]
/(1 − δ)2

=
γ − β −

√
K

2
= P. (3.20)

Similarly, we can show that,

x2 =
α − βx1

γ − δx1 − x−k+1
=

α − βP
γ − δP −Q = Q. (3.21)

By using the induction, we have

xn = P, xn+1 = Q, ∀n ≥ −k. (3.22)

Thus, the difference equation (2.6) has positive solutions of prime period two. Hence, the proof
of Theorem 3.5 is completed.

Theorem 3.6. Assume that the conditions (2.7) hold. If k is even, then (2.6) has no positive solutions
of prime period two.

Proof. Suppose that there exists distinctive positive solutions of prime period two,

. . . , P,Q, P,Q, . . . , (3.23)

of the difference equation (2.6).
If k is even, then xn = xn−k. It follows from the difference equation (2.6) that

P =
α − βQ

γ − (δ + 1)Q
, Q =

α − βP
γ − (δ + 1)P

. (3.24)

From which we have (γ − β)(P − Q) = 0 and by using (2.7), we deduce that P = Q. This is a
contradiction. Thus, the proof of Theorem 3.6 is completed.
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4. The case α = 0

Secondly, we study the rational recursive sequence

xn+1 =
−βxn

γ − δxn − xn−k
, n = 0, 1, 2, . . . , (4.1)

where δ ≥ 0, γ, β > 0 are real numbers and k ∈ {1, 2, . . .}. By putting xn = βyn, (4.1) yields

yn+1 =
−yn

A − δyn − yn−k
, n = 0, 1, 2, . . . , (4.2)

where A = γ/β. Equation (4.2) has two equilibrium points

y1 = 0, y2 =
1 +A
1 + δ

. (4.3)

The linearized equation associated with (4.2) about the equilibria yi, (i = 1, 2) is

zn+1 +
1 − δyi

A − (δ + 1)yi
zn −

yi
A − (δ + 1)yi

zn−k = 0. (4.4)

The characteristic equation of (4.4) about the equilibrium y2 = (1 +A)/(1 + δ) is

λk+1 +
[
δA − 1
δ + 1

]

λk +
A + 1
δ + 1

= 0. (4.5)

Now, we deduce from (4.5) the following results:

(a) if δ = 0, and since A + 1 > 1, then the equilibrium y2 is unstable (see [7]);

(b) if A > δ > 0, and since (A + 1)/(δ + 1) > 1, then the equilibrium y2 is unstable;

(c) if A = δ, then
∣
∣
∣
∣
δA − 1
δ + 1

∣
∣
∣
∣ +

∣
∣
∣
∣
δ + 1
δ + 1

∣
∣
∣
∣ = |δ − 1| + 1. (4.6)

Now, we have the following results from case (c): (i) if A = δ > 1, then the equilibrium y2 is
unstable; (ii) if 0 < A = δ < 1, then the equilibrium y2 is unstable; (iii) if A = δ = 1, then the
linearized stability analysis fails;

(d) if 1 < A < δ,
∣
∣
∣
∣
δA − 1
δ + 1

∣
∣
∣
∣ +

∣
∣
∣
∣
A + 1
δ + 1

∣
∣
∣
∣ =

δA − 1
δ + 1

+
A + 1
δ + 1

=
A(δ + 1)
δ + 1

= A > 1, (4.7)

and hence the equilibrium y2 is unstable;

(e) if A < δ ≤ 1,
∣
∣
∣
∣
δA − 1
δ + 1

∣
∣
∣
∣ +

∣
∣
∣
∣
A + 1
δ + 1

∣
∣
∣
∣ =

1 − δA + 1 +A
δ + 1

≥ 1 +
A

2
(1 − δ) ≥ 1, (4.8)

and hence the equilibrium y2 is unstable.
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The characteristic equation of (4.4) about the equilibrium y1 = 0 is

λk+1 +
1
A
λk = 0. (4.9)

This equation has two roots

λ1 = 0, λ2 = − 1
A
. (4.10)

Now, we deduce from (4.10) the following results:

(i) if A > 1, then the equilibrium y1 = 0 is locally asymptotically stable (see Figure 3);

(ii) if 0 < A < 1, then the equilibrium y1 = 0 is unstable (see Figure 4);

(iii) if A = 1, then the linearized stability analysis fails.

In the following results, we assume that A ≥ δ + 2, where δ ≥ 0.
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Lemma 4.1. Assume that the initial conditions y−i ∈ [−1, 1], for i = 1, 2, . . . , k and y0 ∈ [−1, 0].
Then, {y2n−1} is nonnegative and monotonically decreasing to zero, while {y2n} is nonpositive and
monotonically increasing to zero.

Proof. Suppose that y−i ∈ [−1, 1], for i = 1, 2, . . . , k and y0 ∈ [−1, 0]. Clearly, 0 ≤ y1 ≤ 1 and
−1 ≤ y2 ≤ 0. By induction, we can see that 0 ≤ y2n−1 ≤ 1 and −1 ≤ y2n ≤ 0 for n ≥ 1.

If A ≥ δ + 2, δ ≥ 0 we have

y2n−1

y2n+1
=
(
A − δy2n − y2n−k

)(
A − δy2n−1 − y2n−k−1

)
> 1, (4.11)

and hence

y2n−1 > y2n+1, n = 1, 2, . . . . (4.12)

Similarly, we can show that y2n < y2n+2, n = 1, 2, . . . . The proof of Lemma 4.1 is completed.

On using arguments similar to that used in Lemma 4.1, we can easily prove the following
lemma.

Lemma 4.2. Assume that the initial conditions y−i ∈ [−1, 1], for i = 1, 2, . . . , k and y0 ∈ [0, 1].
Then, {y2n−1} is nonpositive and monotonically increasing to zero, while {y2n} is nonnegative and
monotonically decreasing to zero.

Corollary 4.3. The equilibrium point y1 = 0 of (4.1) is a global attractor with a basin S∗ = [−1, 1]k+1.

Theorem 4.4. The equilibrium point y1 = 0 of (4.1) is a global attractor with a basin S∗ = (−∞, 1]k ×
[(−A + 1)/(δ + 1), (A − 1)/(δ + 1)], where δ ≥ 0.

Proof. Assuming that the initial conditions y−k, y−k+1, . . . , y−1, y0 ∈ S∗. If A ≥ δ + 2, with δ ≥ 0,
then we deduce that

−1 ≤ (1 −A)/(1 + δ)
A − δy0 − y−k

≤ y1 =
−y0

A − δy0 − y−k
≤ (A − 1)/(δ + 1)
(A − 1)/(δ + 1)

= 1,

−1 ≤ −1
A − δy1 − y−k+1

≤ y2 =
−y1

A − δy1 − y−k+1
≤ 1
A − δ − 1

≤ 1.

(4.13)

By induction, it follows that yi ∈ [−1, 1] for i ≥ 1. Thus, the proof of Theorem 4.4 follows from
Corollary 4.3.

Theorem 4.5. If A > 1, then the equilibrium point y1 = 0 of (4.2) is globally asymptotically stable.

Finally, on using arguments similar to that used in Theorems 3.5 and 3.6, we can prove
easily the following results.
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Theorem 4.6. Assume that δ and A > 1. If k is an odd positive integer, then the necessary and
sufficient condition for (4.2) to have positive solutions of prime period two is that (see Figure 5)

(A − 1)δ > A + 3. (4.14)

Theorem 4.7. If k is an even positive integer, then (4.2) has no positive solutions of prime period two
(see Figure 6).
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