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1. Introduction

In recent years, the delayed cellular neural networks (DCNNs) have been extensively studied
because of their immense potentials of application perspective in different areas such as pattern
recognition, optimization, and signal and image processing [1–3]. Hence, they have been the
object of intensive analysis by numerous authors, and some interesting results on the existence
and stability of periodic and almost periodic solutions have been obtained [4–12]. To our
knowledge, few authors have considered global stability of periodic solutions for the neural
networkswith bounded and unbounded time-varying delays. In theory and application, global
stability of periodic solutions of DCNNs is of great importance since the global stability of
equilibrium points can be considered as a special case of periodic solution with zero period [8].
Hence, in this paper, we will study the existence and global exponential stability of periodic
solutions of the following general neural networks with time-varying delays:

x′
i(t) = −ai

(
t, xi(t)

)
+

n∑

j=1

[

aij(t)fj
(
xj(t)

)
+ bij(t)fj

(
xj

(
t − τij(t)

))

+ cij(t)
∫ t

−∞
kij(t − s)gj

(
xj(s)

)
ds

]

+ Ii(t), i = 1, 2, . . . , n,

(1.1)
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where xi(t) is the state of neuron, i = 1, 2, . . . , n, A = (aij)n×n, B = (bij)n×n, and C = (cij)n×n
are connection matrices, I = (I1, I2, . . . , In)

T is the input function, and f(x) = (f1(x1), f2(x2),
. . . , fn(xn))

T is the activation function of the neurons.
DCNNs in [4–12] and the references cited therein are special cases of (1.1). In particular,

when ai(t, xi(t)) = aixi(t), aij(t) = aij , bij(t) = bij , cij(t) = cij , Ii(t) = Ii, ai, aij , bij , cij , Ii
are constants, the authors of [9] considered the existence and global exponential stability
for (1.1) with periodic impulses. The methods used in [9] are Mawhin’s coincidence degree
theorem [13] and Lyapunov functions. In [14], by usingMawhin’s coincidence degree theorem
[13], the authors investigated the global existence of positive periodic solutions of mutualism
systems with bounded and unbounded time-varying delays, and some sufficient conditions
are obtained. In [12], the authors considered (1.1) when ai, aij , bij , cij are constants.

We assume what follows.

(H1) aij(t), bij(t), cij(t), τij(t), Ii(t) are continuous ω-periodic functions, and ai(t, xi(t)) are
continuous ω-periodic in the first variable. τij(t) ≥ 0, i, j = 1, 2, . . . , n.

(H2) There exist positive constants ai and ai such that (ai(t, u) − ai(t, v))(u − v) > 0, and
ai|u| ≤ |ai(t, u)| ≤ ai|u|, for all t, u, v ∈ R, i = 1, 2, . . . , n.

(H3) fj , gj ∈ C(R,R), j = 1, 2, . . . , n. There are positive constants Lf

j > 0, Lg

j > 0, such that

|gj(x) − gj(y)| ≤ L
g

j |x − y|, |fj(x) − fj(y)| ≤ L
f

j |x − y|, for all x, y ∈ R.

(H4) The delay kernels kij : [0,+∞)→R are continuous, integrable, and satisfy

∫+∞

0

∣∣kij(s)
∣∣ds ≤ βij , i, j = 1, 2, . . . , n. (1.2)

(H5) There exists a constant α0 > 0 such that

∫+∞

0

∣∣kij(s)
∣∣eα0sds ≤ +∞, i, j = 1, 2, . . . , n. (1.3)

The organization of this paper is as follows. In Section 2, we introduce some notations
and definitions, and state some preliminary results needed in later sections. We then study,
in Section 3, the existence of periodic solutions of system (1.1) by using the continuation
theorem of coincidence degree theorem proposed by Gains and Mawhin [13]. In Section 4, by
constructing Lyapunov function we will derive sufficient conditions for the global exponential
stability of the periodic solution of system (1.1). At last, an example is employed to illustrate
the feasible results of this paper.

2. Preliminaries

For convenience, we use aij , bij , cij , Ii to denote the maximums of |aij(t)|, |bij(t)|, |cij(t)|, |Ii(t)|,
respectively. We also use symbols τ = max{τij(t) : t ∈ [0, ω], i, j = 1, 2, . . . , n}, x =
(x1, x2, . . . , xn)

T to denote a column vector, in which the symbol (T) denotes the transpose of a
vector. En denotes the identity matrix of size n. A matrix or vector D ≥ 0 means that all entries
of D are greater than or equal to zero (resp., D > 0). For matrices or vectors D and E, D ≥ E
(resp., D > E)means that D − E ≥ 0 (resp., D − E > 0).
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The initial condition φ = (φ1, . . . , φn)
T of (1.1) is of the form

xi(s) = φi(s), s ∈ (−∞, 0], i = 1, . . . , n, (2.1)

where φi(s), i = 1, 2, . . . , n, are continuous ω-periodic solutions.

Definition 2.1. Let x∗(t) be an ω-periodic solution of (1.1)with initial value φ∗ = (φ∗
1, . . . , φ

∗
n)

T ∈
C((−∞, 0];Rn). If there exist constants α > 0 and P > 1 such that for every solution x(t) of (1.1)
with initial value φ ∈ C((−∞, 0];Rn),

∣∣xi(t) − x∗
i (t)

∣∣ ≤ P
∥∥φ − φ∗∥∥e−αt, ∀t > 0, i = 1, 2, . . . , n, (2.2)

where ‖φ − φ∗‖ = sups≤0max1≤i≤n|φi(s) − φ∗
i (s)|, then x∗(t) is said to be globally exponentially

stable.

Definition 2.2 (see [15, 16]). A real n×nmatrix F = (fij)n×n is said to be a nonsingularM-matrix
if fij ≤ 0, i, j = 1, 2, . . . , n, i /= j, and F−1 ≥ 0, where F−1 denotes the inverse of F.

Lemma 2.3 (see [15, 16]). Let F = (fij)n×n with fij ≤ 0, i, j = 1, 2, . . . , n, i /= j. Then the following
statements are equivalent:

(1) F is a nonsingularM-matrix,

(2) there exists a vector ηT = (η1, η2, . . . , ηn) > 0 such that ηF > 0,

(3) there exists a vector ξ = (ξ1, ξ2, . . . , ξn)
T > 0 such that Fξ > 0.

Lemma 2.4 (see [16]). Let A ≥ 0 be an n × n matrix and ρ(A) < 1, then there exists a vector
ξ = (ξ1, ξ2, . . . , ξn)

T > 0 such that (En −A)ξ > 0, where ρ(A) denotes the spectral radius of A.

To end this section, we introduce Mawhin’s continuation theorem [13, page 40] as
follows.

Consider an abstract equation in a Banach space X,

Lx = λNx, λ ∈ (0, 1), (2.3)

where L : DomL ∩ X→X is a Fredholm operator with index-zero, and λ is a parameter. Let
P and Q denote two projectors, P : DomL ∩ X→KerL and Q : X→X/ImL such that ImP =
KerL, KerQ = ImL.

Lemma 2.5. Let X be a Banach space. Suppose that L : DomL ∩ X→X is a Fredholm operator with
index-zero, let Ω ⊂ X be an open bounded set, and let N : X→X be a continuous operator which is
L-compact on Ω. Moreover, assume that the following conditions are satisfied:

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx /=λNx,

(b) for each x ∈ ∂Ω ∩ KerL, QNx/= 0,

(c) deg(QN,Ω ∩ KerL, 0)/= 0.

Then, Lx = Nx has at least one solution in Ω ∩DomL.



4 International Journal of Mathematics and Mathematical Sciences

3. Existence of periodic solutions

Theorem 3.1. Let (H1)–(H4) hold. Assume that the following condition is satisfied:
(H6) there exists a vector ηT = (η1, . . . , ηn) > 0 such that

ηT = (η1, . . . , ηn) = ηT(En − Γ) > 0, (3.1)

where Γ = (γij)n×n, γij = a−1
i (aijL

f

j + bijL
f

j + cijβijL
g

j ), i, j = 1, 2, . . . , n.
Then, (1.1) has at least one ω-periodic solution.

Proof. For convenience, we introduce the following notations:

Gi(t) = −ai

(
t, xi(t)

)
+

n∑

j=1

[
aij(t)fj

(
xj(t)

)
+ bij(t)fj

(
xj

(
t − τij(t)

))

+ cij(t)
∫ t

−∞
kij(t − s)gj

(
xj(s)

)
ds

]
+ Ii(t), i = 1, 2, . . . , n.

(3.2)

In order to use Lemma 2.5, we take X = {x(t) ∈ C(R,Rn) : x(t +ω) = x(t), t ∈ R}; then X
is a Banach space with the norm

‖x‖ = max
{∣∣x1

∣∣
0,
∣∣x2

∣∣
0, . . . ,

∣∣xn

∣∣
0

}
,

∣∣xi

∣∣
0 = sup

t∈[0,ω]

∣∣xi(t)
∣∣, i = 1, 2, . . . , n. (3.3)

Set

Lx = x′, Px = Qx =
1
ω

∫ω

0
x(t)dt, x ∈ X,

Nx =
(
G1(t), G2(t), . . . , Gn(t)

)T
, x ∈ X.

(3.4)

Obviously, KerL = {x | x ∈ X, x = h, h ∈ Rn}, ImL = {x | x ∈ X,
∫ω
0 x(s)ds = 0}, and

dimKerL = n = codim ImL. So, ImL is closed in X. It is easy to show that P and Q are
continuous projectors satisfying ImP = KerL, ImL = KerQ = Im (I − Q). Hence, L is a
Fredholm mapping of index-zero. Furthermore, through an easy computation, we find that
the generalized inverse K−1

P : ImL→KerP ∩ domL of L has the form

K−1
P (x) =

∫ t

0
x(s)ds − 1

ω

∫ω

0

∫ t

0
x(s)dsdt. (3.5)

Thus,

QNx =
(

1
ω

∫ω

0
G1(t)dt, . . . ,

1
ω

∫ω

0
Gn(t)dt

)T

, x ∈ X,

K−1
p (I −Q)Nx =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

∫ t

0
G1(s)ds

...
∫ t

0
Gj(s)ds

...
∫ t

0
Gn(s)ds

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

1
ω

∫ω

0

∫ t

0
G1(s)dsdt

...

1
ω

∫ω

0

∫ t

0
Gj(s)dsdt

...

1
ω

∫ω

0

∫ t

0
Gn(s)dsdt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

(
t

ω
− 1
2

)∫ω

0
G1(s)ds

...
(

t

ω
− 1
2

)∫ω

0
Gj(s)ds

...
(

t

ω
− 1
2

)∫ω

0
Gn(s)ds

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

.

(3.6)
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Clearly, QN and K−1
P (I − Q)N are continuous. Using the Arzela-Ascoli theorem, it is not

difficult to show that QN(Ω), K−1
P (I − Q)N(Ω) are relatively compact for any open bounded

set Ω ⊂ X. Therefore, N is L-compact on Ω for any open bounded set Ω ⊂ X.
Now, we reach the position to search for an appropriate open bounded subset Ω for the

application of Lemma 2.5. Corresponding to the operator equation (2.3), we have

x′
i(t) = λ

{

− ai

(
t, xi(t)

)
+

n∑

j=1

[
aij(t)fj

(
xj(t)

)
+ bij(t)fj

(
xj

(
t − τij(t)

))

+ cij(t)
∫ t

−∞
kij(t − s)gj

(
xj(s)

)
ds

]
+ Ii(t)

}

,

i = 1, 2, . . . , n, λ ∈ (0, 1).

(3.7)

Let x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ X be a solution of system (3.7) for some λ ∈ (0, 1). Then,

for any i = 1, 2, . . . , n, xi are all continuously differentiable. Thus, there exist ti ∈ [0, ω], i =
1, 2, . . . , n, such that |xi(ti)| = maxt∈[0,ω]|xi(t)|. Hence, x′

i(ti) = 0, i = 1, 2, . . . , n. From (3.7), we
have

ai

(
ti, xi

(
ti
))

=
n∑

j=1

[
aij

(
ti
)
fj
(
xj

(
ti
))

+ bij
(
ti
)
fj
(
xj

(
ti − τij

(
ti
)))

+ cij
(
ti
)
∫ ti

−∞
kij

(
ti − s

)
gj
(
xj(s)

)
ds

]
+ Ii

(
ti
)
, i = 1, 2, . . . , n.

(3.8)

In view of (H1)–(H4), we have

ai

∣∣xi

(
ti
)∣∣ ≤ ∣∣ai

(
ti, xi

(
ti
))∣∣

≤
n∑

j=1

[∣∣aij

(
ti
)∣∣(∣∣fj

(
xj

(
ti
)) − fj(0)

∣∣ +
∣∣fj(0)

∣∣)

+
∣∣bij

(
ti
)∣∣(∣∣fj

(
xj

(
ti − τij

(
ti
))) − fj(0)

∣∣ +
∣∣fj(0)

∣∣)

+
∣∣cij

(
ti
)∣∣
∫ ti

−∞

∣∣kij
(
ti − s

)∣∣(∣∣gj
(
xj(s)

) − gj(0)
∣∣ +

∣∣gj(0)
∣∣)ds

]
+
∣∣Ii

(
ti
)∣∣

≤
n∑

j=1

[
aijL

f

j

∣∣xj

(
ti
)∣∣ + bijL

f

j

∣∣xj

(
ti − τij

(
ti
))∣∣

+ cij

∫ ti

−∞

∣∣kij
(
ti − s

)∣∣(L
g

j

∣∣xj(s)
∣∣ +

∣∣gj(0)
∣∣)ds +

(
aij + bij

)∣∣fj(0)
∣∣
]
+ Ii

≤
n∑

j=1

(
aijL

f

j + bijL
f

j + cijβijL
g

j

)∣∣xj

(
tj
)∣∣

+
n∑

j=1

(
aij

∣∣fj(0)
∣∣ + bij

∣∣fj(0)
∣∣ + cijβij

∣∣gj(0)
∣∣) + Ii, i = 1, 2, . . . , n.

(3.9)
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Set Hi =
∑n

j=1 a
−1
i (aij |fj(0)| + bij |fj(0)| + cijβij |gj(0)|) + a−1

i Ii. Clearly, (3.9) implies that

∣∣xi

(
ti
)∣∣ ≤

n∑

j=1

γij
∣∣xj

(
tj
)∣∣ +Hi, i = 1, 2, . . . , n. (3.10)

Thus,
(
En − Γ

)(∣∣x1
(
t1
)∣∣,

∣∣x2
(
t2
)∣∣, . . . ,

∣∣xn

(
tn
)∣∣)T ≤ (

H1,H2, . . . ,Hn

)T := H; (3.11)

together with (H6), we have

min
{
η1, η2, . . . , ηn

}(∣∣x1
(
t1
)∣∣ +

∣∣x2
(
t2
)∣∣ + · · · + ∣∣xn

(
tn
)∣∣)

≤ η1

∣∣x1
(
t1
)∣∣ + η2

∣∣x2
(
t2
)∣∣ + · · · + ηn

∣∣xn

(
tn
)∣∣

= ηT(En − Γ
)(∣∣x1

(
t1
)∣∣,

∣∣x2
(
t2
)∣∣, . . . ,

∣∣xn

(
tn
)∣∣)T ≤ ηTH.

(3.12)

Therefore,

∣∣xi

∣∣
0 =

∣∣xi

(
ti
)∣∣ ≤ ηTH

min
{
η1, η2, . . . , ηn

} : ν, i = 1, 2, . . . , n. (3.13)

Again from (H6), it follows from Lemma 2.3 that En − Γ is a nonsingular M-matrix, and there
exists a vector ξ = (ξ1, ξ2, . . . , ξn)

T > 0 such that (En − Γ)ξ > 0, which implies that we can choose
a constant d > 1 such that ξ = (ξ1, ξ2, . . . , ξn)

T = dξ and ξi = dξi > ν, i = 1, 2, . . . , n, and
(
En − Γ

)
ξ = d

(
En − Γ

)
ξ > H. (3.14)

We take

Ω =
{
x(t) ∈ X : −ξ < x(t) < ξ, ∀t ∈ R

}
, (3.15)

which satisfies Condition (a) of Lemma 2.5. If x(t) ∈ ∂Ω ∩ kerL, then x(t) is a constant vector
in Rn, and there exists some i ∈ {1, 2, . . . , n} such that |xi| = ξi. We claim that

∣∣(QNx
)
i

∣∣ > 0, x ∈ ∂Ω ∩ kerL. (3.16)

By way of contradiction, suppose that |(QNx)i| = 0; then there exists some t∗ ∈ [0, ω] such that

−ai

(
t∗, xi

)
+

n∑

j=1

[
aij

(
t∗
)
fj
(
xj

)
+ bij

(
t∗
)
fj
(
xj

)
+ cij

(
t∗
)
∫ t∗

−∞
kij

(
t∗ − s

)
gj
(
xj(s)

)
ds

]
+ Ii

(
t∗
)
= 0,

(3.17)

which implies that

aiξi = ai

∣∣xi

∣∣ ≤ ∣∣ai

(
t∗, xi

)∣∣

=

∣∣∣∣∣

n∑

j=1

[
aij

(
t∗
)
fj
(
xj

)
+ bij

(
t∗
)
fj
(
xj

)
+ cij

(
t∗
)
∫ t∗

−∞
kij

(
t∗ − s

)
gj
(
xj(s)

)
ds

]
+ Ii

(
t∗
)
∣∣∣∣∣

≤
n∑

j=1

(
aijL

f

j + bijL
f

j + cijβijL
g

j

)∣∣xj

∣∣ +
n∑

j=1

(
aij

∣∣fj(0)
∣∣ + bij

∣∣fj(0)
∣∣ + cijβij

∣∣gj(0)
∣∣) + Ii

≤
n∑

j=1

(
aijL

f

j + bijL
f

j + cijβijL
g

j

)
ξj +

n∑

j=1

(
aij

∣∣fj(0)
∣∣ + bij

∣∣fj(0)
∣∣ + cijβij

∣∣gj(0)
∣∣) + Ii;

(3.18)
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hence

ξi ≤
n∑

j=1

γijξj +Hi. (3.19)

This implies that ((En − Γ)ξ)i ≤ Hi, which contradicts (3.14). Therefore, (3.16) holds, and hence,
Condition (b) of Lemma 2.5 is satisfied.

Furthermore, we define a continuous function W : Ω ∩ KerL × [0, 1]→X by

W(x, μ) = μdiag
( − a1,−a2, . . . ,−an

)
x + (1 − μ)QNx, (3.20)

for all x ∈ Ω ∩ KerL = Ω ∩ Rn and μ ∈ [0, 1]. It follows that

(
W(x, μ)

)
i = −μaixi + (1 − μ)

1
ω

∫ω

0
Gi(t)dt. (3.21)

If x(t) ∈ ∂Ω ∩ KerL, then x(t) is a constant vector in Rn, and there exists some i ∈
{1, 2, . . . , n} such that |xi| = ξi. We claim that

∣∣(W(x, μ)
)
i

∣∣ > 0, x ∈ ∂Ω ∩ kerL, μ ∈ [0, 1]. (3.22)

By way of contradiction, suppose that |(W(x, μ))i| = 0; then there exists some t̃ ∈ [0, ω] such
that

− μaixi + (1 − μ)

{

− ai

(
t̃, xi

)
+

n∑

j=1

[
aij( t̃ )fj

(
xj

)
+ bij( t̃ )fj

(
xj

)

+ cij( t̃ )
∫ t̃

−∞
kij( t̃ − s)gj

(
xj(s)

)
ds

]
+ Ii( t̃ )

}

= 0,

(3.23)

that is,

μ
(
ai

(
t̃, xi

) − aixi

) − ai

(
t̃, xi

)

= −(1 − μ)

{
n∑

j=1

[
aij( t̃ )fj

(
xj

)
+ bij( t̃ )fj

(
xj

)
+ cij( t̃ )

∫ t̃

−∞
kij( t̃ − s)gj

(
xj(s)

)
ds

]
+ Ii( t̃ )

}

.

(3.24)

Now, we will consider the following two cases.

Case 1. If xi > 0, from (H2), we have

ai( t̃, xi) > 0, ai( t̃, xi) − aixi ≤ 0. (3.25)

Then, from (3.24), we have

ai

(
t̃, xi

) ≤ (1 − μ)

{
n∑

j=1

[
aij( t̃ )fj

(
xj

)
+ bij( t̃ )fj

(
xj

)
+ cij( t̃ )

∫ t̃

−∞
kij( t̃ − s)gj

(
xj(s)

)
ds

]
+ Ii( t̃ )

}

,

(3.26)



8 International Journal of Mathematics and Mathematical Sciences

which implies that

aiξi = ai

∣∣xi

∣∣ ≤ ∣∣ai

(
t̃, xi

)∣∣

≤
∣
∣
∣
∣
∣

n∑

j=1

[
aij( t̃ )fj

(
xj

)
+ bij( t̃ )fj

(
xj

)
+ cij( t̃ )

∫ t̃

−∞
kij( t̃ − s)gj

(
xj(s)

)
ds

]
+ Ii( t̃ )

∣
∣
∣∣
∣

≤
n∑

j=1

(
aijL

f

j + bijL
f

j + cijβijL
g

j

)∣∣xj

∣∣ +
n∑

j=1

(
aij

∣∣fj(0)
∣∣ + bij

∣∣fj(0)
∣∣ + cijβij

∣∣gj(0)
∣∣) + Ii

≤
n∑

j=1

(
aijL

f

j + bijL
f

j + cijβijL
g

j

)
ξj +

n∑

j=1

(
aij

∣∣fj(0)
∣∣ + bij

∣∣fj(0)
∣∣ + cijβij

∣∣gj(0)
∣∣) + Ii.

(3.27)

Hence,

ξi ≤
n∑

j=1

γijξj +Hi; (3.28)

this implies that ((En − Γ)ξ)i ≤ Hi, which contradicts (3.14). Therefore, (3.22) holds.

Case 2. If xi < 0, from (H2), we have

ai

(
t̃, xi

)
< 0, ai

(
t̃, xi

) − aixi ≥ 0. (3.29)

Then, from (3.24), we have

ai

(
t̃, xi

) ≥ (1 − μ)

{
n∑

j=1

[
aij( t̃ )fj

(
xj

)
+ bij( t̃ )fj

(
xj

)
+ cij( t̃ )

∫ t̃

−∞
kij( t̃ − s)gj(xj)ds

]
+ Ii( t̃ )

}

.

(3.30)

The later proof is similar to that of Case 1. We can also show that (3.22) holds. It follows
that W(x, μ)/= 0 for x ∈ ∂Ω ∩ KerL, μ ∈ [0, 1]. Hence, by homotopy invariance theorem and
ai > 0, i = 1, 2, . . . , n, we obtain deg{QN,Ω ∩ kerL, 0} = deg{(−a1x1,−a2x2, . . . ,−anxn)

T ,Ω ∩
kerL, 0}/= 0 for x ∈ ∂Ω ∩ KerL. Till now, we have proved that Ω satisfies all conditions of
Lemma 2.5. Therefore, (1.1) has a periodic solution x∗(t). This completes the proof.

Corollary 3.2. Let (H1)–(H4) hold. Assume that En − Γ is a nonsingular M-matrix, then (1.1) has at
least one ω-periodic solution, where Γ is defined as above.

Corollary 3.3. Let (H1)–(H4) hold. Assume that ρ(Γ) < 1, then (1.1) has at least one ω-periodic
solution, where Γ is defined as above.

Proof. Obviously, Γ ≥ 0. By ρ(Γ) < 1 and from Lemma 2.4, there exists a vector ξ =
(ξ1, ξ2, . . . , ξn)

T > 0 such that (En − A)ξ > 0. The remaining part of the proof is the same as
that of Theorem 3.1.
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4. Global exponential stability of periodic solutions

In this section, we will construct some suitable Lyapunov functionals to derive sufficient
conditions which ensure that (1.1) has a unique ω-periodic solution, and all solutions of (1.1)
exponentially converge to its unique ω-periodic solution.

Theorem 4.1. Assume that (H1)–(H6) hold and
(H7) |ai(t, u) − ai(t, v)| ≥ ai|u − v|, for all t, u, v ∈ R, i = 1, 2, . . . , n, where ai, i = 1, 2, . . . , n,

are the positive constants of Hypothesis (H2). Then, (1.1) has exactly one ω-periodic solution, which is
globally exponentially stable.

Proof. By Theorem 3.1, there exists an ω-periodic solution x∗(t) = (x∗
1(t), x

∗
2(t), . . . , x

∗
n(t))

T of
(1.1). Suppose that x(t) is an arbitrary solution of (1.1). Set z(t) = (z1(t), z2(t), . . . , zn(t))

T =
x(t) − x∗(t). Then,

z′i(t) = −di

(
t, zi(t)

)
+

n∑

j=1

[
aij(t)wj

(
zj(t)

)
+ bij(t)wj

(
zj
(
t − τij(t)

))

+ cij(t)
∫ t

−∞
kij(t − s)uj

(
zj(s)

)
ds

]
, i = 1, 2, . . . , n,

(4.1)

where

di

(
t, zi(t)

)
= ai

(
t, zi(t) + x∗

i (t)
) − ai

(
t, x∗

i (t)
)
,

wj

(
zj(t)

)
= fj

(
zj(t) + x∗

j (t)
) − fj

(
x∗
j (t)

)
,

wj

(
zj
(
t − τij(t)

))
= fj

(
zj
(
t − τij(t)

)
+ x∗

j

(
t − τij(t)

)) − fj
(
x∗
j

(
t − τij(t)

))
,

uj

(
zj(t)

)
= gj

(
zj(t) + x∗

j (t)
) − gj

(
x∗
j (t)

)
.

(4.2)

From (H6), it follows from Lemma 2.3 that En − Γ is a nonsingular M-matrix, and there
exists a vector ξ = (ξ1, ξ2, . . . , ξn)

T > 0 such that (En − Γ)ξ > 0. Then,

−aiξi +
n∑

j=1

ξj
(
aijL

f

j + bijL
f

j + cijβijL
g

j

)
< 0, i = 1, 2, . . . , n. (4.3)

Set

hi(λ) =
(
λ − ai

)
ξi +

n∑

j=1

ξj

(
aijL

f

j + eλτbijL
f

j + cijL
g

j

∫+∞

0

∣∣kij(s)
∣∣eλsds

)
, i = 1, 2, . . . , n. (4.4)

Clearly, hi(λ), i = 1, 2, . . . , n, are continuous functions on [0, α0], where α0 is the positive
constant of Hypothesis (H5). Since

hi(0) = −aiξi +
n∑

j=1

ξj

(
aijL

f

j + bijL
f

j + cijL
g

j

∫+∞

0

∣∣kij(s)
∣∣ds

)

≤ −aiξi +
n∑

j=1

ξj
(
aijL

f

j + bijL
f

j + cijβijL
g

j

)
< 0,

(4.5)
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we can choose a positive constant α ∈ (0, α0] such that

hi(α) =
(
α − ai

)
ξi +

n∑

j=1

ξj

(
aijL

f

j + eατbijL
f

j + cijL
g

j

∫+∞

0
|kij(s)|eαsds

)
< 0, i = 1, 2, . . . , n.

(4.6)

Now, we choose a positive constant d such that

dξie
−αt > 1, for t ∈ (−∞, 0], i = 1, 2, . . . , n. (4.7)

Define a Lyapunov function V = (V1, V2, . . . , Vn)
T by Vi = eαt|zi(t)|, i = 1, 2, . . . , n. In view

of (4.1), we obtain

d+Vi(t)
dt

= eαt sgn zi

{

− di

(
t, zi(t)

)
+

n∑

j=1

[
aij(t)wj

(
zj(t)

)
+ bij(t)wj

(
zj
(
t − τij(t)

))

+ cij(t)
∫ t

−∞
kij(t − s)uj

(
zj(s)

)
ds

]}

+ αeαt
∣∣zi(t)

∣∣

≤ eαt
{
(
α − ai

)∣∣zi(t)
∣∣ +

n∑

j=1

[
aijL

f

j

∣∣zj(t)
∣∣ + bijL

f

j

∣∣zj
(
t − τij(t)

)∣∣

+ cijL
g

j

∫ t

−∞

∣
∣kij(t − s)

∣∣∣∣zj(s)
∣∣ds

]}

=
(
α − ai

)
eαt

∣∣zi(t)
∣∣ +

n∑

j=1

[
aijL

f

j e
αt
∣∣zj(t)

∣∣ + eατij(t)bijL
f

j e
α(t−τij(t))∣∣zj

(
t − τij(t)

)∣∣

+ cijL
g

j

∫ t

−∞

∣∣kij(t − s)
∣∣eα(t−s)eαs

∣∣zj(s)
∣∣ds

]

≤ (
α − ai

)
Vi(t) +

n∑

j=1

[
aijL

f

j Vj(t) + eατbijL
f

j Vj

(
t − τij(t)

)

+ cijL
g

j

∫ t

−∞

∣∣kij(t − s)
∣∣eα(t−s)Vj(s)ds

]
, i = 1, 2, . . . , n.

(4.8)

From (4.7), we have

dξi
∥∥φ − φ∗∥∥e−αt >

∥∥φ − φ∗∥∥ ≥ ∣∣zi(t)
∣∣, for t ∈ (−∞, 0], i = 1, 2, . . . , n, (4.9)

which implies that

∣∣zi(t)
∣∣ < dξi

∥∥φ − φ∗∥∥e−αt, for t ∈ (−∞, 0], i = 1, 2, . . . , n, (4.10)

where ‖φ − φ∗‖ is defined as that in Definition 2.1.
We claim that

Vi(t) =
∣∣zi(t)

∣∣eαt < dξi
∥∥φ − φ∗∥∥, i = 1, 2, . . . , n, ∀t > 0. (4.11)
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Contrarily, there must exist i0 ∈ {1, 2, . . . , n} and t̃ > 0 such that

Vi0( t̃ ) = dξi0
∥
∥φ − φ∗∥∥,

Vθ( t̃ ) ≤ dξθ
∥∥φ − φ∗∥∥, θ = 1, 2, . . . , i0 − 1, i0 + 1, . . . , n,

Vi(t) < dξi
∥∥φ − φ∗∥∥, ∀t ∈ (−∞, t̃ ), i = 1, 2, . . . , n.

(4.12)

Together with (4.8) and (4.12), we obtain

0 ≤ d+(Vi0( t̃ ) − dξi0
∥
∥φ − φ∗∥∥)

dt
=
d+Vi0( t̃ )

dt

≤ (
α−ai0

)
Vi0( t̃ )+

n∑

j=1

[
ai0jL

f

j Vj( t̃ )+eατbi0jL
f

j Vj

(
t̃−τi0j( t̃ )

)
+ci0jL

g

j

∫ t̃

−∞

∣
∣ki0j( t̃−s)

∣
∣eα(t̃−s)Vj(s)ds

]

≤ (
α − ai0

)
dξi0

∥∥φ − φ∗∥∥ +
n∑

j=1

dξj
∥∥φ − φ∗∥∥

(
ai0jL

f

j + eατbi0jL
f

j + ci0jL
g

j

∫+∞

0

∣∣ki0j(s)
∣∣eαsds

)
.

(4.13)

Hence,

0 ≤ (
α − ai0

)
ξi0 +

n∑

j=1

ξj

(
ai0jL

f

j + eατbi0jL
f

j + ci0jL
g

j

∫+∞

0

∣
∣ki0j(s)

∣
∣eαsds

)
, (4.14)

which contradicts (4.6). Therefore, (4.11) holds. It follows that

∣∣zi(t)
∣∣ < dξi

∥∥φ − φ∗∥∥e−αt, t > 0, i = 1, 2, . . . , n. (4.15)

Let M = max1≤i≤n{dξi + 1}. Then, from (4.15), we get

∣∣xi(t) − x∗
i (t)

∣∣ =
∣∣zi(t)

∣∣ ≤ M
∥∥φ − φ∗∥∥e−αt, ∀t > 0, i = 1, 2, . . . , n. (4.16)

In view of Definition 2.1, the ω-periodic solution x∗(t) of system (1.1) is globally exponentially
stable. This completes the proof.

Corollary 4.2. Let (H1)–(H7) hold. Assume that En − Γ is a nonsingular M-matrix or ρ(Γ) < 1.
Then, system (1.1) has exactly one ω-periodic solution, which is globally exponentially stable, where Γ
is defined as that in (H6).

Remark 4.3. As a special case, ai(t, xi(t)) = ai(t)xi(t) and ai(t) > 0. Let ai = min{|ai(t)| : t ∈
[0, ω]}, ai = max{|ai(t)| : t ∈ [0, ω]}, then La

i = ai, i = 1, 2, . . . , n. Obviously, (H2) and (H7)
hold.

Remark 4.4. When ai(t, xi(t)) = cixi(t), ci are constants, and cij ≡ 0, i, j = 1, 2, . . . , n, one can
easily know that [11, Theorems 1 and 2] are direct corollaries of Theorems 3.1 and 4.1 of this
paper, respectively. Moreover, we need not the following assumption:

(H0) fj(0) = 0, gj(0) = 0, 0 ≤ τ ′ij(t) < 1, i, j = 1, 2, . . . , n.
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Very recently, Zhou and Hu [12] considered the global exponential periodicity and
stability of the following cellular neural networks:

x′
i(t) = −dixi(t) +

n∑

j=1

[
aijfj

(
xj(t)

)
+ bijfj

(
xj

(
t − τij(t)

))

+ cij

∫ t

−∞
kij(t − s)gj

(
xj(s)

)
ds

]
+ Ii(t), i = 1, 2, . . . , n,

(4.17)

where di > 0, aij , bij , cij , i, j = 1, 2, . . . , n, are constants, Ii(t +ω) = Ii(t), i, j = 1, 2, . . . , n, τ ′ij(t) <
1, and 0 ≤ τij(t) ≤ τ . The assumptions in [12] on the delay kernels kij of (4.17) are as follows.

(F1) The delay kernels kij : R+→R+ are real-valued nonnegative continuous functions and∫+∞
0 kij(s)ds = 1, i, j = 1, 2, . . . , n.

(F2)
∫+∞
0 skij(s)ds ≤ +∞, i, j = 1, 2, . . . , n.

(F3) There exists a positive number μ such that
∫+∞
0 eμskij(s)ds ≤ +∞, i, j = 1, 2, . . . , n.

Obviously, (4.17) is a special case of (1.1). Moreover, (3.1) of Theorem 3.1 and (3.15) of Theorem
3.2 in [12] are special cases of (4.3) in this paper, that is, ξ = (1, 1, . . . , 1)T , Lf

j = L
g

j , and βij = 1.
So, [12, Theorems 3.1 and 3.2] are special cases of Theorem 4.1 in this paper. To summarize, the
results of this paper are completely new and generalize the results of [4–12] and the references
cited therein.

5. Application

In this section, we give an example to illustrate that our results are feasible. Consider the
following simple DCNNs with time-varying delays:

x′
i(t) = −ai

(
t, xi(t)

)
+

2∑

j=1

[
aij(t)fj

(
xj(t)

)
+ bij(t)fj

(
xj

(
t − τij(t)

))

+ cij(t)
∫ t

−∞
kij(t − s)gj

(
xj(s)

)
ds

]
+ Ii(t), i = 1, 2,

(5.1)

where fj(x) = gj(x) = |x|, ai(t, x) = 2x + sin x, Ii(t) = sin 40πt, τij(t) = (cos 20πt)2, kij(t) =
sin te−t, and aij(t) = bij(t) = cij(t) = (1/12)cos 40πt, i, j = 1, 2. Then, we have

ω =
1
20

, L
f

j = L
g

j = 1, ai = 1, ai = 3, βij = 1, aij = bij = cij =
1
12

, i, j = 1, 2. (5.2)

Hence,

Γ =

⎛

⎜
⎜
⎝

1
4

1
4

1
4

1
4

⎞

⎟
⎟
⎠ . (5.3)
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We take ηT = (η1, η2) = (1, 1), then

η = ( 1 1 )

⎛

⎜⎜
⎝

3
4

−1
4

−1
4

3
4

⎞

⎟⎟
⎠ =

(
1
2

1
2

)
> ( 0 0 ). (5.4)

It is easy to check that all the conditions needed in Theorem 4.1 are satisfied. Therefore, (5.1)
has a unique global exponential 1/20-periodic solution.

Remark 5.1. Because ai(t, xi(t)) is not linear about xi(t), thus none of the results in [4–12, 14]
can be applied to (5.1). This implies that the results of this paper are new.
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