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1. Introduction

LetX be a nonempty set, and let C be a covering class of subsets ofX such that ∅, X ∈ C, with
C closed under finite intersections, and let ν be a finite, finitely subadditive outer measure
defined for all subsets ofX. In [1, 2], we considered a finite, finitely subadditive outermeasure
ν defined by means of ν. The outer measure ν generalized results obtained by [3] for the case
of a 0-1 valued, finitely additive measure μ defined on the algebra of subsets generated by a
lattice of subsetsL ofX. In investigating properties of ν, the hypothesis that ν be submodular
is often present. We determine conditions for ν to be submodular.

We also consider for a finite, finitely subadditive outer measure ν and covering class
C under the hypothesis that C ⊂ Sν, the finite, finitely additive measure μ = ν/A(L) ∈ M(L),
where L = L(C) is the lattice generated by C. There are several set functions associated with
μ and ν, namely, ν′, μ′, μi, ρ, ρ

′ and it is shown that the inequality ρ′ ≤ μi ≤ ρ ≤ ν ≤ μ′ ≤ ν′

always holds for all subsets of X. We determine when an equality of all these set functions
holds on L. This is useful since for instance it allows one to conclude that μ is an L-regular
measure onA(L). Once again, the condition of submodularity plays an essential role.
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Lastly, we consider the general problem of constructing a finite, finitely subadditive
outer measure from an arbitrary family, B, of subsets of X, with ∅, X ∈ B and B closed
under finite unions, and a nonnegative, finite set function τ defined on B, with τ(∅) = 0.
Assuming that τ is finitely subadditive on B, the function λ(E) = inf{τ(B)/E ⊂ B, B ∈ B} for
E ⊂ X is a finite, finitely subadditive outer measure defined for all subsets of X. We obtain a
characterization of those sets E ⊂ X that are λ-measurable. This provides us with a condition
for the sets of B to be λ-measurablewithout requiring that λ be submodular.

2. Background and notation

We introduce the necessary outer measure, and covering class definitions, and note some
known properties that we shall need.

The definitions and notations are standard and are consistent with those found in, for
example, [1, 4–6]. We collect the ones we need and some of their properties for the reader’s
convenience.

Throughout this section and the rest of the paper, X will denote a nonempty abstract
set. For E ⊂ X, E′ will denote the complement of E. The power set of X will be denoted by
P(X). We will be concerned with covering classes of subsets of X. By a covering class, we will
always mean a nonempty class C of subsets of X such that ∅, X ∈ C and such that for any
E ⊂ X, there is a finite family of sets C1, C2, . . . , Cn ∈ C with E ⊂ ⋃n

i=1Ci. We always assume
that C is closed under finite intersections. We define L = L(C) to be the lattice generated
by C. L(C) is the set of all finite unions of sets from C. The algebra generated by L is A(L).
It is known that A(L) = A(C), the algebra generated by C. The set of complements of the
members of C is denoted by C′.

Definition 2.1. A covering class C is said to coallocate itself if whenever C,C1, C2 ∈ C, and
C ⊂ C′

1 ∪ C′
2, there are sets A,B ∈ C with C = A ∪ B and A ⊂ C′

1, B ⊂ C′
2.

Definition 2.2. A covering class C is said to be normal if for anyA,B ∈ CwithA ∩B = ∅, there
exist C,D ∈ Cwith A ⊂ C′, B ⊂ D′, and C′ ∩D′ = ∅.

Definition 2.3. Let C1 and C2 be covering classes with C1 ⊂ C2. C1 is said to coseparate C2 if
whenever B1, B2 ∈ C2, B1 ∩ B2 = ∅, there exist A1, A2 ∈ C1 with B1 ⊂ A′

1, B2 ⊂ A′
2, and

A′
1 ∩A′

2 = ∅.

It is known that if a covering class coallocates itself, then it is a normal covering class.
Let ν be a finite, finitely subadditive outer measure defined for all subsets of X and let

C be a covering class of the subsets of X. In general, there are several set functions that we
can associate with this outer measure ν. For E ⊂ X, we define ρ(E) = ν(X) − ν(E′). ρ is finite
valued and in general is not an inner measure. Conditions when ρ is an inner measure have
been thoroughly investigated in [4, 5]. We also define a set function ν′ by

ν′(E) = inf
{
ν
(
C′)/E ⊂ C′, C ∈ C} for E ⊂ X, (2.1)

where ν′ is always a finite, finitely subadditive outer measure, and so it has associated with
it a ρ′, which may be expressed as

ρ′(E) = sup
{
ρ(C)/C ⊂ E, C ∈ C}, E ⊂ X. (2.2)
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It is always true that ρ′ ≤ ρ ≤ ν ≤ ν′ on P(X). When a set function ν is an outer
measure, the family of ν-measurable sets is denoted by Sν, that is,

Sν =
{
M ⊂ X/ν(A) = ν(A ∩M) + ν(A ∩M′), ∀A ⊂ X

}
. (2.3)

It is well known that Sν is an algebra and the restriction of ν to Sν, that is, ν/Sν is
a finite, finitely additive measure. We also define Sν = {E ⊂ X/ν(E) = ρ(E)}. Sν is not in
general an algebra of sets, and we always have Sν ⊂ Sν.

An outer measure ν satisfies Condition A: if ν = ρ′ on C′. ν satisfies Condition B: if
ν(C′) = sup{ν(A)/A ⊂ C′, A ∈ C}, for C ∈ C.

Definition 2.4. Let E be a collection of subsets of X and let f be a real-valued set function
defined on E.

If for all A,B ∈ E with A ∪ B, A ∩ B ∈ E, we have

f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B), (2.4)

then f is said to be submodular on E. If the reverse inequality holds, then f is said to be
supermodular on E. f is said to be modular on E if equality holds. If

f(A ∪ B) ≥ f(A) + f(B) whenever A,B ∈ E with A ∩ B = ∅, (2.5)

then f is said to be superadditive on E.
If E = P(X),we usually say f is submodular.

Let L be a lattice of subsets of X such that ∅, X ∈ L. A(L) denotes the algebra
generated by L, and M(L) denotes the set of all nontrivial, nonnegative, finitely additive
measures onA(L).MR(L) denotes the set of all those μ ∈ M(L)which are L-regular, that is,
those μ ∈ M(L)with the property that for any A ∈ A(L) μ(A) = sup{μ(L)/L ⊂ A, L ∈ L}.

M(L), MR(L), and several other subsets of M(L) have been extensively studied in
the literature; we cite just a few recent papers [4–8]. For μ ∈ M(L), the set function μ′ defined
for E ⊂ X by

μ′(E) = inf
{
μ(L′)/E ⊂ L′, L ∈ L}

(2.6)

is a finite, finitely subadditive outer measure on P(X).We also define the set function μi by

μi(E) = μ′(X) − μ′(E′) = sup
{
μ(L)/L ⊂ E, L ∈ L}

. (2.7)

3. Submodularity of the outer measure ν

In [3], a 0-1 measure μ was used to give necessary and sufficient conditions for a lattice to
be normal, by constructing a 0-1, finitely subadditive outer measure μ. In [1, 2], the measure
μ was replaced by a finite, finitely subadditive outer measure ν, and the outer measure μ
was generalized by a finite, finitely subadditive outer measure ν. However, we now need to
impose a separation property on the covering class, and require submodularity of the outer
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measures. In this section, we focus on the latter set functions, and determine conditions for ν
to be submodular.

We begin by recalling the basic construction and properties of ν. For emphasis, letX be
a nonempty set and let C be a covering class of subsets ofX,with ∅, X ∈ C and C closed under
finite intersections. Let ν be a finite, finitely subadditive outer measure defined for all subsets
of X. Assume that C coallocates itself and the associated set function ρ is finitely subadditive
onP(X). Since ρ is finitely subadditive onP(X), the set function ρ′ is also finitely subadditive
on P(X) (see, e.g., [2]). For E ⊂ X define

ν(E) = inf
{
ρ′(C′)/E ⊂ C′, C ∈ C}, (3.1)

where ν is a finite, finitely subadditive outer measure and

(1) ν = ρ′ on C′,

(2) ρ = ν′ on C,
(3) ρ′ ≤ ρ ≤ ν ≤ ν′ on P(X),

(4) ν satisfies condition A, that is, ν = ρ′ on C′ which is equivalent to ρ = ν′ on C.

(The functions ν′, ρ, ρ′ are the usual ones associated with the outer measure ν as
defined for a general finite, finitely subadditive outer measure in Section 2).

We now determine conditions for ν to be submodular. It will be shown that by
requiring that ν or its associated set functions satisfy certain conditions on either C or C′,
and C is a lattice, the submodularity of ν will follow. The importance of ν being submodular
can be seen from the following known facts [2].

It is known that if ν is submodular then

(1) C ⊂ Sν = Sν,

(2) ν is C regular on L′,where L = L(C),
(3) ν/A(L) ∈ MR(L),

(4) ν ≤ ν on C.

Theorem 3.1. If C is a lattice, and if ν′ is supermodular on C, then ρ′ is submodular on C′ and so ν
is submodular on C′.

Proof. Let C1, C2 ∈ C. Since ν′ is supermodular on the lattice C,

ν′
(
C1 ∪ C2

)
+ ν′

(
C1 ∩ C2

) ≥ ν′
(
C1

)
+ ν′

(
C2

)
. (3.2)

Therefore,

ν′(X) − ν′
(
C1 ∪ C2

)
+ ν′(X) − ν′

(
C1 ∩ C2

) ≤ ν′(X) − ν′
(
C1

)
+ ν′(X) − ν′

(
C2

)
, (3.3)

and so

ρ′
(
C′

1 ∩ C′
2

)
+ ρ′

(
C′

1 ∪ C′
2

) ≤ ρ′
(
C′

1

)
+ ρ′

(
C′

2

)
. (3.4)
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Since ν = ρ′ on C′, the above inequality shows

ν
(
C′

1 ∩ C′
2
)
+ ν

(
C′

1 ∪ C′
2
) ≤ ν

(
C′

1

)
+ ν

(
C′

2
)
. (3.5)

Since C1, C2 ∈ C are arbitrary, this shows that ρ′ is submodular on C′ and ν is submodular
on C′.

Theorem 3.2. Suppose C is a lattice. If ν is submodular on C′, then ν is submodular.

Proof. LetA,B ⊂ X and let ε > 0 be given and arbitrary. By definition of ν there existC1, C2 ∈ C
such that A ⊂ C′

1, B ⊂ C′
2 and

ν(A) ≤ ρ′
(
C′

1

)
< ν(A) +

ε

2
, ν(B) ≤ ρ′

(
C′

2
)
< ν(B) +

ε

2
. (3.6)

Now A ∪ B ⊂ C′
1 ∪ C′

2, A ∩ B ⊂ C′
1 ∩ C′

2,

ν(A ∪ B) + ν(A ∩ B) ≤ ν
(
C′

1 ∪ C′
2
)
+ ν

(
C′

1 ∩ C′
2
)
. (3.7)

Since ν is submodular on C′,

ν
(
C′

1 ∪ C′
2
)
+ ν

(
C′

1 ∩ C′
2
) ≤ ν

(
C′

1

)
+ ν

(
C′

2
)
< ρ′

(
C′

1

)
+ ρ′

(
C′

2
)
. (3.8)

By (3.7), (3.8), (3.6), we have

ν(A ∪ B) + ν(A ∩ B) < ν(A) + ν(B) + ε. (3.9)

Since ε > 0 is arbitrary, (3.9) shows

ν(A ∪ B) + ν(A ∩ B) ≤ ν(A) + ν(B), (3.10)

and so ν is submodular.

Combining Theorems 3.1 and 3.2, we have the following theorem.

Theorem 3.3. If C is a lattice, and if ν′ is supermodular on C then ν is submodular.

We recall that given an outer measure ν, a measurable cover for a set E ⊂ X is a set
M ∈ Sν such that ν(E) = ν(M).

Definition 3.4. Let ν be a finite, finitely subadditive outer measure, and let Sν be the ν-
measurable sets. We define for E ⊂ X

ν0(E) = inf
{
ν(M)/E ⊂ M ∈ Sν

}
, (3.11)

and say that ν is approximately regular if ν = ν0.
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ν0 is a finite, finitely subadditive, submodular outer measure, and ν0(M) = ν(M) for
M ∈ Sν.

It is known that when a finite, finitely subadditive outer measure ν is approximately
regular then ν is submodular [5].

Theorem 3.5. Let C be a covering class and let ν be a finite, finitely subadditive outer measure. If
every C′ ∈ C′ has a measurable cover with respect to ν, then ν is approximately regular and therefore
submodular.

Proof. We first show that the hypothesis that each C′ ∈ C′ has a measurable cover with respect
to ν implies that ν = ν 0 on C′.

Let C′ ∈ C′. We always have for any M ∈ Sν with C′ ⊂ M, ν(C′) ≤ ν(M). Therefore,
by the definition of ν 0(C′),

ν(C′) ≤ ν 0(C′). (3.12)

Now by hypothesis, there exists an M0 ∈ Sν such that C′ ⊂ M0 and ν(C′) = ν(M0). By
monotonicity of ν 0,

ν 0(C′) ≤ ν
(
M0

)
= ν(C′). (3.13)

By (3.12) and (3.13), ν 0(C′) = ν(C′). Since C′ ∈ C′ is arbitrary, ν = ν 0 on C′, so that ν is
approximately regular on C′.

We next show that when ν is approximately regular on C′ implies that ν is
approximately regular.

Let E ⊂ X. Let M ∈ Sν with E ⊂ M. By monotonicity of ν, ν(E) ≤ ν(M). It follows
from the definition that

ν(E) ≤ ν 0(E). (3.14)

Suppose now that C′ ∈ C′ and E ⊂ C′. By monotonicity of ν 0,

ν 0(E) ≤ ν 0(C′) = ν(C′). (3.15)

We always have ν = ρ′ on C′, so (3.15) shows that

ν 0(E) ≤ ρ′(C′). (3.16)

Since C′ is any set from C′ with E ⊂ C′, (3.16) shows that

ν 0(E) ≤ ν(E). (3.17)

By (3.14) and (3.17) , we have ν(E) = ν 0(E) for any E ⊂ X. Therefore, ν = ν 0, so that ν is
approximately regular. It follows from a result in [5] that ν is submodular.
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An important question to consider is whether or not C ⊂ Sν without requiring that ν
is submodular. If this is true, then since Sν is an algebra, A(L(C)) = A(L) ⊂ Sν and thus
ν/A(L) ∈ M(L). Our next theorem shows that this is indeed the case when C is a lattice and
ρ is superadditive on C.

Theorem 3.6. If C is a lattice, and if ρ is superadditive on C, then C ⊂ Sν.

Proof. It suffices to show by a theorem in [2] that each C ∈ C splits all sets of C′ additively
with respect to ν.

Let C ∈ C and A′ ∈ C′. We always have ν(A′) ≤ ν(A′ ∩ C) + ν(A′ ∩ C′). For the reverse
inequality, we proceed as follows. Let ε > 0 be given and arbitrary. There exists B,D ∈ C such
that

B ⊂ A′ ∩ C′, ρ′
(
A′ ∩ C′) − ε

2
< ρ(B),

D ⊂ A′ ∩ B′, ρ′
(
A′ ∩ B′) − ε

2
< ρ(D).

(3.18)

Now B ∩ D ⊂ B ∩ (A′ ∩ B′) = ∅, and B ∪ D ⊂ (A′ ∩ C′) ∪ (A′ ∩ B′) ⊂ A′. Since C is a
lattice, B ∪D ∈ C. We have ν(A′) = ρ′(A′), so by the definition of ρ′(A′), we have

ν
(
A′) > ρ′

(
A′) ≥ ρ(B ∪D). (3.19)

By the superadditivity of ρ on C,

ρ(B ∪D) ≥ ρ(B) + ρ(D). (3.20)

Using (3.19), (3.20), and (3.18), we have

ν
(
A′) > ρ′

(
A′ ∩ C′) + ρ′

(
A′ ∩ B′) − ε. (3.21)

Again, since C is a lattice and A,B,C ∈ C and ν = ρ′ on C′, we have by (3.21)

ν
(
A′) > ν

(
A′ ∩ C′) + ν

(
A′ ∩ B′) − ε. (3.22)

Since A′ ∩ B′ ⊃ A′ ∩ (A ∪ C) = A′ ∩ C, by monotonicity of ν,

ν
(
A′ ∩ B′) > ν

(
A′ ∩ C

)
. (3.23)

Therefore, by (3.22) and (3.23), we get ν(A′) > ν(A′ ∩ C′) + ν(A′ ∩ C) − ε. Since ε > 0
is arbitrary, we get ν(A′) ≥ ν(A′ ∩ C′) + ν(A′ ∩ C). Therefore, ν(A′) = ν(A′ ∩ C) + ν(A′ ∩ C′),
and C splits A′ additively with respect to ν. Since A′ ∈ C′ is arbitrary, it follows that C splits
all sets of C′ additively with respect to ν and so C ∈ Sν. The arbitrariness of C ∈ C shows that
C ⊂ Sν.

Consequently, A(L) ⊂ Sν and so ν/A(L) ∈ M(L).
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4. Equality of ν and its associated set functions on L
In this section, we again consider a covering class C of subsets of a nonempty set X, C
being closed under finite intersections, and such that ∅, X ∈ C, and ν a finite, finitely
subadditive outer measure defined for all subsets of X. We assume that C ⊂ Sν, the set of
ν-measurable sets. Since Sν is an algebra of sets,L = L(C) ⊂ Sν, henceA(L) ⊂ Sν. Therefore,
μ = ν/A(L) ∈ M(L). We consider the following set functions obtained from ν, which are
defined in Section 2: μ′, μi, ρ, ν

′, ρ′. We obtain an inequality between all these set functions
that holds for all subsets of X, and determine conditions for equality of these functions on L.
Equality on L becomes useful, since for instance we will then have μ ∈ MR(L).

Theorem 4.1. ρ′ ≤ μi ≤ ρ ≤ ν ≤ μ′ ≤ ν′ on P(X).

Proof. Let E ⊂ X be fixed but arbitrary. We always have

ρ(E) ≤ ν(E), (4.1)

so it is the other inequalities that we must establish.
Let L ∈ L with E ⊂ L′. The definition of μ′(E) shows that μ′(E) ≤ μ′(L′) = ν(L′). By

monotonicity of ν, we have ν(E) ≤ ν(L′) = μ(L′) whenever E ⊂ L′, L ∈ L. Thus, ν(E) is a
lower bound for the set {μ(L′)/E ⊂ L′, L ∈ L}. Therefore,

ν(E) ≤ μ′(E). (4.2)

Now suppose C ∈ C and E ⊂ C′. Since C ∈ L, μ′(E) ≤ μ(C′) = ν(C′). Therefore, μ′(E) is
a lower bound for the set {ν(C′)/E ⊂ C′, C ∈ C}. The definition of ν′(E) gives

μ′(E) ≤ ν′(E). (4.3)

Next, consider any C ∈ Cwith C ⊂ E. By the definition of μi(E), we have μ(C) ≤ μi(E).
Since μ(C) = ν(C), we have ν(C) ≤ μi(E) for all C ⊂ E with C ∈ C. Since ρ(C) ≤ ν(C), we
have ρ(C) ≤ μi(E) for all C ∈ C, with C ⊂ E. Therefore, μi(E) is an upper bound for the set
{ρ(C)/C ⊂ E, C ∈ C}. The definition of ρ′(E) thus gives

ρ′(E) ≤ μi(E). (4.4)

To show that μi(E) ≤ ρ(E), we argue by contradiction. Thus suppose that ρ(E) < μi(E).
Then there exists an L0 ∈ L such that L0 ⊂ E and ρ(E) < μ(L0) ≤ μi(E). By monotonicity of
ρ, ρ(L0) ≤ ρ(E), so we have ρ(L0) < μ(L0). Now ρ(L0) = ν(X) − ν(L′

0) = μ(X) − μ(L′
0), hence

μ(X) < μ(L0) + μ(L′
0). This contradicts the finite additivity of μ. Therefore, it must be

μi(E) ≤ ρ(E). (4.5)

Combining inequalities (4.1) through (4.5), we have

ρ′(E) ≤ μi(E) ≤ ρ(E) ≤ ν(E) ≤ μ′(E) ≤ ν′(E). (4.6)

Since E ⊂ X was arbitrary, we have shown that ρ′ ≤ μi ≤ ρ ≤ ν ≤ μ′ ≤ ν′ on P(X).
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We now determine conditions when the inequality of Theorem 4.1 will be an equality
on L. Before doing so, we indicate what happens when this is true. We always have that μ′

is submodular. Assuming ρ′ = μi = ρ = ν = μ′ = ν′ on L, suppose L ∈ L. Then μi(L′) =
μ′(X)−μ′(L) = μ(X)−μ(L) = μ(L′) since μ ∈ M(L). Now μi(L′) = sup{μ(K)/K ⊂ L′, K ∈ L}
so we have μ(L′) = sup{μ(K)/K ⊂ L′, K ∈ L} . By [5], this shows since L ∈ L is arbitrary
that μ ∈ MR(L ). It follows from this thatL ⊂ Sμ′ , and so (μ′)0 = μ,′ so that μ′ is approximately
regular, hence submodular.

Theorem 4.2. If C is a lattice, ν satisfies condition A, and ν is submodular on C′, then ρ′ = μi = ρ =
ν = μ′ = ν′ on L.

Proof. We show that ν′ is submodular. Since ν satisfies condition A, C ⊂ Sν′ . Let E, F ⊂ X
and let ε > 0 be arbitrary. By the definition of ν′, there exist C1, C2 ∈ C such that E ⊂ C′

1 and
ν′(E) ≤ ν(C′

1) < ν′(E) + ε/2, and F ⊂ C′
2 and

ν′(F) ≤ ν
(
C′

2
)
< ν′(F) +

ε

2
. (4.7)

Now E ∪ F ⊂ C′
1 ∪ C′

2, E ∩ F ⊂ C′
1 ∩ C′

2, where C1 ∩ C2 and C1 ∪ C2 belong to the lattice
C. Therefore,

ν′(E ∪ F) + ν′(E ∩ F) ≤ ν
(
C′

1 ∪ C′
2
)
+ ν

(
C′

1 ∩ C′
2
)
. (4.8)

Since ν is submodular on C′, ν(C′
1 ∪ C′

2) + ν(C′
1 ∩ C′

2) ≤ ν(C′
1) + ν(C′

2). Combining this
last inequality with (4.8) and (4.7), we have

ν′(E ∪ F) + ν′(E ∩ F) < ν′(E) + ν′(F) + ε. (4.9)

Since ε > 0 is arbitrary, this shows that ν′(E ∪ F) + ν′(E ∩ F) ≤ ν′(E) + ν′(F), where
E, F ⊂ X are arbitrary. Therefore, ν′ is submodular. Hence, Sν′ = Sν′ where Sν′ is an algebra.
By our initial observation, C ⊂ Sν′ = Sν′ , and so L ⊂ Sν′ . Thus for all L ∈ L, ν′(L) = ρ′(L), and
so by Theorem 4.1, we have ρ′ = μi = ρ = ν = μ′ = ν′ on L.

Theorem 4.3. If ν = ν0 on C′, C coseparates L(C), and ν satisfies condition B, then ρ′ = μi = ρ =
ν = μ′ = ν′ on L.

Proof. The hypothesis that ν = ν0 on C′ shown by [6] that ν′ is submodular and so Sν′ = Sν′ .
We show that the hypotheses that C coseparates L(C) and ν satisfies condition B give ρ′ =
μi = ρ = ν = μ′ = ν′ on C.

SinceC ⊂ Sν ⊂ Sν, ν(C) = ρ(C) for allC ∈ C. Since for anyC ∈ C, ρ′(C) = ρ(C) = μi(C),
we have

ρ′ = μi = ρ = ν on C. (4.10)

We next show μ′ = ν′ on C. To do so, we argue by contradiction. Suppose there is
a C0 ∈ C such that μ′(C0) < ν′(C0). Then there is an L0 ∈ L such that C0 ⊂ L′

0 and
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μ′(C0) ≤ μ(L′
0) < ν′(C0). Since C0 ∩ L0 = ∅ with C0, L0 ∈ L and C coseparates L, there

exist A,B ∈ C with C0 ⊂ A′, L0 ⊂ B′ and A′ ∩ B′ = ∅. Therefore, C0 ⊂ A′ ⊂ B ⊂ L′
0 and

μ′(C0) ≤ μ′(A′) = μ(A′) ≤ μ(B) ≤ μ
(
L′
0
)
< ν′(C0). (4.11)

We also have μ(A′) = ν(A′). Thus, we have an A ∈ C ⊂ L, with C0 ⊂ A′ and ν(A′) <
ν′(C0). This contradicts the definition of ν′(C0). Therefore, we must have μ′ = ν′ on C.

We next show ν = μ′ on C. We reason by contradiction. Suppose there is a C ∈ C with
ν(C) < μ′(C). Therefore, ν(X)− ν(C) > ν(X)− μ′(C). But we also have ν(X) = ν(C) + ν(C′) so
ν(C′) = ν(X)−ν(C) and ν(X) = μ(X) = μ′(X). Therefore, ν(C′) > μ′(X)−μ′(C) = μi(C′). Since
ν satisfies condition B, ν(C′) = sup{ν(A)/A ⊂ C′, A ∈ C} > μi(C′). Thus, there is an A0 ∈ C
with A0 ⊂ C′ and μi(C′) < ν(A0) ≤ ν(C′), and A0 ∩ C = ∅. Since C coseparates L, there exist
B,D ∈ C such that A0 ⊂ B′, C ⊂ D′ and B′ ∩D′ = ∅. Therefore, A0 ⊂ B′ ⊂ D ⊂ C′. This gives

μi(C′) < ν(A) ≤ ν(B′) ≤ ν(D) ≤ ν(C′). (4.12)

But ν(D) = μ(D), so we have a D ∈ C ⊂ L with D ⊂ C′ and μi(C′) < μ(D). This
contradicts the definition of μi(C′). Therefore, we must have ν = μ′ on C. Thus we have
ρ′ = μi = ρ = ν = μ′ = ν′ on C. Since ρ′ = ν′ on C, C ⊂ Sν′ . By the submodularity of ν′,
Sν′ = Sν′ . Therefore, C ⊂ Sν′ and so L ⊂ Sν′ . Therefore, for all L ∈ L, ρ′(L) = ν′(L) and so
ρ′ = μi = ρ = ν = μ′ = ν′ on L.

Thus far, in order to have the equality

ρ′ = μi = ρ = ν = μ′ = ν′ on L, (∗)

the property of submodularity of ν or ν′ on C or C′ played a major role. A natural question to
ask is whether this equality can be achieved without submodularity. To obtain some insight
into how one may proceed, we make the following observation. For the outer measure ν′, it
is always true that Sν′ ⊂ Sν′ , where Sν′ is an algebra of sets. If C ⊂ Sν′ , then L = L(C) ⊂ Sν′ ,
and consequently C ⊂ Sν′ , whence ν′(L) = ρ′(L) for all L ∈ L. It follows from this that the
equality (∗) holds on L. It seems reasonable then to seek conditions for C ⊂ Sν′ .

We have the following theorem.

Theorem 4.4. Suppose each C ∈ C splits all sets of C′ additively with respect to ν′. Then C ⊂ Sν′ and
ρ′ = μi = ρ = ν = μ′ = ν′ on L.

The result follows from [2].
The results of this section prove useful in studying the restriction of a finite, finitely

subadditive outer measure to the algebra generated by the covering class, when the sets
of the covering class are measurable, which will be investigated in a subsequent paper .
Although Theorem 4.4 may be difficult to implement in practice, it leads naturally to the
content of the next section.

5. An outer measure construction

In this section, we consider a nonempty set X and the construction of a finite, finitely
subadditive outer measure given an arbitrary family of subsets B of X, and a finite,
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nonnegative set function τ on B. By the standard method, we construct a finite, finitely
subadditive outer measure λ from τ and B. We seek a characterization of those sets that split
all sets of B additively with respect to λ.

For emphasis, let X be a nonempty set and let B be an arbitrary family of subsets of X
with ∅, X ∈ B and B is closed under finite unions. Let τ be a finite, nonnegative set function
defined on Bwith τ(∅) = 0, and τ subadditive on B. For E ⊂ X let

λ(E) = inf
{
τ(B)/E ⊂ B, B ∈ B}. (5.1)

It follows by a standard argument that λ is a finite, finitely subadditive outer measure
defined for all subsets of X. Let Sλ be the algebra of λ-measurable subsets of X. We determine
conditions when a set or a family of sets splits all sets of B additively with respect to λ, this
set or family will split all subsets of X additively with respect to λ. The importance of this
was hinted at in the last section.

We observe that if B ∈ B, then λ(B) ≤ τ(B). Also, if τ is monotone on B, then λ(B) =
τ(B) for all B ∈ B.

The following theorem is known, and its proof can be found in [2], for instance.

Theorem 5.1. If E ⊂ X splits all sets of B additively with respect to λ, then E ∈ Sλ.

Our motivation for what follows comes from the characterization of the measurable
sets for a σ-finite measure which can be found in [8, 9]. We begin with the observation that
there are always at least two sets in B that split all sets of B additively with respect to λ,
namely, ∅ and X (they may be the only ones). We seek a characterization of such sets.

Theorem 5.2. Let B0 ∈ B split all sets of B additively with respect to λ. Let N ∈ B be such that
τ(N) = 0. Then E = B0 −N splits all sets of B additively with respect to λ, and so E ∈ Sλ.

Proof. Let B ∈ B be arbitrary. We can write B = (B ∩E)∪ (B ∩E′).Now, B ∩E = B ∩ (B0 ∩N ′) ⊂
B ∩ B0 and B ∩E′ = B ∩ (B′

0 ∪N) ⊂ (B ∩B′
0) ∪N. By the monotonicity and finite subadditivity

of λ,

λ(B ∩ E) + λ(B ∩ E′) ≤ λ
(
B ∩ B0

)
+ λ

(
B ∩ B′

0
)
+ λ(N). (5.2)

Since N ∈ B, λ(N) ≤ τ(N) = 0, so λ(N) = 0 and (5.2) becomes

λ(B ∩ E) + λ
(
B ∩ E′) ≤ λ

(
B ∩ B0

)
+ λ

(
B ∩ B′

0
)
. (5.3)

The hypothesis on B0 gives λ(B∩B0)+λ(B∩B′
0) = λ(B) so by (5.3), λ(B∩E)+λ(B∩E′) ≤

λ(B). The reverse inequality is always true by finite subadditivity of λ. Thus by Theorem 5.1,

E ∈ Sλ. (5.4)

Thus we see that a sufficient condition for a set E to be λ-measurable is: E must be
expressible as the difference of a set from B that splits all sets of B additively with respect to
λ and a subset of X for which τ is 0.
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An example may help to illustrate the theorem.

Example 5.3. Let X = {a, b, c} and take B = {∅, X, {a}, {b}, {a, b}}. Define τ on B by τ(∅) =
τ({a}) = 0, τ({b}) = τ({a, b}) = 1, τ(X) = 2. The outer measure λ determined by B and τ
is λ(∅) = λ({a}) = 0, λ({b}) = λ({a, b}) = 1, λ({c}) = λ({a, c}) = λ({b, c}) = λ(X) = 2. Now
Sλ = {∅, X, {a}, {b, c}}. We see that ∅ = X − ∅, X = X − ∅, {a} = {a} − ∅, {b, c} = X − {a}.

We return to characterizing those sets E that split all sets of B additively with respect
to λ. In the style of Munroe [10], we have the following theorem.

Theorem 5.4. Let E ⊂ X be any set. There is a sequence of sets {Bn} from B such that E ⊂ Bn all n
and λ(E) = λ(

⋂∞
n=1Bn).

Proof. Let E ⊂ X be arbitrary. By the definition of λ(E), for each n ∈ N there is a Bn ∈ B such
that E ⊂ Bn and

λ(E) ≤ τ
(
Bn

)
< λ(E) +

1
n
. (5.5)

Let B =
⋂∞

n=1Bn. Then E ⊂ B ⊂ Bn all n. By monotonicity of λ,

λ(E) ≤ λ(B) ≤ λ
(
Bn

)
all n. (5.6)

Now λ(Bn) ≤ τ(Bn) all n, so by (5.6) and (5.5)we get λ(E) ≤ λ(B) < λ(E) + 1/n for any
n ∈ N. Thus for any given ε > 0, we can find an n ∈ N large enough so that 0 < 1/n < ε. For
any such n, λ(E) ≤ λ(B) < λ(E) + ε. Since ε > 0 is arbitrary, it follows that λ(E) = λ(B).

Observation 1. Suppose E ⊂ X splits all sets A ⊂ X additively with respect to λ. By
Theorem 5.4, there exist Bn ∈ B, n ∈ N with E ⊂ ⋂∞

n=1Bn and λ(E) = λ(
⋂∞

n=1Bn). Let
B =

⋂∞
n=1Bn. We can write B = E ∪ (B ∩ E′). Since E ∈ Sλ, λ(B) = λ(E) + λ(B ∩ E′), and

since all quantities are finite, λ(B ∩E′) = λ(B) − λ(E) = 0. Since E = B − (B −E′), letN = B −E
so that λ(N) = 0.

This observation establishes the following theorem.

Theorem 5.5. If E ∈ Sλ, then there is a sequence of sets Bn ∈ B, and a set N ⊂ X such that E ⊂ Bn

all n, and E = (
⋂∞

n=1Bn) −N, where λ(N) = 0.

We see that our result is analogous to what happens in the case of constructing an
outer measure from a measure in the general case, see for instance Munroe [10].

In summary, to obtain a set E that splits all sets of B additively with respect to λ: let
B0 ∈ B be a set that splits all sets of B additively with respect to λ (for instance X) and let
N ⊂ X with τ(N) = 0. Then E = B0 −N will split all sets of B additively with respect to λ, so
that E ∈ Sλ.

If E ∈ Sλ, then there is a sequence of sets {Bn} from B such that E ⊂ Bn all n , and a set
N ⊂ X such that λ(N) = 0 and E = (

⋂∞
n=1Bn) −N.

We note that if B is a δ-lattice that is, a lattice closed under countable intersections,
then the set B =

⋃∞
n=1Bn ∈ B.
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