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1. Introduction

The theory of ultradistributions introduced by Beurling [1] was to find an appropriate con-
text for his work on almost holomorphic extensions. Beurling proved that ultradistributions
are limits of holomorphic functions in the upper and lower half-planes. Björck [2] studied and
expanded the theory of Beurling on ultradistributions to extend the work of Hörmander [3] on
existence, nonexistence, and regularity of solutions of constant coefficient linear partial differ-
ential equations.

The Beurling-Björck space Sw, as defined in [2], consists of C∞ functions such that the
functions and their Fourier transform jointly with all their derivatives decay ultrarapidly at
infinity.

In this paper, we introduce the space Sw1,w2 of C
∞ functions such that the functions and

their Fourier transform jointly with all their derivatives decay ultrarapidly at infinity. More-
over, we give a characterization of the space Sw1,w2 and its dual S′

w1,w2
.

The main difference between the Beurling-Björck space Sw and the space Sw1,w2 is that
the decay of the functions in Sw and their Fourier transform are measured by the same
submultiplicative function ekw, k ≥ 0. Whereas the decay of the functions in Sw1,w2 and
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their Fourier transform are measured by two different submultiplicative functions ekw1 and
ekw2 , k ≥ 0.

This paper is organized in three sections. In Section 2, we give preliminary definitions
and results and introduce the space Sw1,w2 . In Section 3, we give a topological characterization
of the space Sw1,w2 without conditions on the derivatives. In Section 4, we use the topological
characterization of the space Sw1,w2 that is given in Section 3 to prove a representation theorem
for functionals in the dual space S′

w1,w2
of the space Sw1,w2 .

The symbols C∞, C∞
0 , Lp, and so forth indicate the usual spaces of functions defined on

R
n, with complex values. We denote by |·| the Euclidean norm on R

n, while ‖·‖∞ indicates the
norm in the space L∞ . When we do not work on the general Euclidean space R

n, we will write
Lp(R), and so forth as appropriate. Partial derivatives will be denotedby ∂α, where α is a multi-
index (α1, . . . , αn). If it is necessary to indicate on which variables we are taking the derivative,
we will do so by attaching subindexes. Wewill use the standard abbreviations |α| = α1+· · · +αn,
xα = xα1

1 , . . . , xαn
n . With α ≤ β, we mean that αj ≤ βj for every j. The Fourier transform of

a function g will be denoted by F(g) or ĝ and it will be defined as
∫

Rn e
−2πixξg(x)dx. The

inverse Fourier transform is then F−1(g) =
∫

Rn e
2πixξg(ξ)dξ. The letter C will indicate a positive

constant, that may be different at different occurrences. If it is important to indicate that a
constant depends on certain parameters, we will do so by attaching subindexes to the constant.
Wewill not indicate the dependence of constants on the dimension n or other fixed parameters.

2. Preliminary definitions and results

In this section, we give definitions and results which we will use later.

Definition 2.1 (see [2]). With Mc, we denote the space of functions w : R
n → R of the form

w(x) = Ω(|x|), where

(1) Ω : [0,∞) → [0,∞) is increasing, continuous, and concave,

(2) Ω(0) = 0,

(3)
∫

R
Ω((t)/(1 + t2))dt < ∞,

(4) Ω(t) ≥ a + b ln (1 + t) for some a ∈ R and some b > 0.

Standard classes of functions w inMc are given by

w(x) =
∣

∣x
∣

∣

d for 0 < d < 1, w(x) = p ln
(

1 + |x|) for p > 0. (2.1)

Remark 2.2. Let us observe for future use that if we take an integerN > (n/b), then

CN =
∫

Rn

e−Nw(x)dx < ∞, ∀w ∈ Mc, (2.2)

where b is the constant in condition 4 of Definition 2.1.

The following lemma was observed in [2] without proof. Our proof is an adaptation of
[4, Proposition 4.6].

Lemma 2.3. Conditions 1 and 2 in Definition 2.1 imply that w is subadditive for all w ∈ Mc.
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Proof. Let 0 < k < 1. Since Ω is increasing, we obtain

w(x + y) ≤ Ω

(

k

k
|x| + 1 − k

1 − k
|y|

)

≤ max

{

Ω

(

|x|
k

)

,Ω

(

|y|
1 − k

)}

.

(2.3)

Since Ω is concave on [0,∞) and Ω(0) = 0, we have

Ω
(

k

k
|x|

)

≥ kΩ
( |x|

k

)

, Ω
( |y|
1 − k

)

≥ 1
1 − k

Ω
(

|y|
)

. (2.4)

If we take

k =
Ω(|x|)

Ω(|x|) + Ω(|y|) , (2.5)

then we have

w(x + y) ≤ max

{

Ω
( |x|

k

)

,Ω
( |y|
1 − k

)

}

≤ w(x) +w(y).

(2.6)

This completes the proof of Lemma 2.3.

We now recall a topological characterization of the Beurling-Björck spaceSw of test func-
tions for tempered ultradistributions.

Theorem 2.4 (see [5]). Given w ∈ Mc, the space Sw can be described both as a set and as a topology
by

Sw = {ϕ : R
n
C : ϕ is continuous and for all k = 0, 1, 2, . . . , pk,0(ϕ) < ∞, pk,0 ◦ F(ϕ) < ∞}, (2.7)

where pk,0(ϕ) = ‖ekwϕ‖∞ and pk,0 ◦ F(ϕ) = ‖ekwϕ̂‖∞.

We observe that Sw becomes the Schwartz space S when

w(x) = ln (1 + |x|). (2.8)

For α, β > 0, the Gelfand-Shilov space Sβ
α of type S is characterized in [6] by the space of all C∞

functions ϕ : R
n → C for which the seminorms

∥

∥ek|x|
1/α
ϕ
∥

∥

∞ ,
∥

∥em|x|1/β ϕ̂
∥

∥

∞ (2.9)

are finite for some k,m ∈ N0.
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Definition 2.5. Given w1, w2 ∈ Mc, the space Sw1,w2 is the space of all C
∞ functions ϕ : R

n → C

for which the seminorms

pk,m(ϕ) = sup
|β|≤m

∥

∥ekw1∂βϕ
∥

∥

∞ , πk,m(ϕ) = sup
|β|≤m

∥

∥ekw2∂βϕ̂
∥

∥

∞ (2.10)

are finite, for k,m ∈ N0 and β ∈ N
n
0 .

We can assign to Sw1,w2 a structure to Fréchet space by means of the countable family of
seminorms

S =
{

pk,m,πk,m

}∞
k,m=0. (2.11)

Since pk,m(ϕ) < ∞ for all k = 0, 1, 2, . . . , ϕ is integrable, so ϕ̂ is well defined and the
formulation of the condition πk,m(ϕ)makes sense for all k = 0, 1, 2, . . . .

The space Sw1,w2 , equipped with the family of seminorms

S =
{

pk,m, πk,m : k,m ∈ N0
}

, (2.12)

is a Fréchet space.
We observe that the space Sw1,w2 becomes the Beurling-Björck space Sw1 , whenw1 = w2.

Whenw2(x) = ln (1+ |x|), the space of C∞ functions with compact support D is dense subspace
ofSw1,w2 for allw1 ∈ Mc. The conditions imposed on the functionw assure that the spaceSw1,w2

satisfies the properties expected from a space of testing functions. For instance, the operators of
differentiation and multiplication by xα are continuous from Sw1,w2 into themselves, the space
Sw1,w2 is a topological algebra under pointwise multiplication and convolution. Unfortunately,
the Fourier transformation onSw1,w2 is not a topological isomorphism fromSw1,w2 into itself for
somew1,w2 ∈ Mc.For Example, if we takew1(x) = |x|1/2,w2(x) = ln (1+ |x|), and f ∈ D \Dw1 ,
then f ∈ Sw1,w2 but ̂f/∈Sw1,w2 ; see [1, 2].

Theorem 2.6 (Riesz representation theorem [7]). Given a functional L in the topological dual of the
space C0, there exists a unique regular complex Borel measure μ such that

L(ϕ) =
∫

Rn

ϕdμ. (2.13)

Moreover, the norm of the functional L is equal to the total variation |μ| of the measure μ. Conversely,
any such measure μ defines a continuous linear functional on C0.

We conclude this section with Lemma 2.7 [8], the version of which is due to
Hadamard [9], see also [10].

Lemma 2.7 (see [8, 10]). Let f : R → R be a continuous function with continuous derivatives of order
≤ 2. Assume that there exist P,Q ≥ 0 such that

∣

∣f(x)
∣

∣ ≤ P,
∣

∣f ′′(x)
∣

∣ ≤ Q,
(2.14)

for all x ∈ R. Then
∣

∣f ′(x)
∣

∣ ≤
√

2PQ (2.15)

for all x ∈ R.
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3. Topological characterization of the space Sw1,w2

In this section, we present the following characterization of the space Sw1,w2 , which imposes
no conditions on the derivative.

Theorem 3.1. Given w1, w2 ∈ Mc, the space Sw1,w2 can be described as a set and as a topology by

Sw1,w2 =
{

ϕ : R
n −→ C : ϕ is continuous and for all k = 0, 1, 2, . . . , pk, 0(ϕ) < ∞, πk,0(ϕ)<∞

}

,
(3.1)

where pk,0(ϕ) = ‖ekw1ϕ‖∞ , πk,0(ϕ) = ‖ekw2ϕ̂‖∞.

Proof. Let us denote by Bw1,w2 the space defined in (3.1). The conditions pk,0(ϕ) and πk,0(ϕ)
imply the smoothness of ϕ and ϕ̂. The space Bw1,w2 becomes a Fréchet space with respect to the
family of norms

B =
{

pk,0, πk,0
}∞
k=0. (3.2)

From these definitions, it is clear that Sw1,w2 ⊆ Bw1,w2 and that the inclusion is continuous. To
prove the converse, we use the induction on |β| and the general idea of Landau’s inequality.
Fix ϕ ∈ Bw1,w2 \ {0}. We want to show that ‖ekw1(x)∂βϕ‖∞ and ‖ekw2(ξ)∂βϕ̂‖∞ are finite, for every
k = 0, 1, 2, . . . and every multi-index β, which is true for all k, when β = 0. We assume that it is
true for all k, when |β| ≤ m, and we want to prove it for all k and for |β| = m + 1. We start with
‖ekw1∂βϕ‖∞. Assume that β = (β1 + 1, β2, . . . , βn) with β1 + β2 + · · · + βn = m, m = 0, 1, 2, . . . . We
also indicate β′ = (β1, β2, . . . , βn), ∂

βϕ = ∂x1∂
β′ϕ, fx′(x1) = ∂β

′
ϕ(x1, x

′) for x′ = (x2, . . . , xn) fixed,
∂βϕ(x) = f ′

x′(x1). Moreover, if h/=0, we have

fx′
(

x1 + h
)

= fx′
(

x1
)

+ f ′
x′
(

x1
)

h +
1
2
f ′′
x′
(

y
)

h2, (3.3)

where y is a number between x1 and x1 + h. Thus,

∣

∣f ′
x′(x1)

∣

∣ ≤ |fx′(x1 + h)| + |fx′(x1)|
|h| +

|h|
2
∣

∣f ′′
x′(y)

∣

∣. (3.4)

We can write

∣

∣ekw1(x1+h,x′)fx′(x1 + h)
∣

∣ ≤ ∣

∣ekw1(x1+h,x′)∂β
′
ϕ(x1, x

′)
∣

∣ ≤ qk,m(ϕ),
∣

∣ekw1(x)fx′(x)
∣

∣ ≤ qk,m(ϕ).
(3.5)

If we take h with the same sign as x1, we have

w1(x) ≤ w1
(

x1 + h, x′). (3.6)

That is,

∣

∣fx′(x1 + h)
∣

∣ +
∣

∣fx′(x1)
∣

∣ ≤ Cmpk,m(ϕ)e−kw1(x). (3.7)
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To estimate f ′′
x′(y) = ∂x1∂

βϕ(y), we write

∣

∣∂x1∂
βϕ(y)

∣

∣ =
∣

∣

∣

∣

∂x1

̂

̂∂βϕ(y)
∣

∣

∣

∣

≤
∫

Rn

∣

∣2πiξ1(2πiξ)
βϕ̂(ξ)

∣

∣dξ

≤ Cβ,m

∫

Rn

(1 + |ξ|)m+2e−rw2(ξ)erw2(ξ)|ϕ̂(ξ)|dξ,
(3.8)

where r > (m + n + 2)/b is an integer and b is the constant in condition 4 of Definition 2.1:
∣

∣

∣∂x1∂
βϕ(y)

∣

∣

∣ ≤ Cmπr,0(ϕ). (3.9)

Thus, we have
∣

∣

∣∂x1∂
βϕ(y)

∣

∣

∣ ≤ Cmπr,0(ϕ), (3.10)

that is,

∣

∣

∣∂βϕ(x)
∣

∣

∣ ≤ Cm

[

1
t
pk,m(ϕ)e−kw1(x) + tπr,0(ϕ)

]

(3.11)

for all t > 0. As a function of t, the right side of (3.11) has a global minimum at

t =
(

pk,m(ϕ)e−kw1(x)
)1/2(

πr,0(ϕ)
)−1/2 . (3.12)

Thus, we obtain the inequality

∣

∣∂βϕ(x)
∣

∣ ≤ Cm

(

pk,m(ϕ)
)1/2(

πr,0(ϕ)
)1/2

e(−k/2)w1(x) , (3.13)

that is,

∣

∣ekw1(x)∂βϕ(x)
∣

∣ ≤ Cm

(

p2k,m(ϕ)
)1/2(

πr,0(ϕ)
)1/2 . (3.14)

An argument, similar to the one leading to (3.14), produces

∣

∣ekw2(ξ)∂βϕ̂(ξ)
∣

∣ ≤ Cm

(

π2k,m(ϕ)
)1/2(

pr,0(ϕ)
)1/2 . (3.15)

Combining (3.14), (3.15), the inductive hypothesis implies that ϕ ∈ Sw. The open mapping
theorem can provide once again the continuity of the inclusion. However, solving the recursive
inequalities (3.14), (3.15) , we obtain

∣

∣ekw(x)∂βϕ(x)
∣

∣ ≤ Cm

(

p2m+1k,0(ϕ)
)2−m−1(

πr,0(ϕ)
)1−2−m−1

,
∣

∣ekw(ξ)∂βϕ̂(ξ)
∣

∣ ≤ Cm

(

π2m+1k,0 ◦ F(ϕ)
)2−m−1(

pr,0(ϕ)
)1−2−m−1

.
(3.16)

This completes the proof of Theorem 3.1.
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When w1(x) = w2(x), the characterization of Sw1,w2 given by Theorem 3.1 reduces to
the characterization of Beurling-Björck space Sw1 given by Theorem 2.4. In particular, when
w1(x) = w2(x) = ln (1 + |x|), the characterization of Sw1,w2 reduces to the characterization of
Schwartz space S.

Remark 3.2. The Fourier transform is a topological isomorphism between Sw1,w2 and Sw2,w1 .
As a consequence, the Fourier transform is also a topological isomorphism between the dual
spaces S′

w1,w2
and S′

w2,w1
.

Note that the dual spaces S′
w1,w2

and S′
w2,w1

are assigned to the weak topologies. For dif-
ferent pairs of admissible functions, the space Sw1,w2 has the following embedding properties.

Lemma 3.3. For every w1 < w′
1 and w2 < w′

2, one has

Sw′
1,w

′
2
↪→ Sw1,w2 . (3.17)

Lemma 3.4. For α, β > 1, one has S|x|1/α,|x|1/β ⊆ S
β
α. As a consequence, (S

β
α)

′ ⊆ S′
|x|1/α,|x|1/β .

4. A representation theorem for functionals in the space S′
w1,w2

From Theorem 3.1, we can write

Sw1,w2 =
{

ϕ : R
n −→ C : ϕ is continuous and for all k = 0, 1, 2, . . . ,Nk, (ϕ) < ∞}

, (4.1)

whereNk(ϕ) = ‖ekw1ϕ‖∞ + ‖ekw2ϕ̂‖∞.

Theorem 4.1. Given L : Sw1,w2 → C, the following statements are equivalent:

(i) L ∈ S′
w1,w2

;

(ii) there exist two regular complex Borel measures μ1 and μ2 of finite total variation and k ∈
{0, 1, 2, . . . } such that

L = ekw1μ1 + F[ekw2μ2

]

, (4.2)

in the sense of S′
w1,w2

.

Proof. (i)⇒(ii). Given L ∈ S′
w1,w2

, according to (4.1) there exist k and C so that

L(ϕ) ≤ C
(∥

∥ekw1ϕ
∥

∥

∞ +
∥

∥ekw2ϕ̂
∥

∥

∞
)

(4.3)

for all ϕ ∈ Sw1,w2 . Moreover, the map

Sw1,w2 −→ C0 × C0,

ϕ −→
(

ekw1ϕ, ekw2ϕ̂
) (4.4)

is well defined, linear, continuous, and injective. Let R be the range of this map, on which we
define the map

l1(f, g) = L(ϕ), (4.5)
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where f = ekw1ϕ, g = ekw2ϕ̂ for a unique ϕ ∈ Sw1,w2 . The map l1 : R → C is linear and
continuous. By the Hahn-Banach theorem, there exists a functional L1 in the topological dual
(C0 × C0)

′ of C0 × C0 such that ‖L1‖ = ‖l1‖ and the restriction of L1 to R is l1.
Since the spaces (C0 × C0)

′ and C′
0 × C′

0 are isomorphic as Banach spaces, we can write
L1(f, g) = L1(f, 0)+L1(0, g). Using Theorem 2.6, there exist regular complex Borel measures μ1
and μ2 of finite total variation such that

L1(f, g) =
∫

Rn

fdμ1 +
∫

Rn

gdμ2 (4.6)

for all (f, g) ∈ C0 × C0. If (f, g) ∈ R, then we conclude that

L(ϕ) =
∫

Rn

ekw1ϕdμ1 +
∫

Rn

ekw2ϕ̂dμ2 (4.7)

for all ϕ ∈ Sw1,w2 . In the sense of S′
w1,w2

,

L = ekw1μ1 + F[ekw2μ2

]

. (4.8)

(ii)⇒(i). If μ1 and μ2 are two regular complex Borel measures satisfying (ii) and ϕ ∈ Sw1,w2 ,
then

L(ϕ) =
∫

Rn

ekw1ϕdμ1 +
∫

Rn

ekw2ϕ̂dμ2. (4.9)

This implies that

|L(ϕ)| ≤
∣

∣

∣

∣

∣

∫

Rn

ekw1ϕdμ1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Rn

ekw2ϕ̂dμ2

∣

∣

∣

∣

∣

≤ ∣

∣μ1

∣

∣

(

R
n)
∥

∥ekw1ϕ
∥

∥

∞ + |μ2|
(

R
n)
∥

∥ekw2ϕ̂
∥

∥

∞

≤ C
(∥

∥ekw1ϕ
∥

∥

∞ +
∥

∥ekw2ϕ̂
∥

∥

∞
)

.

(4.10)

It may be noted that μ1 and μ2, employed to obtain the above inequality, are of finite total
variations. This completes the proof of Theorem 4.1.

Remark 4.2. When w1(x) = w2(x) = (1 + |x|)k, (4.2) becomes

L =
(

1 + |x|)kμ1 + F[(1 + |ξ|)kμ2

]

, (4.11)

which gives a representation for the tempered distributions.

As consequence of Lemma 3.4, we can view the functionals in (Sb
a)

′ as functionals in the
space S′

w1,w2
. Then as a result we can characterize (Sβ

α)
′ using Theorem 4.1.

Corollary 4.3. Let α, β > 1. Then any L ∈ (Sβ
α)

′ can be written as

L = ek|x|
1/α
μ1 + F

[

ek|ξ|
1/β
μ2

]

(4.12)

which characterizes the dual space (Sβ
α)

′ .



Hamed M. Obiedat et al. 9

References

[1] A. Beurling,Quasi-Analyticity and General Distributions, Lectures 4 and 5, Multigraphed Lecture Notes,
American Mathematical Society Summer Institute, Stanford, Calif, USA, 1961.

[2] G. Björck, “Linear partial differential operators and generalized distributions,” Arkiv för Matematik,
vol. 6, pp. 351–407, 1966.
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