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The class of counting processes constitutes a significant part of applied probability. The classic
counting processes include Poisson processes, nonhomogeneous Poisson processes, and renewal
processes. More sophisticated counting processes, including Markov renewal processes, Markov
modulated Poisson processes, age-dependent counting processes, and the like, have been
developed for accommodating a wider range of applications. These counting processes seem to
be quite different on the surface, forcing one to understand each of them separately. The purpose
of this paper is to develop a unified multivariate counting process, enabling one to express all of
the above examples using its components, and to introduce new counting processes. The dynamic
behavior of the unified multivariate counting process is analyzed, and its asymptotic behavior as
t → ∞ is established. As an application, a manufacturing system with certain maintenance policies
is considered, where the optimal maintenance policy for minimizing the total cost is obtained
numerically.
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1. Introduction

A stochastic process {N(t) : t ≥ 0} is called a counting process when N(t) is nonnegative,
right continuous and monotone nondecreasing with N(0) = 0. The classic counting processes
of importance include a Poisson process, a nonhomogeneous Poisson process (NHPP) and
a renewal process. More sophisticated counting processes have been developed in order
to accommodate a wider range of applications. A Markov renewal process, for example,
extends an ordinary renewal process in that the interarrival time between two successive
arrivals has a probability distribution depending on the state transition of the underlying
Markov chain, see, for example, Pyke [1, 2]. In Masuda and Sumita [3], the number of
entries of a semi-Markov process into a subset of the state space is analyzed, while a Markov-
modulated Poisson process (MMPP) is introduced by Neuts [4] where jumps of the MMPP



2 International Journal of Mathematics and Mathematical Sciences

occur according to a Poisson process with intensity λi whenever the underlying Markov-
chain is in state i.

The MMPP is generalized subsequently into several different directions. Lucantoni
et al. [5] develop a Markovian arrival process (MAP), where a Markov-chain defined on
J = G∪B withG∩B = φ,G/=φ, and B /=φ is replaced to a state i ∈ G as soon as it enters a state
j ∈ B with probability p̃ji and the counting process describes the number of such replacements
occurred in [0, t]. If we setG = {0G, 1G, . . . , JG} and B = {0B, 1B, . . . , JB}, and an absorbing state
jB ∈ B can be reached only from its counter part jG ∈ G with instantaneous replacement back
to jG itself, the resulting MAP becomes an MMPP. Another direction for generalizing the
MMPP is to replace the underlying Markov-chain by a semi-Markov process, which we call
a semi-Markov-modulated Poisson process (SMMPP). To the best knowledge of the authors,
the SMMPP is first addressed by Dshalalow [6], where a systematic approach for dealing with
modulated random measures is proposed in a more abstract way. Such modulated random
measures include the MMPP and the SMMPP as special cases. An application of the SMMPP
to queueing theory is discussed in Dshalalow and Russell [7]. More recently, in a series of
papers by Agarwal et al. [8] and Dshalalow [9, 10], the original approach above has been
further extended and refined. The SMMPP is studied in detail independently by Özekici and
Soyer [11].

In the SMMPP, the counting process under consideration is modulated according to
state transitions of the underlying semi-Markov process. A further generalization may be
possible by considering a counting process whose arrival intensity depends on not only the
current state of the semi-Markov process but also the current age of the process. This line of
research is originated by Sumita and Shanthikumar [12] where an age-dependent counting
process generated from a renewal process is studied. Here, items arrive according to an NHPP
which is interrupted and reset at random epochs governed by a renewal process.

All of these counting processes discussed above seem to be quite different on
the surface, forcing one to understand each of them separately. The purpose of this
paper is to develop a unified multivariate counting process which would contain all
of the above examples as special cases. In this regard, we consider a system where
items arrive according to an NHPP. This arrival stream is interrupted from time to
time where the interruptions are governed by a finite semi-Markov process J(t) on
J = {0, 1, 2, . . . , J}. Whenever a state transition of the semi-Markov process occurs
from i to j, the intensity function of the NHPP is switched from λi(x) to λj(x)
with an initial value reset to λj(0). In other words, the arrivals of items are gener-
ated by the NHPP with λi(x) when the semi-Markov process is in state i with x
denoting the time since the last entry into state i. Of particular interest in analysis
of such systems are the multivariate counting processes M(t) = [Mi(t)]i∈J and
N(t) = [Nij(t)]i,j∈J where Mi(t) counts the cumulative number of items that have
arrived in [0, t] while the semi-Markov process is in state i and Nij(t) represents the
cumulative number of the state transitions of the semi-Markov process from i to j in
[0, t]. The joint multivariate counting process [M(t),N(t)] enables one to unify many
existing counting processes in that they can be derived in terms of the components
of [M(t),N(t)]. Because of this reason, hereafter, we call [M(t),N(t)] the unified
multivariate counting process. The dynamic behavior of [M(t),N(t)] is captured through
analysis of the underlying Laplace transform generating functions, yielding asymptotic
expansions of the means and the variances of the partial sums of its components
as t → ∞.
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Applications of the unified multivariate counting process can be found, for example,
in modern communication networks. One may consider a high-speed communication link for
transmitting video signals between two locations. Video sequences are transmitted as streams
of binary data that vary over time in traffic intensity according to the level of movement,
the frequency of scene changes, and the level of transmission quality. Consequently, efficient
transmission of video traffic can be achieved through variable bit rate coding. In this coding
scheme, data packets are not generated at a constant rate from the original sequence, but
rather at varying rates. By doing so, one achieves less fluctuation in transmission quality
level and, at the same time, transmission capacity can be freed up whenever possible. As in
Maglaris et al. [13], such a mechanism may be implemented by using multimode encoders
where each mode reflects a certain level of data compression, and the change between modes
is governed by the underlying video sequence according to buffer occupancy levels. A system
of this sort can be described in the above framework with M(t) =

∑

i∈JMi(t) representing
the number of packet arrivals at the origination site and Nij(t) describing the number of
the encoder changes in [0, t]. The state of the underlying semi-Markov process at time t
then corresponds to the current mode of the encoder. Other types of applications include
system reliability models where the semi-Markov process describes the status of the system
under consideration while the interruptions correspond to system failures and replacements.
A cost function associated with such a system may then be constructed from the unified
multivariate counting processes [M(t),N(t)]. In this paper, a manufacturing system with
certain maintenance policies is considered, where the unified multivariate counting process
enables one to determine numerically the optimal maintenance policy for minimizing the
total cost.

The structure of this paper is as follows. In Section 2, key transform results of various
existing counting processes are summarized. Detailed description of the unified multivariate
counting process is provided in Section 3 and its dynamic behavior is analyzed in Section 4
by examining the probabilistic flow of the underlying stochastic processes and deriving
transform results involving Laplace transform generating functions. Section 5 is devoted
to derivation of the existing counting processes of Section 2 in terms of the components
of the unified multivariate counting process. Asymptotic analysis is provided in Section 6,
yielding asymptotic expansions of the means and the variances of the partial sums of
its components. An application is discussed in Section 7, where a manufacturing system
with certain maintenance policies is considered and the optimal maintenance policy for
minimizing the total cost is obtained numerically. Some concluding remarks are given in
Section 8.

Throughout the paper, matrices and vectors are indicated by double underlines (A, b,
etc.) and underlines (X, y, etc.) respectively. The vector with all components equal to 1 is
denoted by 1 and the identity matrix is written as I. A submatrix of a is defined by a

GB
=

[aij]i∈G,j∈B.

2. Various Counting Processes of Interest

In this section, we summarize key transform results of various counting processes of interest,
which can be expressed in terms of the components of the unified multivariate counting
process proposed in this paper as we will see. We begin the discussion with one of the most
classical arrival processes, the Poisson process.
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2.1. Poisson Process

Poisson process of intensity λ is characterized by a sequence of independently and identically
distributed (i.i.d.) exponential random variables (Xj)

∞
j=1 with common probability density

function (p.d.f.) fX(x) = λe−λx. Let Sn =
∑n

j=1 Xj . Then, the associated Poisson process {N(t) :
t ≥ 0} is defined as a counting process satisfying

N(t) = n⇐⇒ Sn ≤ t < Sn+1. (2.1)

If a system has an exponential lifetime of mean λ−1 and is renewed instantaneously upon
failure, Xj represents the lifetime of the jth renewal cycle. The Poisson process {N(t) : t ≥ 0}
then counts the number of failures that have occurred by time t.

Let pn(t) = P[N(t) = n | N(0) = 0] and define the probability generating function
(p.g.f.) π(v, t) by

π(v, t) = E
[

vN(t)
]

=
∞
∑

n=0

pn(t)vn. (2.2)

It can be seen, see, for example, Karlin and Taylor [14], that

d

dt
pn(t) = −λpn(t) + λpn−1(t) (2.3)

where pn(t) = 0 for n < 0. Multiplying vn on both sides of (2.3) and summing from 0 to ∞,
one then finds that

∂

∂t
π(v, t) = −λ(1 − v)π(v, t). (2.4)

Since pn(0) = δ{n=0} where δ{P} = 1 if statement P is true and δ{P} = 0 otherwise, one has
π(v, 0) = 1. Equation (2.4) can then be solved as

π(v, t) = e−λt(1−v); pn(t) = e−λt
(λt)n

n!
. (2.5)

2.2. Nonhomogeneous Poisson Process (NHPP)

An NHPP {M(t) : t ≥ 0} differs from a Poisson process in that the failure intensity of the
system is given as a function of time t. Accordingly, (2.3) should be rewritten as

d

dt
pm(t) = −λ(t)pm(t) + λ(t)pm−1(t). (2.6)

By taking the generating function of (2.6), one finds that

∂

∂t
π(u, t) = −λ(t)(1 − u)π(u, t). (2.7)
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With L(t) =
∫ t

0λ(y)dy, this equation can be solved as

π(u, t) = e−L(t)(1−u); pm(t) = e−L(t)
L(t)m

m!
. (2.8)

The reader is referred to Ross [15] for further discussions of NHPPs.

2.3. Markov-Modulated Poisson Process (MMPP)

Let {J(t) : t ≥ 0} be a Markov-chain in continuous time on J = {0, . . . , J} governed by a
transition rate matrix ν = [νij]. Let λ� = [λ0, . . . , λJ] and define the associated diagonal matrix
λ
D

= [δ{i=j}λi]. An MMPP {M(t) : t ≥ 0} characterized by (ν, λ
D
) is a pure jump process

where jumps of M(t) occur according to a Poisson process with intensity λi whenever the
Markov-chain J(t) is in state i.

Let νi =
∑

j∈J νij and define ν
D

= [δ{i=j}νi]. The infinitesimal generator Q associated

with the Markov-chain J(t) is then given by

Q = −ν
D
+ ν. (2.9)

For i, j ∈ J, let

p(k, t) =
[

pij(k, t)
]

;

pij(k, t) = P
[

M(t) = k, J(t) = j | J(0) = i,M(0) = 0
]

,

(2.10)

and define the associated matrix generating function π(u, t) by

π(u, t) =
∞
∑

k=0

p(k, t)uk. (2.11)

It can be seen that

∂

∂t
pij(k, t) = −

(

λj + νj
)

pij(k, t) +
∑

r∈J
pir(k, t)νrj + λjpij(k − 1, t). (2.12)

In matrix notation, this can be rewritten as

∂

∂t
p(k, t) = −p(k, t)

{

λ
D
+ ν

D
− ν
}

+ p(k − 1, t)λ
D
. (2.13)

By taking the generating function of (2.13) together with (2.9), one sees that

∂

∂t
π(u, t) = π(u, t)

{

Q − (1 − u)λ
D

}

. (2.14)
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Since M(0) = 0, one has π(u, 0) = I, where I = [δ{i=j}] is the identity matrix, so that the above
differential equation can be solved as

π(u, t) = e

{

Q−(1−u)λ
D

}

t
=
∞
∑

k=0

tk

k!

{

Q − (1 − u)λ
D

}k

, (2.15)

where A0 def= I for any square matrix A. It should be noted that π(1, t) = e
Qt

, which is the
transition probability matrix of J(t) as it should be. By taking the Laplace transform of both
sides of (2.15), π̂(u, s) =

∫∞
0 e
−stπ(u, t) is given by

π̂(u, s) =
{

sI −Q + (1 − u)λ
D

}−1

. (2.16)

In general, the interarrival times generated by an MMPP are not independent nor
identically distributed. In multimedia computer and communication networks, data packets
are mingled together with voice and image packets generated from analogue sources. Since
arrival patterns of such packets differ from each other, MMPPs have provided useful means
to model arrival processes of packets in multimedia computer and communication networks,
see, for example, Heffes and Lucantoni [16] and Sriram and Whitt [17]. Burman and Smith
[18], and Knessl et al. [19] studied a single server queuing system with an MMPP arrival
process and general i.i.d. service times. Neuts et al. [20] established characterization theorems
for an MMPP to be a renewal process in terms of lumpability of the underlying Markov-chain
J(t). The reader is referred to Neuts [4] for further discussions of MMPP.

An MMPP can be extended by replacing the underlying Markov-chain in continuous
time by a semi-Markov process as discussed in Section 1. This process is denoted by SMMPP.
To the best knowledge of the authors, the SMMPP is first addressed by Dshalalow [6],
where a systematic approach for dealing with modulated random measures is proposed
in a more abstract way. Such modulated random measures include the MMPP and the
SMMPP as special cases. An application of the SMMPP to queueing theory is addressed
in Dshalalow and Russell [7]. More recently, the original approach above has been further
extended and refined in a series of papers by Agarwal et al. [8] and Dshalalow [9, 10]. The
SMMPP is studied in detail independently by Özekici and Soyer [11] including transient
characterizations and ergodic analysis. Both MMPP and SMMPP will be proven to be
expressible in terms of the components of the unified multivariate counting process proposed
in this paper.

2.4. Renewal Process

Renewal processes can be considered as a generalization of Poisson processes in that a
sequence of i.i.d. exponential random variables are replaced by that of any i.i.d. nonnegative
random variables with common distribution function A(x). The resulting counting process
{N(t) : t ≥ 0} is still characterized by (2.1). Let pn(t) = P[N(t) = n | N(0) = 0] as before. One
then sees that

pn(t) = A(n)(t) −A(n+1)(t), (2.17)
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where A(n)(t) denotes the n-fold convolution of A(x) with itself, that is, A(n+1)(t) =
∫ t

0A
(n)(t −

x)dA(x) and A(0)(t) = U(t) which is the step function defined as U(t) = 1 for t ≥ 0 and
U(t) = 0 else.

Let πn(s) =
∫∞

0 e
−stpn(t)dt and α(s) =

∫∞
0 e
−stdA(t). By taking the Laplace transform of

both sides of (2.17), it follows that

πn(s) =
1 − α(s)

s
α(s)n. (2.18)

By taking the generating function of the above equation with π(v, s) =
∑∞

n=0 πn(s)v
n, one has

π(v, s) =
1 − α(s)

s

1
1 − vα(s) . (2.19)

The reader is referred to Cox [21], or Karlin and Taylor [14] for further discussions of renewal
processes.

2.5. Markov Renewal Process (MRP)

An MRP is an extension of an ordinary renewal process in that, in the interval [0, t), the former
describes the recurrence statistics for intermingling classes of epochs of an underlying semi-
Markov process, whereas the latter counts the number of recurrences for a single recurrent
class of epochs. More specifically, let {J(t) : t ≥ 0} be a semi-Markov process on J = {0, . . . , J}
governed by a matrix p.d.f. a(x) where a(x) ≥ 0 and

∫∞
0 a(x)dx = A

0
is a stochastic matrix

which is assumed to be ergodic. Let ε(
) be a recurrent class consisting of the entries of
the semi-Markov process to state 
 for 
 ∈ J, and define ˜N
r(t) to be a counting process
describing the number of recurrences for ε(r) given that there was an epoch of ε(
) at time
t = 0. Then ˜N
(t) = [˜N
0(t), . . . ,˜N
J(t)] is called an MRP.

The study of MRPs can be traced back to early 1960s represented by the two original
papers by Pyke [1, 2], followed by Keilson [22, 23], Keilson and Wishart [24, 25], Çinlar
[26, 27] and McLean and Neuts [28]. Since then, the area attracted many researchers and a
survey paper by Çinlar [29] in 1975 already included more than 70 leading references. The
study has been largely focused on the matrix renewal function H(t) = [H
r(t)] with H
r(t) =

E[˜N
r(t)], the associated matrix renewal density, and the limit theorems. For example, one
has the following result concerning the Laplace transform of H(t) by Keilson [23]:

L
{

H(t)
}

=
1
s
α(s)

[

I − α(s)
]−1

, (2.20)

where α(s) is the Laplace transform of a(t). The unified multivariate counting process of this
paper contains an MRP as a special case and provides more information based on dynamic
analysis of the underlying probabilistic flows.
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2.6. Number of Entries of a Semi-Markov Process into a Subset of
the State Space (NESMPS)

Another type of counting processes associated with a semi-Markov process on J = {0, . . . , J}
governed by a matrix p.d.f. a(x) is studied in Masuda and Sumita [3], where the state space
J is decomposed into a set of good states G(/=φ) and a set of bad states B(/=φ) satisfying
J = G∪B and G∩B = φ. The counting process NGB(t) is then defined to describe the number
of entries of J(t) into B by time t.

While NGB(t) is a special case of MRPs, the detailed analysis is provided in [3],
yielding much more information. More specifically, let X(t) be the age process associated
with J(t), that is,

X(t) = t − sup
{

τ : J(t)|τ+τ− /= 0, 0 < τ ≤ t
}

, (2.21)

where f(x)|x+x− = f(x+) − f(x−), and define

F
n
(x, t) =

[

Fn:ij(x, t)
]

, (2.22)

where

Fn:ij(x, t) = P
[

X(t) ≤ x, NGB(t) = n, J(t) = j | X(0) =NGB(0) = 0, J(0) = i
]

. (2.23)

One then has

f
n
(x, t) =

∂

∂x
F
n
(x, t). (2.24)

The associated matrix Laplace transform generating function can then be defined as

ϕ(v,w, s) =
∞
∑

n=0

vn
∫∫∞

0
e−wt−stf

n
(x, t)dx dt. (2.25)

It has been shown in Masuda and Sumita [3] that

ϕ(v,w, s) =
1

w + s
· γ

0
(s)
{

I − vβ(s)
}−1{

I − α
D
(w + s)

}

. (2.26)
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Here, with α(s) =
∫∞

0 e
−sta(t)dt and α

CD
(s) = [αij(s)]i∈C,j∈D for C,D ⊂ J, the following

notation is employed:

α(s) =

⎡

⎣

α
GG

(s) α
GB

(s)

α
BG

(s) α
BB
(s)

⎤

⎦;

α
D
(s) =

[

δ{i=j}αi(s)
]

with αi(s) =
∑

j∈J
αij(s);

(2.27)

χ
G
(s) =

{

I
GG
− α

GG
(s)
}−1

; χ
B
(s) =

{

I
BB
− α

BB
(s)
}−1

; (2.28)

β(s) =

⎡

⎣

0
BB

0
BG

α
GB
χ
B
(s) α

GB
χ
B
(s)α

BG
χ
G
(s)

⎤

⎦; (2.29)

γ
0
(s) =

⎡

⎣

α
BB
χ
B
(s) χ

B
(s)α

BG
χ
G
(s)

0
GB

α
GG
χ
G
(s)

⎤

⎦ + I. (2.30)

As we will see, the unified multivariate counting process proposed in this paper enables one
to deal with multidimensional generalization of NESMPSs as a special case.

2.7. Markovian Arrival Process (MAP)

As for Poisson processes, a renewal process requires interarrival times to form a sequence of
i.i.d. nonnegative random variables. As we have seen, a class of MMPPs enables one to avoid
this requirement by introducing different Poisson arrival rates depending on the state of the
underlying Markov chain. An alternative way to avoid this i.i.d. requirement is to adapt
a class of MAPs, originally introduced by Lucantoni et al. [5]. We discuss here a slightly
generalized version of MAPs in that a set of absorbing states is not necessarily a singleton set.

Let {J∗(t) : t ≥ 0} be an absorbing Markov-chain on J∗ = G ∪ B with G/=φ, B /=φ
and G ∩ B = φ, where all states in B are absorbing. Without loss of generality, we assume
that G = {0, . . . , m}, and B = {m + 1, . . . , m + K}. For notational convenience, the following
transition rate matrices are introduced.

ν∗
GG

=
[

νij
]

i, j∈G; ν∗
GB

= [νir]i∈G, r∈B. (2.31)

The entire transition rate matrix ν∗ governing J∗(t) is then given by

ν∗ =

⎡

⎣

ν∗
GG

ν∗
GB

0 0

⎤

⎦. (2.32)
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A replacement Markov-chain {J(t) : t ≥ 0} on G is now generated from {J∗(t) : t ≥ 0}.
Starting from a state in G, the process J(t) coincides with J∗(t) within G. As soon as J∗(t)
reaches state r ∈ B, it is instantaneously replaced at state j ∈ G with probability p̃rj and the
process continues. Let

C = ν∗
GG
, D = ν∗

GB
p̃
BG
, (2.33)

where p̃
BG

= [p̃rj]r∈B,j∈G. Then the transition rate matrix ν and the infinitesimal generator Q

of J(t) are given as

ν = C +D; Q = −ν
D
+ ν, (2.34)

where

ν
D
= C

D
+D

D
, (2.35)

with

C
D
=
[

δ{i=j}ci
]

; ci =
∑

j∈G
cij ,

D
D
=
[

δ{i=j}di
]

; di =
∑

j∈G
dij .

(2.36)

Let p(t) be the transition probability matrix of J(t) with its Laplace transform defined by

π(s) =
∫∞

0 e
−stp(t)dt. From the Kolmogorov forward equation (d/dt)p(t) = p(t)Q with p(0) =

I, one has

π(s) =
{

sI −Q
}−1

. (2.37)

Let {NMAP(t) : t ≥ 0} be the counting process keeping the record of the number of
replacements in [0, t) and define

fij(k, t) = P
[

NMAP(t) = k, J(t) = j | J(0) = i
]

, i, j ∈ G. (2.38)

By analyzing the probabilistic flow at state j at time t + Δ, it can be seen that

fij(k, t + Δ) = fij(k, t)

{

1 −
∑


∈G

(

cj
 + dj

)

Δ

}

+
∑


∈G
fi
(k, t)c
jΔ

+
∑


∈G
fi
(k − 1, t)d
jΔ + o(Δ).

(2.39)
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It then follows that

∂

∂t
fij(k, t) = −fij(k, t)

∑


∈G

(

cj
 + dj

)

+
∑


∈G
fi
(k, t)c
j

+
∑


∈G
fi
(k − 1, t)d
j .

(2.40)

In matrix notation, the above equation can be rewritten as

∂

∂t
f(k, t) = −f(k, t)ν

D
+ f(k, t)C + f(k − 1, t)D. (2.41)

We now introduce the following matrix Laplace transform generating function:

ϕ(v, s) =
[

ϕij(v, s)
]

; ϕij(v, s) =
∫∞

0
e−st

∞
∑

k=0

fij(k, t)vkdt. (2.42)

Taking the Laplace transform with respect to t and the generating function with respect to k
of both sides of (2.41), one has

ϕ(v, s)
{

sI + ν
D
− C − vD

}

= I, (2.43)

which can be solved as

ϕ(v, s) =
{

sI −Q + (1 − v)D
}−1

. (2.44)

We note from (2.37) and (2.44) that ϕ(1, s) = π(s) as it should be.

It may be worth noting that an MMPP is a special case of an MAP, which can be seen
in the following manner. Let an MAP be defined on G ∪ B where G = {0G, . . . , JG} and B =
{0B, . . . , JB}. Transitions within G is governed by ν. An entry into jB ∈ B is possible only from
jG ∈ G. When this occurs, the Markov process is immediately replaced at the entering state
jG. The counting process for the number of such replacements then has the Laplace transform
generating function ϕ(v, s) given in (2.44) where D is replaced by λ

D
, which coincides with

π̂(u, s) of (2.16) for MMPPs, proving the claim.

2.8. Age-Dependent Counting Process Generated from
a Renewal Process (ACPGRP)

An age-dependent counting process generated from a renewal process has been introduced
and studied by Sumita and Shanthikumar [12], where items arrive according to an NHPP
which is interrupted and reset at random epochs governed by a renewal process. More
specifically, let {N(t) : t ≥ 0} be a renewal process associated with a sequence of i.i.d.
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nonnegative random variables (Xj)
∞
j=1 with common p.d.f. a(x). The age process X(t) is then

defined by

X(t) = t − sup
{

τ : N(t)|τ+τ− = 1, 0 < τ ≤ t
}

. (2.45)

In other words, X(t) is the elapsed time since the last renewal. We next consider an NHPP
Z(x) governed by an intensity function λ(x). If we define

L(x) =
∫x

0
λ
(

y
)

dy, (2.46)

one has

g(x, k) = P[Z(x) = k] = exp(−L(x))L(x)
k

k!
, k = 0, 1, 2, . . . . (2.47)

Of interest, then, is a counting process {M(t) : t ≥ 0} characterized by

P[M(t + Δ) −M(t) = 1 |M(t) = m, N(t) = 1, X(t) = x]

= λ(x)Δ + o(Δ), (m,n, x) ∈ S, Δ > 0.
(2.48)

Here S = Z+ × Z+ × R+ where Z+ is the set of nonnegative integers, and R+ is the set of
nonnegative real numbers.

Since the counting process M(t) is governed by the intensity function depending on
the age process X(t) of the renewal process N(t), it is necessary to analyze the trivariate
process [M(t),N(t), X(t)]. Let the multivariate transform of [M(t),N(t), X(t)] be defined by

ϕ(u, v,w, s) =
∫∞

0
e−stE

[

uM(t)vN(t)e−wX(t)
]

dt. (2.49)

It has been shown in Sumita and Shanthikumar [12] that

ϕ(u, v,w, s) =
β∗(u,w + s)
1 − vβ(u, s) , (2.50)

where we define, for m ≥ 0 with A(t) =
∫∞
t a(x)dx,

bm(t) = a(t)g(t,m); b∗m(t) = A(t)g(t,m),

βm(s) =
∫∞

0
e−stbm(t)dt; β∗m(s) =

∫∞

0
e−stb∗m(t)dt,

β(u, s) =
∞
∑

m=0

βm(s)um; β∗(u, s) =
∞
∑

m=0

β∗m(s)u
m.

(2.51)
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A counting process studied in the literature
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Figure 1: Various counting processes.

The Laplace transform generating function of M(t) defined by

π(u, s) =
∫∞

0
e−stE

[

uM(t)
]

dt (2.52)

is then given by π(u, s) = ϕ(u, 1, 0, s), so that one has from (2.50)

π(u, s) =
β∗(u, s)

1 − β(u, s) . (2.53)

This class of counting processes denoted by ACPGRP may be extended where the
underlying renewal process is replaced by an MMPP or an SMMPP. We define the former
as a class of age-dependent counting processes governed by an MMPP, denoted by Markov-
modulated age-dependent nonhomogeneous Poisson process (MMANHPP), and the latter
as a class of age-dependent counting processes governed by an SMMPP, denoted by semi-
Markov-modulated age-dependent nonhomogeneous Poisson process (SMMANHPP). The
two extended classes are new and become special cases of the unified counting process
proposed in this paper as we will see.

All of the counting processes discussed in this section are summarized in Figure 1.

3. Unified Multivariate Counting Process [M(t),N(t)]

In this section, we propose a stochastic process representing the unified multivariate counting
process discussed in Section 1, which would contain all of the counting processes given
in Section 2 as special cases. More specifically, we consider a system where items arrive
according to an NHPP. This arrival stream is governed by a finite semi-Markov process on
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J = {0, . . . , J} in that the intensity function of the NHPP depends on the current state of the
semi-Markov process. That is, when the semi-Markov process is in state i with the current
dwell time of x, items arrive according to a Poisson process with intensity λi(x). If the semi-
Markov process switches its state from i to j, the intensity function λi(x) is interrupted, the
intensity function at state j is reset to λj(0), and the arrival process resumes. Of particular
interest would be the multivariate counting processes M(t)� = [M0(t), . . . ,MJ(t)] and
N(t) = [Nij(t)] with Mi(t) and Nij(t) counting the number of items that have arrived in
state i by time t and the number of transitions of the semi-Markov process from state i to state
j by time t respectively. The two counting processes M(t) and N(t) enable one to introduce a
variety of interesting performance indicators as we will see.

Formally, let {J(t) : t ≥ 0} be a semi-Markov process on J = {0, . . . , J} governed by a
matrix cumulative distribution function (c.d.f.)

A(x) =
[

Aij(x)
]

, (3.1)

which is assumed to be absolutely continuous with the matrix probability density function
(p.d.f.)

a(x) =
[

aij(x)
]

=
d

dx
A(x). (3.2)

It should be noted that, if we define Ai(x) and Ai(x) by

Ai(x) =
∑

j∈J
Aij(x); Ai(x) = 1 −Ai(x), (3.3)

then Ai(x) is an ordinary c.d.f. and Ai(x) is the corresponding survival function. The hazard
rate functions associated with the semi-Markov process are then defined as

ηij(x) =
aij(x)

Ai(x)
, i, j ∈ J. (3.4)

For notational convenience, the transition epochs of the semi-Markov process are
denoted by τn, n ≥ 0, with τ0 = 0. The age process X(t) associated with the semi-Markov
process is then defined as

X(t) = t −max{τn : 0 ≤ τn ≤ t}. (3.5)

At time t with J(t) = i and X(t) = x, the intensity function of the NHPP is given by λi(x). For
the cumulative arrival intensity function Li(x) in state i, one has

Li(x) =
∫x

0
λi
(

y
)

dy. (3.6)
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The probability of observing k arrivals in state i within the current age of x can then be
obtained as

gi(x, k) = e−Li(x)
Li(x)k

k!
, k = 0, 1, 2, . . . , i ∈ J. (3.7)

Of interest are the multivariate counting processes

M(t)� =
[

M0(t), . . . ,MJ(t)
]

, (3.8)

where Mi(t) represents the total number of items that have arrived by time t while the semi-
Markov process stayed in state i, and

N(t) =
[

Nij(t)
]

, (3.9)

with Nij(t) denoting the number of transitions of the semi-Markov process from state i to

state j by time t. It is obvious that Ni(t)
def=
∑


∈JN
i(t) denotes the number of entries into
state i by time t. The initial state is not included inN•i(t) for any i ∈ J. In other words, if J(0) =
i, N•i(t) remains 0 until the first return of the semi-Markov process to state i. In the next
section, we will analyze the dynamic behavior of [M(t),N(t)], yielding the relevant Laplace
transform generating functions. In the subsequent section, all of the counting processes
discussed in Section 2 would be expressed in terms of M(t) and N(t), thereby providing
a unified approach for studying various counting processes. The associated asymptotic
behavior as t → ∞would be also discussed.

4. Dynamic Analysis of [M(t),N(t)]

The purpose of this section is to examine the dynamic behavior of the multivariate stochastic
process [M(t),N(t)] introduced in Section 3 by observing its probabilistic flow in the state
space. Figure 2 depicts a typical sample path of the multivariate process.

Since [M(t),N(t)] is not Markov, we employ the method of supplementary variables.
More specifically, the multivariate stochastic process [M(t),N(t), X(t), J(t)] is considered.

This multivariate stochastic process is Markov and has the state space S = Z
J+1
+ ×Z

(J+1)×(J+1)
+ ×

R+ × J, where Z
J+1
+ and Z

(J+1)×(J+1)
+ are the set of (J + 1) and (J + 1) × (J + 1) dimensional

nonnegative integer vectors and matrices respectively, R+ is the set of nonnegative real
numbers and J = {0, . . . , J}. Let Fij(m,n, x, t) be the joint probability distribution of
[M(t),N(t), X(t), J(t)] defined by

Fij
(

m,n, x, t
)

= P
[

M(t) = m, N(t) = n, X(t) ≤ x, J(t) = j |M(0) = 0, N(0) = 0, J(0) = i
]

.

(4.1)
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States: {0, 1, · · · , J}

k

j

Ni(0) = (0)
i

0

Arrivals: M(t)
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∑


∈{0,1,··· ,J}
N
i(t)

t1 t2 t3 t4 t5
Mi(t1) = 2

Time: t

Mi(t5) = 4

Xi(t1) Mj(t2) = 1
Mk(t3) = 3 Ni(t4) = 2

Xi(t5)

Nj(t1) = 1
Xj(t2)

Nk(t2) = 1
Xk(t3)

· · ·

Figure 2: Typical sample path of [M(t),N(t)].

In order to assure the differentiability of Fij(m,n, x, t) with respect to x, we assume
that X(0) has an absolutely continuous initial distribution function D(x) with p.d.f. d(x) =
(d/dx)D(x). (If X(0) = 0 with probability 1, we consider a sequence of initial distribution
functions {Dk(x)}∞k=1 satisfying Dk(x) → U(x) as k → ∞ where U(x) = 1 for x ≥ 0 and
U(x) = 0 otherwise. The desired results can be obtained through this limiting process.) One
can then define

fij
(

m,n, x, t
)

=
∂

∂x
Fij
(

m,n, x, t
)

. (4.2)

By interpreting the probabilistic flow of the multivariate process [M(t),N(t), X(t), J(t)] in its
state space, one can establish the following equations:

fij
(

m,n, x, t
)

= δ{i=j}δ{m=mi1i}δ{n=0}d(x − t)
Ai(x)

Ai(x − t)
gi(t,mi)

+
(

1 − δ{n=0}
)

mj
∑

k=0

fij
(

m − k1j , n, 0+, t − x
)

Aj(x)gj(x, k);

(4.3)

fij
(

m,n, 0+, t
)

=
(

1 − δ{n=0}
)
∑


∈J

∫∞

0
fi


(

m,n − 1

j
, x, t

)

η
j(x)dx; (4.4)

fij
(

m,n, x, 0
)

= δ{i=j}δ{m=0}δ{n=0}d(x), (4.5)

where 1i is the column vector whose ith element is equal to 1 with all other elements being 0,
1
ij
= 1i1

�
j and fij(m,n, 0+, t) = 0 for N ≤ 0.
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The first term of the right-hand side of (4.3) represents the case that J(t) has not
left the initial state J(0) = i by time t[δ{i=j} = 1 and δ{n=0} = 1] and there have been mi

items arrived during time t[δ{m=mi1i} = 1], provided that J(0) = i and X(0) = x − t. The
second term corresponds to the case that J(t) made at least one transition from J(0) = i
by time t[δ{n=0} = 0], the multivariate process [M(t),N(t), X(t), J(t)] just entered the state
[m − k1j , n, 0+, j] at time t − x, J(t) remained in state j until time t with X(t) = x, and
there have been k items arrived during the current age x, provided that J(0) = i and
X(0) = x− t. For the multivariate process at [m,n, 0+, j] at time t, it must be at [m,n−1


j
, x, 
]

followed by a transition from 
 to j at time t which increases N
j(t) by one, explaining
(4.4). Equations (4.5) merely describe the initial condition that [M(0),N(0), X(0), J(0)] =
[0, 0, x, i].

In what follows, the dynamic behavior of the multivariate process
[M(t),N(t), X(t), J(t)] would be captured by establishing the associated Laplace transform
generating functions based on (4.3), (4.4) and (4.5). For notational convenience, the following
matrix functions are employed:

b
k
(t) =

[

bk:ij(t)
]

; bk:ij(t) = aij(t)gi(t, k), (4.6)

b∗
k:D

(t) =
[

δ{i=j}b
∗
k:i(t)

]

=

⎡

⎢

⎢

⎢

⎣

b∗k:0(t)

. . .

b∗k:J(t)

⎤

⎥

⎥

⎥

⎦

; b∗k:i(t) = Ai(t)gi(t, k), (4.7)

r∗
k
(t) =

[

r∗k:ij(t)
]

; r∗k:ij(t) = gi(t, k)
∫∞

0
d(x − t)

aij(x)

Ai(x − t)
dx, (4.8)

β
k
(s) =

[

βk:ij(s)
]

; βk:ij(s) =
∫∞

0
e−stbk:ij(t)dt, (4.9)

β
(

u, s
)

=
[

βij(ui, s)
]

; βij(ui, s) =
∞
∑

k=0

βk:ij(s)uki , (4.10)

β∗

k:D
(s) =

⎡

⎢

⎢

⎢

⎣

β∗
k:0(s)

. . .

β∗k:J(s)

⎤

⎥

⎥

⎥

⎦

; β∗k:i(s) =
∫∞

0
e−stb∗k:i(t)dt, (4.11)

β∗

D

(

u, s
)

=

⎡

⎢

⎢

⎢

⎣

β∗0(u0, s)

. . .

β∗J
(

uJ, s
)

⎤

⎥

⎥

⎥

⎦

; β∗i (ui, s) =
∞
∑

k=0

β∗k:i(s)u
k
i , (4.12)

ρ∗

k
(s) =

[

ρ∗k:ij(s)
]

; ρ∗k:ij(s) =
∫∞

0
e−str∗k:ij(t)dt, (4.13)

ρ∗
(

u, s
)

=
[

ρ∗ij(ui, s)
]

; ρ∗ij(ui, s) =
∞
∑

k=0

ρ∗k:ij(s)u
k
i , (4.14)
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ξ
(

m,n, 0+, s
)

=
[

ξij
(

m,n, 0+, s
)]

;

ξij
(

m,n, 0+, s
)

=
∫∞

0
e−stfij

(

m,n, 0+, t
)

dt,

(4.15)

̂ξ
(

u, v, 0+, s
)

=
[

̂ξij
(

u, v, 0+, s
)]

;

̂ξij
(

u, v, 0+, s
)

=
∑

m∈ZJ+1
+

∑

n∈Z(J+1)×(J+1)
+ \

{

0
}

ξij
(

m,n, 0+, s
)

umv
n
,

(4.16)

ϕ
(

m,n,w, s
)

=
[

ϕij
(

m,n,w, s
)]

;

ϕij
(

m,n,w, s
)

=
∫∞

0

∫∞

0
e−wxe−stfij

(

m,n, x, t
)

dt dx,

(4.17)

ϕ̂
(

u, v,w, s
)

=
[

ϕ̂ij
(

u, v,w, s
)]

;

ϕ̂ij
(

u, v,w, s
)

=
∑

m∈ZJ+1
+

∑

n∈Z(J+1)×(J+1)
+

ϕij
(

m,n,w, s
)

umv
n
,

(4.18)

where umv
n =

∏

i∈Ju
mi

i

∏

(i,j)∈J×J\{(0,0)}v
nij
ij . We are now in a position to prove the main

theorem of this section.

Theorem 4.1. Let X(0) = 0. Then:

̂ξ
(

u, v, 0+, s
)

= ˜β
(

u, v, s
)

{

I − ˜β(u, v, s)
}−1

; (4.19)

ϕ̂
(

u, v,w, s
)

=
{

I − ˜β(u, v, s)
}−1

β∗

D

(

u,w + s
)

, (4.20)

where ˜β(u, v, s) = [vij · βij(ui, s)].

Proof. First, we assume that X(0) has a p.d.f. d(x). Substituting (4.3) and (4.5) into (4.4), one
sees that

fij
(

m,n, 0+, t
)

=
(

1 − δ{n=0}
)

×
{

∑


∈J

∫∞

0
δ{i=
}δ{m=mi1i}δ{n=1


j
}d(x − t)

Ai(x)

Ai(x − t)
gi(t,mi)η
j(x)dx

+
∑


∈J

(

1−δ{n=1

j
}

)∫∞

0

m

∑

k=0

fi


(

m−k1
, n−1

j
, 0+, t−x

)

× A
(x)g
(x, k)η
j(x)dx

}
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=
(

1 − δ{n=0}
)

{

δ{m=mi1i}δ{n=1
ij
}gi(t,mi)

∫∞

0
d(x − t)

aij(x)

Ai(x − t)
dx

+
∑


∈J

(

1−δ{n=1

j
}

)m

∑

k=0

∫∞

0
fi


(

m−k1
, n−1

j
, 0+, t−x

)

× a
j(x)g
(x, k)dx
}

. (4.21)

Consequently, one sees from (4.6) and (4.8) that

fij
(

m,n, 0+, t
)

=
(

1 − δ{n=0}
)

×
{

δ{m=mi1i}δ
{

n=1
ij

}r∗mi:ij(t) +
∑


∈J

(

1 − δ{n=1

j
}

)

×
m

∑

k=0

∫∞

0
fi


(

m − k1
, n − 1

j
, 0+, t − x

)

bk:
j(x)dx

}

.

(4.22)

where aij(x) = Ai(x)ηij(x) is employed from (3.4). By taking the Laplace transform of both
sides of (4.22) with respect to t, it follows that

ξij
(

m,n, 0+, s
)

=
(

1 − δ{n=0}
)

×
{

δ{m=mi1i}δ
{

n=1
ij

}ρ∗mi:ij(s)

+
∑


∈J

(

1 − δ{n=1

j
}

)m

∑

k=0

ξi


(

m − k1
, n − 1

j
, 0+, s

)

βk:
j(s)

}

.

(4.23)

By taking the multivariate generating function of (4.23) with respect to m and n, it can be
seen that

̂ξij
(

u, v, 0+, s
)

=
∑

m∈ZJ+1
+

∑

n∈Z(J+1)×(J+1)
+ \{0}

ξij
(

m,n, 0+, s
)

umv
n

=
∑

m∈ZJ+1
+

∑

n∈Z(J+1)×(J+1)
+ \{0}

{

δ{m=mi1i}δ{n=1
ij
}ρ
∗
mi:ij(s)u

mv
n

+
∑


∈J

(

1 − δ{n=1

j
}

)m

∑

k=0

ξi


(

m − k1
, n − 1

j
, 0+, s

)

βk:
j(s)umv
n

}

.

(4.24)
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It then follows from (4.10), (4.14), (4.16) and the discrete convolution property that

̂ξij
(

u, v, 0+, s
)

=
∞
∑

mi=0

umi

i vijρ
∗
mi:ij(s)

+
∑


∈J

⎛

⎜

⎝v
j
∑

m∈ZJ+1
+

m

∑

k=0

∑

n∈Z(J+1)×(J+1)
+ \{0}

ξi

(

m − k1
, n, 0+, s
)

βk:
j(s)umv
n

⎞

⎟

⎠

= vijρ∗ij(ui, s) +
∑


∈J
v
j ̂ξi


(

u, v, 0+, s
)

β
j(u
, s).

(4.25)

The last expression can be rewritten in matrix form, and one has

̂ξ
(

u, v, 0+, s
)

= ρ̃∗
(

u, v, s
)

+ ̂ξ
(

u, v, 0+, s
)

˜β
(

u, v, s
)

, (4.26)

which can be solved for ̂ξ(u, v, 0+, s) as

̂ξ
(

u, v, 0+, s
)

= ρ̃∗
(

u, v, s
)

{

I − ˜β(u, v, s)
}−1

, (4.27)

where ρ̃∗(u, v, s) = [vij · ρ∗ij(ui, s)].
Next, we introduce the following double Laplace transform:

εk:i(w, s) =
∫∫∞

0
e−wxe−std(x − t) Ai(x)

Ai(x − t)
gi(t, k)dt dx, (4.28)

and the associated diagonal matrix

ε
D

(

u,w, s
)

=

⎡

⎢

⎢

⎢

⎣

ε∗0(u0, w, s)

. . .

ε∗J
(

uJ,w, s
)

⎤

⎥

⎥

⎥

⎦

;

εi(ui,w, s) =
∞
∑

k=0

εk:i(w, s)uki .

(4.29)

By taking the double Laplace transform of (4.3), one sees from (4.7) and (4.28) that

ϕij
(

m,n,w, s
)

= δ{i=j}δ{m=mi1i}δ{n=0}εmi:i(w, s)

+
(

1 − δ{n=0}
)

mj
∑

k=0

ξij
(

m − k1j , n, 0+, s
)

β∗k:j(w + s).
(4.30)
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By taking the double generating function, this then leads to

ϕ̂ij
(

u, v,w, s
)

=
∑

m∈ZJ+1
+

∑

n∈Z(J+1)×(J+1)
+

ϕij
(

m,n,w, s
)

umv
n

= δ{i=j}
∞
∑

mi=0

umi

i εmi:i(w, s)

+
∑

m∈ZJ+1
+

∑

n∈Z(J+1)×(J+1)
+ \

{

0
}

( mj
∑

k=0

ξij
(

m − k1j , n, 0+, s
)

β∗k:j(w + s)umvn
)

= δ{i=j}εi(ui,w, s) + ̂ξij
(

u, v, 0+, s
)

β∗j
(

uj,w + s
)

.

(4.31)

By rewriting the last expression in matrix form, it can be seen that

ϕ̂
(

u, v,w, s
)

= ε
D

(

u,w, s
)

+ ̂ξ
(

u, v, 0+, s
)

β∗

D

(

u,w + s
)

. (4.32)

We now consider the limiting process D(x) → U(x). For the p.d.f., this limiting
process becomes d(x) → δ(x) where δ(x) is the Delta function defined as a unit function
for convolution, that is, f(x) =

∫

f(x − τ)δ(τ)d τ for any integrable function f . Accordingly,
it can be seen from (4.8) that r∗k:ij(t) → bk:ij(t). This in turn implies from (4.28) that

εk:i(w, s) → β∗k:i(w + s). Consequently, it follows in matrix form that ρ̃∗(u, v, s) → ˜β(u, v, s)

and ε
D
(u,w, s) → β∗

D
(u,w + s). From (4.27), it can be readily seen that ̂ξ(u, v, 0+, s) →

˜β(u, v, s){I − ˜β(u, v, s)}
−1

, proving (4.19). One also sees from (4.28) that

ϕ̂
(

u, v,w, s
)

−→ β∗

D

(

u,w + s
)

+ ̂ξ
(

u, v, 0+, s
)

β∗

D

(

u,w + s
)

=

[

I + ˜β
(

u, v, s
)

{

I − ˜β(u, v, s)
}−1

]

β∗

D

(

u,w + s
)

=
[

I − ˜β
(

u, v, s
)

+ ˜β
(

u, v, s
)

]{

I − ˜β(u, v, s)
}−1

β∗

D

(

u,w + s
)

=
{

I − ˜β(u, v, s)
}−1

β∗

D

(

u,w + s
)

,

(4.33)

which proves (4.20), completing the proof.

In the next section, it will be shown that all the transform results obtained in Section 2
can be derived from Theorem 4.1.
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5. Derivation of the Special Cases from the Unified Counting Process

We are now in a position to demonstrate the fact that the proposed multivariate counting
process introduced in Section 3 and analysed in Section 4 indeed unifies the existing counting
processes discussed in Section 2. We will do so by deriving the transform results of Section 2
from Theorem 4.1.

5.1. Derivation of Poisson Process

LetN(t) be a Poisson process with intensity λ as discussed in Section 2.1. From (2.5), one sees
that π̂(v, s) =

∫∞
0 e
−stE[vN(t)]dt =

∫∞
0 e
−stπ(v, t)dt is given by

π̂(v, s) =
1

s + λ(1 − v) . (5.1)

For the unified counting process, we consider a single state Markov-chain in
continuous time where only the number of self transitions in (0, t] is counted. More
specifically, let J = {0}, N(t) = [N00(t)], u0 = 1, v00 = v, w = 0, λ0(t) = 0 and a00(x) = λe−λx.
We note from (3.7) that λ0(t) = 0 implies g0(x, k) = δ{k=0} so that bk:00(t) = δ{k=0}a00(t)
from (4.6). This then implies β00(1, s) = λ/(s + λ). Similarly, since A0(x) = e−λx, one has
β∗0(1, s) = 1/(s + λ). It then follows from Theorem 4.1 that

ϕ̂0(1, v, 0+, s) =
1

1 − vβ00(1, s)
β∗0(1, s) =

1
s + λ(1 − v) . (5.2)

Hence, from (5.1) and (5.2), one concludes that π̂(v, s) = ϕ̂0(1, v, 0+, s).

5.2. Derivation of NHPP

Let M(t) be an NHPP of Section 2.2 characterized by a time dependent intensity function
λ(t). It can be seen from (2.8) that π̂(u, s) =

∫∞
0 e
−stE[uM(t)]dt =

∫∞
0 e
−stπ(u, t)dt is given by

π̂(u, s) =
∫∞

0
e−ste−L(t)(1−u)dt. (5.3)

In order to see that M(t) can be viewed as a special case of the proposed multivariate
counting process, we first consider a single state semi-Markov process where the dwell time
in the state is deterministic given by T . The marginal counting process M(t) = [M0(t)] then
converges in distribution to M(t) as T → ∞ as we show next.

Let J = {0}, u0 = u, v00 = 1, w = 0, and λ0(x) = λ(x). It then follows that a00(x) =
δ(x − t) and therefore bk:00(t) = δ(t − T)g0(t, k) from (4.6). This in turn implies that

β00(u, s) =
∫∞

0
e−stδ(t − T)e−L0(t)(1−u)dt

= e−{sT+L0(T)(1−u)}.

(5.4)
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Let U(t) be the step function defined by U(t) = 0 if t < 0 and U(t) = 1 otherwise. Since
A00(t) = 1 −U(t − T) = δ{0≤t<T}, one sees that

β∗0(u, s) =
∫∞

0
e−stδ{0≤t<T}e

−L0(t)(1−u)dt

=
∫T

0
e−ste−L0(t)(1−u)dt.

(5.5)

Theorem 4.1 together with (5.4) and (5.5) then leads to

ϕ̂00(u, 1, 0+, s) =
1

1 − β00(u, s)
β∗0(u, s) =

∫T

0 e
−ste−L0(t)(1−u)dt

1 − e−{sT+L0(T)(1−u)}
. (5.6)

Now it can be readily seen that ϕ̂00(u, 1, 0+, s) in (5.6) converges to π̂(u, s) in (5.3) as T → ∞,
proving the claim.

5.3. Derivation of MMPP

Let M(t) be an MMPP of Section 2.3 characterized by (ν, λ
D
). We show that the Laplace

transform generating function π̂(u, s) =
∫∞

0 e
−stE[uM(t)]dt given in (2.16) can be derived as

a special case of Theorem 4.1.
For the unified multivariate counting process, let J = {0, . . . , J}, M(t) =

∑

i∈JMi(t),
u = u1, v = 1, w = 0, λi(t) = λi, and a(x) = [e−νixνij] = e

−ν
D
x
ν. From (3.3) one sees that

A
D
(x) = I − A

D
= [δ{i=j}{1 −

∑

j∈JAij(x)}] = [δ{i=j}e−νix] = e
−ν

D
x. Therefore, one sees from

(4.6), (4.9) and (4.10) that

β
(

u1, s
)

=
∞
∑

k=0

∫∞

0
e−stg

D
(t, k)a(t)dt uk1

=
{

sI + ν
D
+ (1 − u)λ

D

}−1
ν

(5.7)

and similarly one has, from (4.7), (4.11) and (4.12),

β∗

D

(

u1, s
)

=
∞
∑

k=0

∫∞

0
e−stA

D
(t)g

D
(t, k)dt uk1

=
{

sI + ν
D
+ (1 − u)λ

D

}−1
.

(5.8)
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It then follows from Theorem 4.1, (5.7)and (5.8) that

ϕ̂
(

u1, 1, 0+, s
)

=
{

I − ˜β(u1, 1, s)
}−1

β∗

D

(

u1, s
)

=
{

I − β(u1, s)
}−1

β∗

D

(

u1, s
)

=
{

sI + ν
D
+ (1 − u)λ

D
− ν
}−1

=
{

sI −Q + (1 − u)λ
D

}−1

,

(5.9)

which coincides with (2.16) as expected.

5.4. Derivation of Renewal Process

In order to demonstrate that a renewal process is a special case of the unified multivariate
counting process, we follow the line of the arguments for the case of Poisson processes.
Namely, let J = {0}, N(t) = N0(t), u0 = 1, v00 = v, w = 0, a0(x) = a(x) and A0(x) =
1 −

∫x

0a(y)dy. From Theorem 4.1, one has

ϕ0(1, v, 0+, s) =
1

1 − vβ(1, s)β
∗(1, s)

=
1

1 − v
∫∞

0 e
−sta(t)dt

×
∫∞

0
e−stA(t)dt

=
1

1 − vα(s) ·
1 − α(s)

s
,

(5.10)

which agrees with (2.19).

5.5. Derivation of MRP

Let ˜N
(t) = [˜N
0(t), . . . ,˜N
J(t)] be an MRP discussed in Section 2.5. We recall that ˜N
r(t)
describes the number of entries of the semi-Markov process into state r in (0, t] given
that J(0) = 
. For the unified multivariate counting process, Nij(t) counts the number of
transitions from state i to state j in (0, t]. Hence, one has ˜N
r(t) =

∑

i∈JNir(t) provided that
J(0) = 
. Accordingly, we set v = [ṽ01, . . . , ṽr1, . . . , ṽJ1], that is, vir = ṽr for all i ∈ J. With
w = 0+, u = 1, λ
(t) = 0 for all 
 ∈ J, one has β
r(1, s) = α
r(s) and β∗
 = {1 − α
(s)}/s from
(4.6), (4.7) and (4.9) through (4.12), where α
(s) =

∑

r∈J α
r(s). Let ṽ
D

= [δ{
=r}ṽr]. It then
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follows from Theorem 4.1 that

ϕ̂
(

1, v, 0+, s
)

=
{

I − [ṽrα
r(s)]
}−1
×
[

δ{
=r}
1 − α
(s)

s

]

=
{

I − α(s)ṽ
D

}−1
×
[

δ{
=r}
1 − α
(s)

s

]

.

(5.11)

It should be noted that, with ṽ = [ṽ0, . . . , ṽJ]
� and ṽ

˜N(t) =
∏

r∈Jṽ
˜N
r(t)
r , the 
 − r element of

ϕ̂(1, v, 0+, s) in (5.11) can be written as

ϕ̂
r
(

1, v, 0+, s
)

= L
{

E
[

ṽ
˜N(t), J(t) = r | J(0) = 


]}

. (5.12)

We now focus on ˜N
r(t) for 
 = 0, 1, . . . , J . In doing so, let ṽ
D:j

def= [10, . . . , ṽj1j , . . . , 1J]

and define

ψ(ṽr , s)
def=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

L
{

E
[

ṽ
˜Nr(t)
r | J(0) = 0

]}

...

L
{

E
[

ṽ
˜Nr(t)
r | J(0) = J

]}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5.13)

It then follows from (5.11) through (5.13) that

ψ(ṽr , s) = ϕ̂
(

1, ṽ
D:r
, 0+, s

)

1

=
{

I − α(s)ṽ
D:r

}−1
×
[

δ{
=r}
1 − α
(s)

s

]

× 1,
(5.14)

that is, one has

ψ(ṽr , s) =
1
s

{

I − α(s)ṽ
D:r

}−1
×
{

1 − α(s)1
}

. (5.15)

We recall that H
r(t) = E[˜N
r(t)], which can be obtained by differencing ψ(ṽr , s) with
respect to ṽr at ṽr = 1. More formally, one has

∂

∂ṽr
ψ(ṽr , s)

∣

∣

∣

ṽr=1
=

⎡

⎢

⎢

⎢

⎢

⎣

L
{

E
[

˜Nr(t) | J(0) = 0
]}

...

L
{

E
[

˜Nr(t) | J(0) = J
]}

⎤

⎥

⎥

⎥

⎥

⎦

, (5.16)
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which is the rth column of L{H(t)} given in (2.20). By noting that

d

dx

{

I − f(x)
}−1

=
{

I − f(x)
}−1{ d

dx
f(x)

}{

I − f(x)
}−1

, (5.17)

one sees from (5.15) that

∂

∂ṽj
ψ(ṽj , s)

∣

∣

∣

ṽj=1

=
1
s

{

I − α(s)
}−1

⎡

⎢

⎢

⎢

⎣

α0j(s)

0
... 0

αJj(s)

⎤

⎥

⎥

⎥

⎦

{

I − α(s)
}−1{

1 − α(s)1
}

. (5.18)

Since {I − α(s)}−1 =
∑∞

k=0 α(s)
k and α0(s) = I, it can be seen that

{

I − α(s)
}−1{

1 − α(s)1
}

=
∞
∑

k=0

α(s)k
{

1 − α(s)1
}

= 1. (5.19)

Substituting (5.19) into (5.18), one then concludes that

∂

∂ṽj
ψ(ṽj , s)

∣

∣

∣

ṽj=1

=
1
s

{

I − α(s)
}−1

⎡

⎢

⎢

⎢

⎣

α0j(s)

...

αJj(s)

⎤

⎥

⎥

⎥

⎦

. (5.20)

This in turn implies that

[

∂

∂ṽ0
ψ(ṽ0, s)

∣

∣

∣

∣

ṽ0=1
, . . . ,

∂

∂ṽJ
ψ(ṽJ , s)

∣

∣

∣

∣

ṽJ=1

]

=
1
s

{

I − α(s)
}−1

α(s), (5.21)

which agrees with L{H(t)} of (2.20), completing the derivation.

5.6. Derivation of NESMPS

As in Section 2.6, let the state space J of J(t) be decomposed into a set of good states G(/=φ)
and a set of bad states B(/=φ) satisfying J = G∪B and G∩B = φ. The counting process NGB(t)
of Section 2.6 describes the number of entries of J(t) into B by time t. The Laplace transform
generating function of the joint probability of NGB(t), the age process X(t) and J(t) is given
in (2.26).

In the context of the unified multivariate counting process [M(t),N(t)] discussed in
Section 3, one expects to have

NGB(t) =
∑

i∈G

∑

j∈B
Nij(t). (5.22)
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In order to prove (5.22) formally, we set

u = 1; v =

⎡

⎣

1
BB

1
BG

v1
GB

1
GG

⎤

⎦. (5.23)

From (3.7), (4.6), (4.9) and (4.10), one has βij(1, s) = αij(s) so that

˜β
(

1, v, s
)

=

⎡

⎣

α
BB
(s) α

BG
(s)

vα
GB

(s) α
GG

(s)

⎤

⎦, (5.24)

where ˜β(u, v, s) is as given in Theorem 4.1. Similarly, it can be seen from (3.7), (4.7), (4.11)

and (4.12) that β∗i (1, w + s) = {1 − αi(w + s)}/(w + s) and hence

β∗

D

(

1, w + s
)

=
1

w + s

{

I − α
D
(w + s)

}

. (5.25)

Substituting (5.24) and (5.25) into (4.20), it then follows that

ϕ̂
(

1, v,w, s
)

=
1

w + s

{

I − ˜β(1, v, s)
}−1{

I − α
D
(w + s)

}

. (5.26)

By comparing (2.26) with (5.26), (5.22) holds true if and only if

γ
0
(s)
{

I − vβ(s)
}−1

=
{

I − ˜β(1, v, s)
}−1

. (5.27)

In what follows, we prove that (5.27) indeed holds true. From (5.24), one sees that

I − ˜β
(

1, v, s
)

=

⎡

⎢

⎣

χ−1

B
(s) −α

BG
(s)

−vα
GB

(s) χ−1

G
(s)

⎤

⎥

⎦
, (5.28)

where χ
G
(s) and χ

B
(s) are as given in (2.28). We define the inverse matrix of (5.28) by

{

I − ˜β(1, v, s)
}−1

=

⎡

⎣

C
BB
(v, s) C

BG
(v, s)

C
GB

(v, s) C
GG

(v, s)

⎤

⎦. (5.29)
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Since the multiplication of the two matrices in (5.28) and (5.29) yields the identity matrix, it
follows that

χ−1

B
(s)C

BB
(v, s) − α

BG
(s)C

GB
(v, s) = I

BB

χ−1

B
(s)C

BG
(v, s) − α

BG
(s)C

GG
(v, s) = I

BG

−vα
GB

(s)C
BB
(v, s) + χ−1

G
(s)C

GB
(v, s) = I

GB

−vα
GB

(s)C
BG

(v, s) + χ−1

G
(s)C

GG
(v, s) = I

GG
.

(5.30)

Solving the above equations for C
••
(v, s), one has

C
BB
(v, s) = χ

B
(s) + vχ

B
(s)α

BG
(s)χ

G
(s)

×
{

I
GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)
}−1

α
GB

(s)χ
B
(s),

(5.31)

C
BG

(v, s) = χ
B
(s)α

BG
(s)χ

G
(s)

×
{

I
GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)
}−1

,

(5.32)

C
GB

(v, s) = vχ
G
(s)

×
{

I
GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)
}−1

α
GB

(s)χ
B
(s),

(5.33)

C
GG

(v, s) = χ
G
(s)
{

I
GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)
}−1

. (5.34)

We next turn our attention to the left-hand side of (5.27). From (2.29), one sees that

I − vβ(s) =

⎡

⎢

⎣

I
BB

0
BG

−vα
GB

(s)χ
B
(s) I

GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)

⎤

⎥

⎦
. (5.35)

As before, we define the inverse matrix of (5.35) as

{

I − vβ(s)
}−1

=

⎡

⎣

D
BB
(v, s) D

BG
(v, s)

D
GB

(v, s) D
GG

(v, s)

⎤

⎦. (5.36)
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Multiplying the two matrices in (5.35) and (5.36) then yields

D
BB
(v, s) = I

BB

D
BG

(v, s) = 0
BG

−vα
GB

(s)χ
B
(s)D

BB
(v, s) +

{

I
GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)
}

D
GB

(v, s) = 0
GB

−vα
GB

(s)χ
B
(s)D

BG
(v, s) +

{

I
GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)
}

D
GG

(v, s) = I
GG
,

(5.37)

which in turn can be solved for D
••
(v, s) as

D
BB
(v, s) = I

BB
, (5.38)

D
BG

(v, s) = 0
BG
, (5.39)

D
GB

(v, s) = v
{

I
GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)
}−1

α
GB

(s)χ
B
(s), (5.40)

D
GG

(v, s) =
{

I
GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)
}−1

. (5.41)

Let the left-hand side matrix of (5.27) be described as

γ
0
(s)
{

I − vβ(s)
}−1

=

⎡

⎣

Z
BB
(v, s) Z

BG
(v, s)

Z
GB

(v, s) Z
GG

(v, s)

⎤

⎦. (5.42)

From (2.30) and (5.36) through (5.41), one sees that

Z
BB
(v, s) = I

BB
+ α

BB
(s)χ

B
(s) + vχ

B
(s)α

BG
(s)χ

G
(s)

×
{

I
GG
− vα

GB
(s)χ

B
(s)α

BG
(s)χ

G
(s)
}−1

α
GB

(s)χ
B
(s).

(5.43)

From (2.28), one easily sees that χ
B
(s) = I

BB
+ α

BB
(s)χ

B
(s), and hence Z

BB
(v, s) = C

BB
(v, s)

from (5.31). The fact that Z
BG

(v, s) = C
BG

(v, s) is straightforward from (5.32). With χ
G
(s) =

I
GG

+ α
GG

(s)χ
G
(s), one has Z

GB
(v, s) = C

GB
(v, s) from (5.33) and Z

GG
(v, s) = C

GG
(v, s) from

(5.34), completing the proof for (5.27).
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5.7. Derivation of MAP

We recall that an MAP is constructed from an absorbing Markov-chain J∗(t) in continuous
time on J = G ∪ B, with B being a set of absorbing states, governed by ν∗ defined in (2.32). A
replacement Markov-chain J(t) is then generated from J∗(t), where J(t) coincides with J∗(t)
within G starting from a state in G. As soon as J∗(t) reaches state r ∈ B, it is instantaneously
replaced at state j ∈ G with probability p̃rj and the process continues.

In order to deduce an MAP from the unified multivariate counting process
[M(t),N(t)] as a special case, we start from (4.20) in Theorem 4.1, where the underlying
semi-Markov process is now the replacement Marcov chain J(t) discussed above. This
replacement Marcov chain is defined on G governed by ν = C +D with C = [cij] = [νij]i,j∈G
and D = [dij] = [

∑

r∈B νir p̃rj]i,j∈G as in (2.33). We note that βij(1, s) = αij(s) from (3.7), (4.6),
(4.9) and (4.10), and β∗i (1, s) = {1 − αi(s)}/s from (3.7), (4.7), (4.11) and (4.12). Hence, it
follows that

ϕ̂
(

1, v, 0+, s
)

=
{

I −
[

vij · αij(s)
]

}−1
[

δ{i=j} ·
1 − αi(s)

s

]

. (5.44)

Let ν
D

= C
D
+ D

D
as in (2.35). Since J(t) is a Markov chain, the dwell time in state i is

independent of the next state and is exponentially distributed with parameter νi = ci + di.
Consequently, one has

αi(s) =
νi

s + νi
; αij(s) =

cij + dij
νi

αi(s) =
cij + dij
s + νi

. (5.45)

Substituting (5.45) into (5.44) and noting [δ{i=j} · ((1 − αi(s))/s)]−1 = sI + ν
D

, it follows that

ϕ̂
(

1, v, 0+, s
)

=
{

sI −Q + C +D −
[

vij(cij + dij)
]

}−1

, (5.46)

where Q in (2.34) is employed.

As it stands, the Laplace transform generating function of (5.46) describes the matrix
counting process N(t) = [Nij(t)] where vij corresponds to Nij(t). For NMAP(t) of Section 2.7,
it is only necessary to count the number of replacements in (0, t]. Given that state j ∈ G is
visited from the current state i ∈ G, this move is direct withinGwith probability cij/(cij +dij),
and such a move involves replacement with probability dij/(cij + dij). Accordingly, we set

vij =
cij

cij + dij
+

dij

cij + dij
v. (5.47)

Substitution of (5.47) into (5.46) then leads to

ϕ̂
(

1, v, 0+, s
)

=
{

sI −Q + (1 − v)D
}−1

, (5.48)

which coincides with ϕ(v, s) of (2.44), as expected.
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5.8. Derivation of ACPGRP

The age-dependent counting process of Sumita and Shanthikumar [12] has been extended in
this paper where the underlying renewal process is replaced by a semi-Markov process with
state dependent nonhomogeneous hazard functions. Accordingly, the original model can be
treated as a special case of the unified multivariate counting process proposed in this paper
by setting J = {0}, M(t) = M0(t), N(t) = N00(t), X(t) = X0(t), u0 = u, v00 = v. With this
specification, from Theorem 4.1, one sees that

ϕ̂00(u, v,w, s) =
β∗(u,w + s)
1 − vβ(u, s) . (5.49)

It then follows that

π(u, s) = ϕ̂00(u, 1, 0, s) =
β∗(u, s)

1 − β(u, s) , (5.50)

which coincides with Equation (2.53).

6. Asymptotic Analysis

Let A,M and N be arbitrary subsets of the state space J of the underlying semi-Markov
process, and define

MA(t) =
∑

i∈A
Mi(t); NMN(t) =

∑

i∈M

∑

j∈N
Nij(t), (6.1)

where MA(t) describes the total number of items arrived in [0, t] according to the
nonhomogeneous Poisson processes withinA andNMN(t) denotes the number of transitions
from any state inM to any state inN occurred in [0, t]. Appropriate choice of A,M andN
would then enable one to analyze processes of interest in a variety of applications. In the
variable bit rate coding scheme for video transmission explained in Section 1, for example,
one may be interested in the packet arrival stream for a specified mode of the encoder
represented by MA(t). In a reliability model, the underlying semi-Markov process may
describe the state of a production machine. Minimal repair would take place whenever the
system state is in A at the cost of c, while complete overhaul would be forced at the cost
of d if the machine state enters N ⊂ J. The total maintenance cost S(t) is then given by
S(t) = cMA(t) + dNJN(t). A simplified version of this cost structure has been analyzed
by Sumita and Shanthikumar [12] where the underlying semi-Markov process is merely a
renewal process with J = A = N = {1}. The purpose of this section is to study a more
general cost structure specified by

S(t) = cMA(t) + dNMN(t), (6.2)

with focus on the Laplace transform generating function and the related moment asymptotic
behaviors of MA(t),NMN(t) and S(t) based on Theorem 4.1.
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For notational simplicity, we introduce the following vectors and matrices. Let A,M
andN ⊂ J with their compliments defined respectively by AC = J \ A, MC = J \ M and
NC = J \N. The cardinality of a set A is denoted by | A |.

1 =

⎡

⎢

⎢

⎢

⎣

1

...

1

⎤

⎥

⎥

⎥

⎦

∈ R
J+1; 1 =

⎡

⎢

⎢

⎢

⎣

1 · · · 1

...
. . .

...

1 · · · 1

⎤

⎥

⎥

⎥

⎦

∈ R
(J+1)×(J+1), (6.3)

u(A) =
[

ui
]

∈ R
J+1 with ui =

⎧

⎨

⎩

u, if i ∈ A,

1, else;

v(M,N) =
[

vij
]

∈ R
(J+1)×(J+1) with vij =

⎧

⎨

⎩

v, if i ∈ M, j ∈ N,

1, else.

(6.4)

Submatrices of A ∈ R
(J+1)×(J+1) are denoted by

A
A•

=
[

Aij

]

i∈A,j∈J ∈ R
|A|×(J+1);

A
•A

=
[

Aij

]

i∈J,j∈A ∈ R
(J+1)×|A|;

A
MN

=
[

Aij

]

i∈M,j∈N ∈ R
|M|×|N|,

(6.5)

so that one has

A =

⎡

⎣

A
MN

A
MNC

A
MCN

A
MCNC

⎤

⎦, (6.6)

with understanding that the states are arranged appropriately.
LetA

k
=
∫∞

0 x
ka(x)dx, k = 0, 1, 2, . . . . Throughout the paper, we assume that ‖A

k
‖ <∞

for 0 ≤ k ≤ 2. In particular, one has A
0
= A(∞) which is stochastic. The Taylor expansion of

the Laplace transform α(s) is then given by

α(s) = A
0
− sA

1
+
s2

2
A

2
+ o
(

s2
)

. (6.7)

Let e� be the normalized left eigenvector ofA
0

associated with eigenvalue 1 so that e�A
0
= e�

and e�1 = 1.
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We recall from Theorem 4.1 that

ϕ̂
(

u, v,w, s
)

=
{

I − ˜β
(

u, v, s
)

}−1

β∗

D

(

u,w + s
)

, (6.8)

where

˜β
(

u, v, s
)

=
[

vij · βij(ui, s)
]

. (6.9)

From (3.6), (3.7), (4.6), (4.9) and (4.10), one sees that

βij(u, s) =
∫∞

0
e−ste−Li(t)(1−u)aij(t)dt. (6.10)

Similarly, it follows from (3.6), (3.7), (4.7), (4.11) and (4.12) that

β∗i (u, s) =
∫∞

0
e−ste−Li(t)(1−u)Ai(t)dt. (6.11)

The rth order partial derivatives of βij(u, s) and β∗i (u, s) with respect to u at u = 1 are then
given by

ζ r:ij(s)
def=
(

∂

∂u

)r

βij(u, s)
∣

∣

∣

∣

u=1
=
∫∞

0
e−stLri (t)aij(t)dt, r = 1, 2;

ζ∗r:i(s)
def=
(

∂

∂u

)r

β∗i (u, s)
∣

∣

∣

∣

u=1
=
∫∞

0
e−stLri (t)Ai(t)dt, r = 1, 2.

(6.12)

In matrix form, (6.12) can be written as

ζ
r
(s) =

∫∞

0
e−stLr

D
(t)a(t)dt, r = 1, 2;

ζ∗
r:D

(s) =
∫∞

0
e−stLr

D
(t)A

D
(t)dt, r = 1, 2.

(6.13)

Let Φ
r:k

=
∫∞

0 t
kLr

D
(t)a(t)dt and Φ∗

r:D:k
=
∫∞

0 t
kLr

D
(t)A

D
(t)dt, r = 1, 2. The Taylor

expansion of ζ
r
(s) and ζ∗

r:D
(s) is then given by

ζ
r
(s) = Φ

r:0
− sΦ

r:1
+
s2

2
Φ

r:2
+ o
(

s2), r = 1, 2;

ζ∗
r:D

(s) = Φ∗
r:D:0

− sΦ∗
r:D:1

+
s2

2
Φ∗

r:D:2
+ o
(

s2), r = 1, 2.

(6.14)
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In order to prove the main results of this section, the following theorem of Keilson [23]
plays a key role.

Theorem 6.1 (Keilson [23]). As s → 0+, one has

{

I − α(s)
}−1

=
1
s

H
1
+H

0
+ o(1), (6.15)

where

H
1
=

1
m

1 e�, m = e�A
1
1,

H
0
= H

1

(

−A
1
+

1
2
A

2
H

1

)

+
(

Z
0
−H

1
A

1
Z

0

)(

A
0
−A

1
H

1

)

+ I,

Z
0
=
(

I −A
0
+ 1 · e�

)−1
.

(6.16)

We are now in a position to prove the first key theorem of this section.

Theorem 6.2. Let p�(0) be an initial probability vector of the underlying semi-Markov process. As
t → ∞, one has

E[MA(t)] = p�(0)
{

tP
1
+ P

0

}

1 + o(1),

E[NMN(t)] = p�(0)
{

tQ
1
+Q

0

}

1 + o(1),
(6.17)

where

P
1
= H

1:•A
Φ

1:0:A•
, P

0
= H

0:•A
Φ

1:0:A•
−H

1:•A
Φ

1:1:A•
+H

1:•A
Φ∗

1:D:0:A•
,

Q
1
= H

1:•M

[

A
0:MN

, 0
MNC

]

,

Q
0
= H

0:•M

[

A
0:MN

, 0
MNC

]

−H
1:•M

[

A
1:MN

, 0
MNC

]

.

(6.18)

Proof. We first note from (6.8) together with (6.4) that

L
{

E
[

uMA(t)
]}

= p�(0)ϕ̂
(

u(A), 1, 0, s
)

1;

L
{

E
[

vNMN(t)
]}

= p�(0)ϕ̂
(

1, v(M,N), 0, s
)

1.
(6.19)
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By taking the partial derivatives of (6.19) with respect to u at u = 1 and v at v = 1 respectively,
one has

L{E[MA(t)]} = p�(0)
{

I − α(s)
}−1

⎧

⎨

⎩

1
s

⎡

⎣

ζ
1:A•

(s)

0
AC•

⎤

⎦ +

⎡

⎣

ζ∗
1,D:A•

(s)

0
AC•

⎤

⎦

⎫

⎬

⎭

1;

L{E[NMN(t)]} =
1
s

p�(0)
{

I − α(s)
}−1

⎡

⎣

α
MN

(s) 0
MNC

0
MCN

0
MCNC

⎤

⎦1.

(6.20)

Theorem 6.1 of Keilson [23] combined with (6.7), (6.13) then yields the Laplace transform
expansions of (6.20), and the theorem follows by taking the inversion of the Laplace
transform expansions.

The next theorem can be shown in a similar manner by differentiating (6.19) twice
with respect to u at u = 1 and v at v = 1 respectively, and proof is omitted.

Theorem 6.3. As t → ∞, one has

E[MA(t)(MA(t) − 1)] = p�(0)
{

t2P 2
1
+ t
(

2P
1
P

0
+ 2 ̂P

0
P

1
+ P

2

)}

1 + o(t);

E[NMN(t)(NMN(t) − 1)] = p�(0)
{

t2Q2

1
+ 2t

(

Q
1
Q

0
+Q

0
Q

1

)}

1 + o(t),
(6.21)

where ̂P
0
= H

0:•A
Φ

1:0:A•
− H

1:•A
Φ

1:1:A•
, P

2
= H

1:•A
Φ

2:0:A•
and other matrices are as defined in

Theorem 6.2.

Theorems 6.2 and 6.3 then lead to the following theorem providing the asymptotic
expansions of Var[MA(t)] and Var[NMN(t)].

Theorem 6.4. As t → ∞, one has

Var[MA(t)] = tp�(0) U
0
1 + o(t),

Var[NMN(t)] = tp�(0) V
0
1 + o(t),

(6.22)

where

U
0
= 2P

1
P

0
+ P

1
− P

1
1 · p�(0)P

0
+ 2 ̂P

0
P

1
− P

0
P

1
+ P

2
;

V
0
= 2Q

1
Q

0
+Q

1
−Q

1
1 · p�(0)Q

0
+Q

0
Q

1
.

(6.23)
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Proof. It can be readily seen that

Var[X] = E[X]2 − E[X]2 = E[X(X − 1)] + E[X] − E[X]2. (6.24)

Substituting the results of Theorems 6.2 and 6.3 into this equation, one sees that

Var[MA(t)] = p�(0)
{

t2U
1
+ tU

0

}

1 + o(t),

Var[NMN(t)] = p�(0)
{

t2V
1
+ tV

0

}

1 + o(t),
(6.25)

where

U
1
= P

1

(

P
1
− 1 · p�(0)P

1

)

,

U
0
= 2 P

1
P

0
+ P

1
− P

1
1 · p�(0)P

0
+ 2 ̂P

0
P

1
− P

0
1 · p�(0)P

1
+ P

2
;

V
1
= Q

1

(

Q
1
− 1 · p�(0)Q

1

)

,

V
0
= 2 Q

1
Q

0
+Q

1
−Q

1
1 · p�(0)Q

0
+ 2Q

0
Q

1
−Q

0
1 · p�(0)Q

1
.

(6.26)

From Theorem 6.1, one has H
1
= (1/m)1 e� which is of rank one having identical rows. As

can be seen from Theorem 6.2, both P
1

and Q
1

satisfy

1 · p�(0)P
1
= P

1
, 1 · p�(0)Q

1
= Q

1
, (6.27)

so that U
1
= V

1
= 0 and the theorem follows.

The asymptotic behavior of E[S(t)] can be easily found from (6.2) and Theorem 6.2.
The asymptotic expansion of Var[S(t)], however, requires a little precaution because it
involves the joint expectation of MA(t) and NMN(t). More specifically, one has

Var[S(t)] = E
[

S(t)2
]

− E[S(t)]2

= E
[

{cMA(t) + dNMN(t)}2
]

− E[cMA(t) + dNMN(t)]
2

= c2E
[

M2
A(t)

]

+ 2cdE[MA(t)NMN(t)] + d2E
[

N2
MN(t)

]

− c2E[MA(t)]
2 − 2cdE[MA(t)]E[NMN(t)] − d2E[NMN(t)]

2,

(6.28)
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so that

Var[S(t)] = c2 Var[MA(t)] + d2 Var[NMN(t)]

+ 2cdE[MA(t)NMN(t)] − 2cdE[MA(t)]E[NMN(t)].
(6.29)

In order to evaluate E[MA(t)NMN(t)], we note from (6.8) that

L{E[MA(t)NMN(t)]} = p�(0)
[

∂2

∂u∂v
ϕ̂(u(A), v(M,N), 0+, s)

∣

∣

∣

∣

u=v=1

]

1. (6.30)

The asymptotic expansion of E[MA(t)NMN(t)] can then be obtained as for the previous
theorems.

Theorem 6.5. As t → ∞, one has

E[MA(t)NMN(t)] = p�(0)

{

t2

2
T

1
+ tT

0

}

1 + o(t), (6.31)

where

T
1
= P

1
Q

1
+Q

1
P

1
, T

0
= ̂P

0
Q

1
+ P

1
Q

0
+ R +Q

0
P

1
+Q

1
P

0
,

R = H
1:•,(A∩M)

[

Φ
1:0:(A∩M),N

, 0
(A∩M),NC

]

.

(6.32)

Now the key theorem of this section is given from (6.29), Theorems 6.2, 6.4 and 6.5.

Theorem 6.6. As t → ∞, one has

E[S(t)] = p�(0)
{

t

(

cP
1
+ d Q

1

)

+ cP
0
+ dQ

0

}

1 + o(1), (6.33)

Var[S(t)] = tp�(0) W
0
1 + o(t), (6.34)

whereW
0
= c2U

0
+ d2V

0
+ 2cd T

0
− 2cd(P

1
1 · p�(0)Q

0
+ P

0
1 · p�(0)Q

1
).
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Figure 3: Mean of M(t) per unit time.

0
1

2

3

4

5

10
8

6
4

2
0 0

20
40 60

80
100

J Time

Asymptotic behavior of E[N(t)] per unit time: IFR

(a)

0
0.5

1
1.5

2
2.5

3
3.5

10
8

6
4

2
0 0

20
40 60

80
100

J Time

Asymptotic behavior of E[N(t)] per unit time: DFR

(b)

Figure 4: Mean of N(t) per unit time.

Proof. Equation (6.33) follows trivially from Theorem 6.2. For (6.34), we note from Theorems
6.2, 6.4 and 6.5 together with (6.29) that

Var[S(t)] = p�(0)
{

t2W
1
+ tW

0

}

1 + o(t), (6.35)

where

W
1
= cd T

1
− 2cd P

1
1 · p�(0)Q

1
,

W
0
= c2U

0
+ d2V

0
+ 2cd T

0
− 2cd

(

P
1
1 · p�(0)Q

0
+ P

0
1 · p�(0)Q

1

)

.

(6.36)
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From (6.27), the first term on the right-hand side of Equation (6.35) can be rewritten as

cd p�(0) T
1

1 − 2cd p�(0) P
1
1 · p�(0) Q

1
1

= cd p�(0)
(

P
1
Q

1
+Q

1
P

1

)

1 − 2cd
(

p�(0) P
1
1
)

(

p�(0) Q
1

1
)

= cd
(

p�(0) P
1
Q

1
1 + p�(0) Q

1
P

1
1
)

− 2cd
(

p�(0) P
1
1
)

(

p�(0) Q
1

1
)

= cd
{

(

p�(0) P
1
1
)

(

p�(0) Q
1

1
)

+
(

p�(0) Q
1

1
)

(

p�(0) P
1
1
)

}

− 2cd
(

p�(0) P
1
1
)

(

p�(0) Q
1

1
)

= 0,

(6.37)

completing the proof.

7. Dynamic Analysis of a Manufacturing System for
Determining Optimal Maintenance Policy

As an application of the unified multivariate counting process, in this section, we consider
a manufacturing system with a certain maintenance policy, where the system starts anew
at time t = 0, and tends to generate product defects more often as time goes by. When the
system reaches a certain state, the manufacturing system would be overhauled completely
and the system returns to the fresh state. More specifically, let J(t) be a semi-Markov process
on J = {0, 1, 2, . . . , J} governed by A(x), describing the system state at time t where state 0 is
the fresh state and state J is the maintenance state. When the system is in state j, 0 ≤ j ≤ J − 1,
product defects are generated according to an NHPP with intensity λj(x). It is assumed that
the system deteriorates monotonically and accordingly λj(x) increases as a function of both
x and j. When the system reaches state J , the manufacturing operation is stopped and the
system is overhauled completely. The maintenance time increases stochastically as a function
of J . In other words, the further the maintenance is delayed, the longer the maintenance time
would tend to be. Upon finishing the overhaul, the system is brought back to the fresh state
0. Of interest, then, is to determine the optimal maintenance policy concerning how to set J .

In order to determine the optimal maintenance policy, it is necessary to define the
objective function precisely. Let ψd be the cost associated with each defect and let ψm be the
cost for each of the maintenance operation. If we define two counting processes M(t) and
N(t) as the total number of defects generated by time t and the number of the maintenance
operations occurred by time t respectively, the total cost in [0, T] can be described as

CJ(T) = ψd · E[M(T)] + ψm · E[N(T)]. (7.1)

Let N be the set of natural numbers. The optimal maintenance policy J∗ is then determined
by

CJ∗(T) = min
J∈N

CJ(T). (7.2)
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Table 1: Parameters of the numerical example.

Parameter Value
J 1, 2, . . . , 9

λ(x) [. . . , 3j2x2, . . .]�

A {0, 1, . . . , J − 1}

M {J − 1}

N {J}

M(t)
∑

i∈AMi(t)

N(t)
∑

i∈M,j∈NNij(t)

Θ(i, j)
√

exp(i − 7.9) + exp(7.9 − j)

̂Θ(i, j)
1

exp(i + j − 5)
+

1
2

θ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Θ(0,0) Θ(0,1) 0 ··· 0

0
...

. . . 0
...

... 0 Θ(i,i) Θ(i,i+1) 0

0
...

. . .
. . .

Θ(J,J+1) 0 ··· 0 Θ(J,J)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

̂θ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂Θ(0,0) ̂Θ(0,1) 0 ··· 0

0
...

. . . 0
...

... 0 ̂Θ(i,i) ̂Θ(i,i+1) 0

0
...

. . .
. . .

̂Θ(J,J+1) 0 ··· 0 ̂Θ(J,J)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ψd 10
ψm 1000
T 1000

In what follows, we present a numerical example by letting J = {0, 1, . . . , J} for
1 ≤ J ≤ 9. For the underlying semi-Markov process, we define the matrix Laplace transform
α(s) having IFR (Increasing Failure Rate) and DFR (Decreasing Failure Rate) dwell time
distributions as described below, where the underlying parameters are set in such a way that
the means of IFR dwell times are equal to those of DFR dwell times. By introducing matrices
θ, ̂θ and p, for which the details are given in Table 1 along with other parameter values, we
define

α
IFR

(s) =

⎡

⎣

θii
s + θii

·
θij

s +
∑J

j=0 θij

⎤

⎦,

α
DFR

(s) =

⎡

⎣pi ·
θij

s +
∑J

j=0 θij
+
(

1 − pi
)

·
̂θij

s +
∑J

j=0
̂θij

⎤

⎦,

(7.3)
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Figure 5: Optimal maintenance policy: IFR versus DFR with T = 1000.

Table 2: Results of the problem of determining optimal maintenance policy.

Maintenance policy J Total cost Mean of N(t)
IFR 1 4558439.7050 4558.4281

2 2249788.3693 2249.6796
3 1226609.0459 1225.9839
4 703523.0084 700.5894
5 423335.3246 411.0384
6 294670.0741 246.5977
7 337391.4590 156.3405
8 729034.3960 113.8727
9 1319510.6644 95.4171

DFR 1 2855729.2399 2855.7277
2 1706004.8495 1705.8080
3 1055886.1726 1051.3492
4 722164.3163 651.5757
5 663418.1912 406.685
6 790848.6824 258.8155
7 1110782.8637 172.8299
8 1708966.7374 125.8760
9 2544519.3472 103.9733

where

pi =

((

θii +
∑J

j=0 θij
)

/
(

θii ·
∑J

j=0 θij
)

− 1/
∑J

j=0
̂θij
)

(

1/
∑J

j=0 θij − 1/
∑J

j=0
̂θij
) ,

J
∑

j=0

θij /=
J
∑

j=0

̂θij . (7.4)
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Based on Theorem 6.2, the asymptotic behaviors of the mean of M(t) and N(t) per
unit time with maintenance policy J = 1, . . . , 9 are depicted in Figures 3 and 4. One could
see that both the mean of M(t) and N(t) per unit time converges to a positive value as time
t increases. In order to determine the optimal maintenance policy, for J ∈ {1, 2, . . . , 9}, the
corresponding total cost CJ(T) can be computed based on Theorem 6.6. Numerical results
are shown in Table 2 and depicted in Figure 5. For the case of IFR, the optimal maintenance
policy is at J∗ = 6, while J∗ = 5 for the DFR case, where the running period T is taken to be
T = 1000 hours.

8. Concluding Remarks

In this paper, a unified multivariate counting process [M(t),N(t)] is proposed with
nonhomogeneous Poisson processes lying on a finite semi-Markov process. Here the vector
process M(t) counts the cumulative number of such nonhomogeneous Poisson arrivals at
every state and the matrix process N(t) counts the cumulative number of state transitions
of the semi-Markov process in [0, t]. This unified multivariate counting process contains
many existing counting processes as special cases. The dynamic analysis of the unified
multivariate counting process is given, demonstrating the fact that the existing counting
processes can be treated as special cases of the unified multivariate counting process. The
asymptotic behaviors of the mean and the variance of the unified multivariate counting
process are analyzed. As an application, a manufacturing system with certain maintenance
policies is considered. The unified multivariate counting process enables one to determine
the optimal maintenance policy minimizing the total cost. Numerical examples are given
with IFR and DFR dwell times of the underlying semi-Markov process. As for the future
agenda, the impact of such distributional properties on the optimal maintenance policy
would be pursued theoretically. Other possible theoretical extensions include: (1) analysis
of the reward process associated with the unified multivariate counting process; and
(2) exploration of further applications in the areas of modern communication networks
and credit risk analysis such as CDOs (collateralized debt obligations) for financial
engineering.
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[11] S. Özekici and R. Soyer, “Semi-Markov modulated Poisson process: probabilistic and statistical
analysis,” Mathematical Methods of Operations Research, vol. 64, no. 1, pp. 125–144, 2006.

[12] U. Sumita and J. G. Shanthikumar, “An age-dependent counting process generated from a renewal
process,” Advances in Applied Probability, vol. 20, no. 4, pp. 739–755, 1988.

[13] B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. D. Robbins, “Performance models of statistical
multiplexing in packet video communications,” IEEE Transactions on Communications, vol. 36, no. 7,
pp. 834–844, 1988.

[14] S. Karlin and H. M. Taylor, A First Course in Stochastic Processes, Academic Press, New York, NY, USA,
2nd edition, 1975.

[15] S. M. Ross, Stochastic Processes, Wiley Series in Probability and Statistics: Probability and Statistics,
John Wiley & Sons, New York, NY, USA, 2nd edition, 1996.

[16] H. Heffes and D. M. Lucantoni, “A Markov modulated characterization of packetized voice and
data traffic and related statistical multiplexer performance,” IEEE Journal on Selected Areas in
Communications, vol. 4, no. 6, pp. 856–868, 1986.

[17] K. Sriram and W. Whitt, “Characterizing superposition arrival processes in packet multiplexers for
voice and data,” IEEE Journal on Selected Areas in Communications, vol. 4, no. 6, pp. 833–846, 1986.

[18] D. Y. Burman and D. R. Smith, “An asymptotic analysis of a queueing system with Markov-
modulated arrivals,” Operations Research, vol. 34, no. 1, pp. 105–119, 1986.

[19] C. Knessl, B. J. Matkowsky, Z. Schuss, and C. Tier, “A Markov-modulated M/G/1 queue. I. Stationary
distribution,” Queueing Systems, vol. 1, no. 4, pp. 355–374, 1987.

[20] M. F. Neuts, U. Sumita, and Y. Takahashi, “Renewal characterization of Markov modulated Poisson
processes,” Journal of Applied Mathematics and Simulation, vol. 2, no. 1, pp. 53–70, 1989.

[21] D. R. Cox, Renewal Theory, Methuen, London, UK, 1962.
[22] J. Keilson, “A limit theorem for passage times in ergodic regenerative processes,” Annals of

Mathematical Statistics, vol. 37, pp. 866–870, 1966.
[23] J. Keilson, “On the matrix renewal function for Markov renewal processes,” Annals of Mathematical

Statistics, vol. 40, pp. 1901–1907, 1969.
[24] J. Keilson and D. M. G. Wishart, “A central limit theorem for processes defined on a finite Markov

chain,” Proceedings of the Cambridge Philosophical Society, vol. 60, pp. 547–567, 1964.
[25] J. Keilson and D. M. G. Wishart, “Boundary problems for additive processes defined on a finite

Markov chain,” Proceedings of the Cambridge Philosophical Society, vol. 61, pp. 173–190, 1965.
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