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The main result in this paper is the determination of the Fréchet derivative of an analytic function
of a bounded operator, tangentially to the space of all bounded operators. Some applied problems
from statistics and numerical analysis are included as a motivation for this study. The perturbation
operator (increment) is not of any special form and is not supposed to commute with the
operator at which the derivative is evaluated. This generality is important for the applications.
In the Hermitian case, moreover, some results on perturbation of an isolated eigenvalue, its
eigenprojection, and its eigenvector if the eigenvalue is simple, are also included. Although
these results are known in principle, they are not in general formulated in terms of arbitrary
perturbations as required for the applications. Moreover, these results are presented as corollaries
to the main theorem, so that this paper also provides a short, essentially self-contained review of
these aspects of perturbation theory.
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1. Introduction

Motivated by certain applications in numerical analysis and, in particular, statistics, this
paper deals with the Fréchet derivative of an analytic function ϕ of a bounded linear operator
T on a separable Hilbert space H (in the sense of the usual functional calculus), tangentially
to the Banach space L of all bounded linear operators mapping H into itself. More precisely,
a first order approximation to the difference

ϕ
(
T̃
) − ϕ(T), T̃ = T + Π, Π ∈ L, (1.1)
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is obtained, including the order ofmagnitude of the remainder. An example of such a function
ϕ is a generalized or regularized inverse of the square root

ϕ(T̃) =
(
αI + T̃

)−1/2
, α > 0, (1.2)

where I is the identity operator. Once the Fréchet derivative has been established (Section 2),
it yields the asymptotic distribution of functions of certain random operators via an ensuing
delta method : a well-known statistical technique (see Section 4).

Clearly T̃ can be regarded as a perturbed version of T , and it is not surprising that
perturbation methods are employed to obtain the desired result. The authors are aware
of the possibility that the rather straightforward result on the Fréchet derivative might be
hidden somewhere in the rich literature on perturbation theory [1–3]. Yet they have not been
successful in identifying a reference that states the result in its present form, tailored to the
applications they have in mind. Some remarks are particularly in order.

(a) The perturbations Π are typically of small norm but otherwise arbitrary bounded
or Hermitian. In literature, they are often of the form

Π = εT1 + ε2T2 + · · · (1.3)

for operators T1, T2, . . ., and a small number ε. In statistics, there is no point in
representing the perturbation in such a form.

(b) The perturbationΠ and the operator T are not assumed to commute, because in our
applications such an assumption would not in general be fulfilled. If the operators
do commute, however, the Fréchet derivative would reduce to ϕ′(T), in the sense
of functional calculus with ϕ′ the derivative of ϕ. In the case considered here, the
actual Fréchet derivative and ϕ′(T)may differ considerably.

(c) A central theme in perturbation theory concerns the perturbation of an isolated
eigenvalue and corresponding eigenprojection (see, e.g, the references mentioned
before). Some of the results are included, because they can be easily derived
from the main result on the Fréchet derivative by choosing a special function ϕ
(Section 3). In this way, the paper presents a concise and essentially self-contained
review of some basic results in this area. They are again presented in terms of a
general (Hermitian) perturbation Π, as being required for statistical application, in
the same vein as, but somewhat more general than, Dauxois et al. [4].

As has already been mentioned in the beginning, H will be a separable Hilbert space
and L the Banach space of all bounded linear operators mapping H into itself. The inner
product on H will be denoted by 〈·, ·〉 and the norm by ‖ · ‖. The norm on L will be written
‖ · ‖L, and the notation LH and CH will be used to denote the subspace of all Hermitian and
all compact Hermitian operators, respectively.

We will exclusively deal with infinite dimensional Hilbert spaces and will not attempt
to include the simpler finite dimensional case in our formulation. The Fréchet derivative
for arbitrary perturbations is well known in the finite dimensional matrix case. This result
and further references can be found in the recent monograph by Bhatia [5]. In the finite
dimensional case, this derivative is also implicitly present in Theorem 2.1 of Ruymgaart and
Yang [6] to obtain the asymptotic distribution of a function of a random matrix.
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2. The Fréchet Derivative

Let us fix an arbitrary T ∈ L with spectrum σ(T) and a bounded open region Ω ⊂ C in the
complex plane with smooth boundary Γ = ∂Ω, such that

σ(T) ⊂ Ω, δΓ = dist
(
Γ, σ(T)

)
> 0. (2.1)

Furthermore, let us consider functions of type

ϕ : D −→ C, analytic, (2.2)

where D ⊃ Ω is an open neighborhood of Ω. Let us write

MΓ = max
z∈Γ

∣∣ϕ(z)
∣∣ <∞ , LΓ = length of Γ <∞. (2.3)

The resolvent

R(z) = (zI − T)−1, z ∈ ρ(T) , (2.4)

is analytic on the resolvent set ρ(T) =
[
σ(T)

]c, and the operator

ϕ(T) =
1

2πi

∮

Γ
ϕ(z)R(z)dz (2.5)

is well defined. This relation establishes an algebra homomorphism [7, Section 17.2] which
implies in particular that

ϕ(T)ψ(T) = (ϕψ)(T), (2.6)

if ψ : D → C is also analytic. In particular, we have

T =
1

2πi

∮

Γ
zR(z)dz. (2.7)

The operators

ϕ′
TΠ =

1
2πi

∮

Γ
ϕ(z)R(z)ΠR(z)dz, (2.8)

Sϕ,Π =
1

2πi

∮

Γ
ϕ(z)R(z)

(
ΠR(z)

)2(
I −ΠR(z)

)−1
dz (2.9)
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are well defined for every Π ∈ L sufficiently small. Note that according to Dunford and
Schwartz [8, Lemma VII.6.11], there is a constant 0 < K <∞, such that

∥
∥R(z)

∥
∥
L ≤ K

δΓ
, ∀z ∈ Ωc. (2.10)

Theorem 2.1 (Fréchet Derivative). Let T ∈ L and suppose that ϕ satisfies (2.2). Then ϕ maps the
neighborhood {T̃ = T +Π : Π ∈ L, ‖Π‖L ≤ cδΓ/K, for some 0 < c < 1} into L, when defined in the
usual way of functional calculus. This mapping is Fréchet differentiable at T , tangentially to L, with
bounded derivative ϕ′

T : L → L, as defined by (2.8). More specifically, we have

ϕ(T + Π) = ϕ(T) + ϕ′
TΠ + Sϕ,Π , (2.11)

where Sϕ,Π is defined in (2.9) and

∥∥ϕ′
TΠ

∥∥
L ≤ 1

2π
MΓLΓ

(
K

δΓ

)2

‖Π‖L, (2.12)

‖Sϕ,Π‖L ≤ 1
2(1 − c)πMΓLΓ

(
K

δΓ

)3

‖Π‖2L. (2.13)

Proof. For ϕ to be well defined on the neighborhood, let us first show that

σ(T̃) ⊂ Ω, ∀Π ∈ L with ‖Π‖L ≤ cδΓ
K
. (2.14)

To verify this, note that by (2.10) we have ‖ΠR(z)‖L < c for such Π. Consequently, the
operator

R(z)(I −ΠR(z))−1 = R(z){(R(z)−1 −Π)R(z)}−1

= (zI − T −Π)−1 = R̃(z)
(2.15)

is bounded for each z ∈ Ωc, which entails (2.14). Hence,

ϕ(T̃) =
1

2πi

∮

Γ
ϕ(z)R̃(z)dz (2.16)

is well defined for Π with ‖Π‖L ≤ cδΓ/K.
Applying a Neumann series expansion [9, Section 5.2] to the inverse on the left in

(2.15), we obtain

R̃(z) = R(z)
{
I + ΠR(z) +

(
ΠR(z)

)2 + · · ·
}

= R(z) + R(z)ΠR(z) + R(z)
(
ΠR(z)

)2(
I −ΠR(z)

)−1
,

(2.17)

just as in Watson [10] for matrices. Term-wise integration yields (2.11).



International Journal of Mathematics and Mathematical Sciences 5

The upper bounds in (2.12) and (2.13) are immediate from (2.8) and (2.9), respectively,
by exploiting (2.3) and (2.15). The boundedness of ϕ′

T as a linear operator mapping L into
itself follows at once from (2.12).

Remark 2.2. It will be seen in Section 4 that for the applications we have inmind it is important
that we do not require that T and Π commute. If they do, however, it is clear that the Fréchet
derivative in (2.8) reduces to

ϕ′
TΠ =

{
1

2πi

∮

Γ
ϕ(z)R2(z)dz

}
Π. (2.18)

It has been shown in Dunford and Schwartz [8, proof of Theorem VII.6.10] that

1
2πi

∮

Γ
ϕ(z)R2(z)dz =

1
2πi

∮

Γ
ϕ′(z)R(z)dz. (2.19)

Combination of (2.11) with (2.18) and (2.19) yields

ϕ(T + Π) = ϕ(T) + ϕ′(T)Π +O(‖Π‖2L
)
, (2.20)

writing, for any r > 0,

O(‖Π‖rL
)
, as ‖Π‖L −→ 0, (2.21)

to indicate any quantity (operator, vector, number) whose norm or absolute value is of the
given order. Note that in (2.20) the operator, ϕ′(T) is to be understood in the sense of the
usual functional calculus as in (2.5) with ϕ replaced by its derivative ϕ′.

In this situation of commuting operators, Dunford and Schwartz [8] obtain the Taylor
expansion

ϕ(T + Π) =
∞∑

n=0

ϕ(n)(T)
n!

Πn, (2.22)

which implies, of course, (2.20).
Keeping the perturbation as before, we now restrict T to the class CH of compact

Hermitian operators. The bounded and countable spectrum consists of the number 0, whether
an eigenvalue or not, and all the nonzero eigenvalues λ1, λ2, . . . ∈ R. In this work, we avoid
technical issues related to λ = 0 being an eigenvalue, and assume that T is one-to-one, that is,
Tf = 0 implies that f = 0. It is well known [7] that such a T can be represented as

T =
∞∑

j=1

λjPj , (2.23)
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where the Pj are the corresponding orthogonal eigenprojections onto themutually orthogonal
finite dimensional eigenspaces. These projections provide a resolution of the identity in H,
that is,

IH =
∞∑

j=1

Pj. (2.24)

The resolvent has the expansion

R(z) =
∞∑

j=1

1
z − λj Pj , z ∈ ρ(T). (2.25)

Corollary 2.3. Let the conditions of Theorem 2.1 be fulfilled for T ∈ CH with expansion (2.23). In
this case the Fréchet derivative ϕ′

T : L → L is given by

ϕ′
TΠ =

∑

j

ϕ′(λj
)
PjΠPj +

∑∑

j /= k

ϕ
(
λk

) − ϕ(λj
)

λk − λj PjΠPk, Π ∈ L. (2.26)

Proof. Let us substitute the expansion (2.25) for R(z) into the expression for ϕ′
TΠ in (2.8).

Application of the partial fraction method yields

ϕ′
TΠ =

∑

j

∑

k

{
1

2πi

∮

Γ

ϕ(z)
(
z − λj

)(
z − λk

)dz
}
PjΠPk

=
∑

j

{
1

2πi

∮

Γ

ϕ(z)

(z − λj)2
dz

}
PjΠPj

+
∑∑

j /= k

[
1

λk − λj
1

2πi

∮

Γ

{
ϕ(z)

(z − λk) −
ϕ(z)

(z − λj)
}
dz

]
PjΠPk.

(2.27)

The right-hand side of (2.27) reduces at once to the expression on the right in (2.26) by an
application of Cauchy’s integral formula.

Example 2.4. The function ϕ(z) = z, z ∈ C, is analytic on the entire complex plane so that
Corollary 2.3 applies. The Fréchet derivative in (2.26) now reduces to

ϕ′
TΠ =

∑

j

∑

k

PjΠPk = Π, (2.28)

Π ∈ L. Of course this result is immediate because in this simple case ϕ(T + Π) = T + Π =
ϕ(T) + Π.

Example 2.5. Next let us, for p > 0, consider the function

ϕα(z) = (α + z)−p, α > δΓ > 0, (2.29)
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for z/= − α. Note that the choice of α ensures that the pole at z = −α remains outside the
contour Γ. Clearly there exists an open region Ω of the type required, such that ϕ is analytic
on some open neighborhoodD ofΩ. Hence Corollary 2.3 applies again. The operator ϕα(T) =
(αI + T)−p represents a regularized or generalized inverse of Tikhonov type, according to
whether T is injective or not. The Fréchet derivative in (2.26) now equals

ϕ′
α,TΠ = −p

∑

j

1
(
α + λj

)p+1PjΠPj +
∑∑

j /= k

(
α + λj

)p − (
α + λk

)p
(
λk − λj

)(
α + λj

)p(
α + λk

)p PjΠPk, (2.30)

for Π ∈ L.

Remark 2.6. For T ∈ CH , T and Π commuting the double sum on the right in (2.26) cancels
and we obtain

ϕ′
TΠ =

∑

j

ϕ′(λj
)
PjΠ, (2.31)

in accordance with (2.20). Apparently, the double sum is a correction term needed when T
and Π do not commute.

3. Perturbation of Eigenvalues and Eigenvectors

Throughout this section, both T andΠ are assumed to be Hermitian, so that also T +Π ∈ LH .
In addition to this, we assume that

T ∈ LH has an isolated eigenvalue λ1, (3.1)

with one-dimensional eigenspace. Consequently, the eigenprojection can be written

P1 = p1 ⊗ p1, for some p1 ∈ H with
∥∥p1

∥∥ = 1, (3.2)

where for a, b ∈ H the operator a ⊗ b is defined by (a ⊗ b)x = 〈x, b〉a, x ∈ H.
The region Ω ⊃ σ(T) will now be chosen in such a way that it has a connected

component Ω1 with the properties

Ω1 ∩ σ(T) = λ1, dist(Ω1, Ω \Ω1) > 0. (3.3)

A special analytic function ϕ1 : D → C such that

ϕ1(z) = 1, z ∈ Ω1, ϕ1(z) = 0, z ∈ Ω0 = Ω \Ω1, (3.4)

will play an important role in the sequel. Note, for instance, that

ϕ1(T) = P1. (3.5)
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For the Fréchet derivative of ϕ1(T̃) at T , a special expression can be obtained. Let us
write

T = λ1P1 + T0, (3.6)

where T0 is Hermitian with spectrum σ(T0) ⊂ Ω0. According to the spectral theorem, there
exists a resolution of the identity E(λ), λ ∈ σ(T0), such that

T0 =
∫

σ(T0)
λdE(λ). (3.7)

It should be noted that

P1E(λ) = E(λ)P1 = O, ∀λ ∈ σ(T0), (3.8)

where O is the zero operator, and that

R(z) =
1

z − λ1P1 +
∫

σ(T0)

1
z − λdE(λ). (3.9)

Let us define

Q1 =
∫

σ(T0)

1
λ1 − λdE(λ). (3.10)

Lemma 3.1. The Fréchet derivative of ϕ1(T̃) at T is given by

ϕ′
1,TΠ = P1ΠQ1 +Q1ΠP1, Π ∈ LH. (3.11)

Proof. This follows by substitution of (3.9) in the expression on the right in

ϕ′
1,TΠ =

1
2πi

∮

Γ1
R(z)ΠR(z)dz, Γ1 = ∂Ω1, (3.12)

for this derivative; see also (2.8). We thus obtain

ϕ′
1,TΠ =

1
2πi

∮

Γ1

1
(
z − λ1

)2P1ΠP1dz

+
1

2πi

∮

Γ1

1
z − λ1P1Π

{∫

σ(T0)

1
z − λdE(λ)

}
dz

+
1

2πi

∮

Γ1

{∫

σ(T0)

1
z − λdE(λ)

}
Π

1
z − λ1P1dz

+
1

2πi

∮

Γ1

{∫

σ(T0)

1
z − λdE(λ)

}
Π
{∫

σ(T0)

1
z − μdE(μ)

}
.

(3.13)
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By Cauchy’s integral formula

1
2πi

∮

Γ1

1
(
z − λ1

)2dz = ϕ′
1

(
λ1
)
= 0, (3.14)

so that the first term on the right side in (3.13) is the zero operator. Regarding the second,
note that

1
2πi

∮

Γ1

1
(
z − λ1

)
(z − λ)dz =

1
λ1 − λ

(
1

2πi

∮

Γ1

1
z − λ1dz −

1
2πi

∮

Γ1

1
z − λdz

)
=

1
λ1 − λ, (3.15)

because each λ ∈ σ(T0) lies outside the contour Γ1. Consequently, the second term equals

P1Π
{

1
2πi

∫

σ(T0)

1
λ1 − λdE(λ)

}
= P1ΠQ1. (3.16)

Similarly, the third term equals Q1ΠP1. The last term cancels, because

1
2πi

∮

Γ1

1
(z − λ)(z − μ)dz = 0, (3.17)

since both λ and μ lie outside Γ1.

Some results about the perturbation of λ1 and P1 in a given direction as in (1.3)
that are well known in literature [1, 2] can be partly recovered for perturbations in some
neighborhood, in an essentially self-contained manner, as simple consequences of the results
in Section 2.

Corollary 3.2. Under the assumptions (3.1), (3.2), and forΠ ∈ LH sufficiently small, the operator T̃
has an isolated eigenvalue λ̃1 with eigenprojection P̃1 = p̃1 ⊗ p̃1 for some unit vector p̃1 ∈ H, satisfying

P̃1 = P1 + P1ΠQ1 +Q1ΠP1 +O(‖Π‖2L
)
, (3.18)

where Q1 is defined in (3.10).

Proof. In view of (3.5) and (3.11), application of (2.11)with ϕ = ϕ1 yields ϕ1(T̃) = P1+P1ΠQ1+

Q1ΠP1 + O(‖Π‖2L). Clearly ϕ1(T̃) is Hermitian, and because (ϕ1(T̃))
2
= ϕ2

1(T̃) = ϕ1(T̃) by
(2.6), it is also idempotent so that it is in fact some projection P̃1, for example, it follows that
‖P1− P̃1‖L < 1 for allΠ sufficiently small, and hence the range of P̃1 must also have dimension
1 [11] so that P̃1 = p̃1 ⊗ p̃1 for some p̃1 ∈ H with ‖p̃1‖ = 1.

Next, let χ(z) = z, z ∈ C, be the identity function. By (2.6), again, on the one hand
we have (χϕ1)(T̃)p̃1 = T̃ P̃1p̃1 = T̃ p̃1, and on the other (ϕ1χ)(T̃)p̃1 = P̃1T̃ p̃1 = (p̃1 ⊗ p̃1)T̃ p̃1 =
〈T̃ p̃1, p̃1〉p̃1 = λ̃1p̃1. Hence p̃1 is an eigenvector of T̃ with eigenvalue λ̃1.
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Corollary 3.3. Under the assumptions of Corollary 3.2, we have

p̃1 = p1 +Q1Πp1 +O(‖Π‖2L
)
. (3.19)

Proof. Let us first observe that P1ΠQ1p1 = 0 because of (3.8). Hence (3.18) yields p̃1 − p1 =
(P̃1 − P1)p1 + r1 + r2 = Q1Πp1 + r1 + r2 +O(‖Π‖2L), where

r1 = P1
(
p̃1 − p1

)
, r2 =

(
P̃1 − P1

)(
p̃1 − p1

)
. (3.20)

It sufficies to show that ‖rj‖ = O(‖Π‖2L) for j = 1, 2. The idea of the proof can be found in
Dauxois et al. [4].

Regarding r1, note that 1 − 〈p̃1, p1〉2 = ‖〈p̃1, p1〉p̃1 − p1‖2 ≤ ‖P̃1 − P1‖2L = O(‖Π‖2L), once
more using (3.18). Hence 〈p̃1, p1〉 → 1, as ‖Π‖L → 0, and therefore 2 ≥ 1 + 〈p̃1, p1〉 ≥ 1 for
‖Π‖L sufficiently small. This entails

∥∥r1
∥∥ =

∥∥〈p̃1, p1
〉
p̃1 − p1

∥∥ =
∣∣1 − 〈

p̃1, p1
〉∣∣

=

∣∣∣1 − 〈
p̃1, p1

〉2∣∣∣
∣∣1 +

〈
p̃1, p1

〉∣∣ = O(‖Π‖2L
)
.

(3.21)

For r2 we have

∥∥r2
∥∥ ≤ ∥∥P̃1 − P1

∥∥
L
∥∥p̃1 − p1

∥∥

= O(‖Π‖L
)√

2
(
1 − 〈

p̃1, p1
〉)

= O(‖Π‖L
)√

2
∥∥r1

∥∥ = O(‖Π‖2L
)
,

(3.22)

as can be seen from (3.21).

Corollary 3.4. Under the assumptions of Corollary 3.2, we have

λ̃1 = λ1 +
〈
Πp1, p1

〉
+O(‖Π‖2L

)
. (3.23)

Proof. With the help of (3.19), we see that λ̃1 = 〈T̃ p̃1, p̃1〉 = 〈(T + Π)(p1 + Q1Πp1), p1 +
Q1Πp1〉+O(‖Π‖2L). The result follows from a routine calculation combinedwith the equalities
〈Tp1, p1〉 = λ1, 〈Tp1, Q1Πp1〉 = λ1〈p1, Q1Πp1〉 = λ1〈Q1p1,Πp1〉 = 0, and 〈TQ1Πp1, p1〉 =
〈Q1Πp1, Tp1〉 = λ1〈Q1Πp1, p1〉 = λ1〈Πp1, Q1p1〉 = 0. For the last two equalities we assume
that T and Q1 are Hermitian and Q1p1 = 0 by (3.8).

Corollary 3.5. Let T ∈ CH be given by (2.23) and satisfy (3.2). Then (3.18) and (3.19) remain true
with

Q1 =
∞∑

j=2

1
λ1 − λj Pj . (3.24)
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Proof. All nonzero eignvalues of T are isolated, in particular λ1. It is immediate from (2.23)
that T0 =

∑∞
j=2λjPj , and this leads to the special expression for Q1 in (3.24).

Remark 3.6. The assumption thatΠ be Hermitian is in fact not necessary. Of course, if we just
require Π to be bounded, the perturbed operator T̃ is not in general Hermitian anymore. In
particular, a suitably modified version of Corollary 3.3 will now claim the existence of a pair
of eigenvectors, p̃1 for T̃ and p̃∗1 for T̃

∗, with expansions

p̃1 = p1 +Q1Πp1 +O(‖Π‖2L
)
, p̃∗1 = p1 +Q1Π∗p1 +O(‖Π‖2L

)
, (3.25)

as ‖Π‖ → 0.

4. Applications

In this section, we will sketch three applications: two in statistics and one in numerical
analysis.

4.1. Noisy Integral Equations

Let K : L2(0, 1) → L2(0, 1) be a compact injective integral operator, with measurable real
kernel denoted by the same symbol without confusion. More specifically, input f ∈ L2(0, 1)
and output g ∈ L2(0, 1) are related according to

g(s) =
∫1

0
K(s, t)f(t)dt. (4.1)

In practice, only finitely many data regarding the output are available, usually blurred by
random measurement error. If the data are collected according to a random design, we may
think of the data set as of n independent copies (X1, Y1), . . . , (Xn, Yn) of a pair (X,Y ) of
random variables, where

Y = g(X) + ε = (Kf)(X) + ε, (4.2)

the design variableX has a Uniform (0, 1) distribution, the error variable ε has finite variance
and zero mean, and where X and ε are stochastically independent.

It is the purpose to recover f from these data. It is expedient to “precondition” with
the adjoint operator K∗ and recover f from the equation

q = K∗g = K∗Kf = Rf, (4.3)

where R is compact, Hermitian, and strictly positive. Under suitable conditions,

q̂(t) =
1
n

n∑

i=1

YiK
∗(t, Xi

)
=

1
n

n∑

i=1

YiK
(
Xi, t

)
, t ∈ [0, 1], (4.4)
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is an unbiased and
√
n-consistent estimator of q; see, for instance, van Rooij and Ruymgaart

[12]. Since R−1 is unbounded, an estimator of the input f is obtained by applying a
regularized inverse of R to q̂. Here we will use the Tikhonov type inverse

(αI + R)−1 = ϕa(R), α > 0, (4.5)

where ϕα(z) = (α + z)−1; see also (2.29). This yields the input estimator

f̂α = ϕα(R)q̂, α > 0. (4.6)

To assess the quality of the estimator, one considers themean integrated squared error (MISE)

E
∥
∥f̂α − f

∥
∥2
. (4.7)

The behavior of the MISE is well studied in literature.
Recently, there is an interest in certain econometric models where the operator K (or

R) is unknown but can be estimated from the data. Let R̂ denote an estimator ofR and assume
that R̂ is also compact, Hermitian, and nonnegative. In this case, the input estimator

̂̂
fα =

(
αI + R̂

)−1
q̂ = ϕα(R̂)q̂, α > 0, (4.8)

will be employed. One expects that estimation of R will increase the MISE, and naturally the

question arises how much bigger the MISE of ̂̂fα will be than that of f̂α.
An upper bound for this increase of the MISE can be easily found from the results in

Section 2. For large sample size n, R̂ will be close to R, and Π̂ = R̂ − R can be considered as
a small random perturbation of R. Writing ϕ′

α,R for the Fréchet derivative at R, we see from
Theorem 2.1 that

̂̂
fα − f =

{
ϕα(R̂) − ϕα(R

)}
q̂ + ϕα(R)q̂ − f

=
(
ϕ′
α,RΠ̂

)
q̂ + f̂α − f +O(‖Π̂‖2).

(4.9)

Apparently, (ϕ′
α,RΠ̂)q̂ is an extra error term due to the estimation of R.

To find an upper bound for its MISE, let us first observe that (2.30) simplifies for p = 1
and yields

ϕ′
α,RΠ̂ = −

∑

j

∑

k

1
(
α + λj

)(
α + λk

)PjΠ̂Pk, (4.10)

where now the λj and the Pj are the spectral characteristics of R. Let us write, for brevity,

ĥ =
∑

k

1
α + λk

Pkq̂, (4.11)
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and note that

‖ĥ‖2 ≤ 1
α2

‖q̂‖2. (4.12)

We thus arrive at

E
∥
∥(ϕ′

α,RΠ̂
)
q̂
∥
∥2

= E

∥
∥
∥
∥
∥

∑

j

1
α + λj

pjΠ̂ ĥ

∥
∥
∥
∥
∥

2

≤ 1
α2

E
∥
∥Π̂

∥
∥2
L
∥
∥ĥ

∥
∥2 ≤ 1

α4
E
∥
∥Π̂

∥
∥2
L
∥
∥q̂

∥
∥2
. (4.13)

Hence, under suitable assumptions, estimation of the kernel yields an extra term in the
MISE of the input estimator which is of order α−4. In the Russian literature, sharper bounds
can be found; see in particular Bakushinsky and Kokurin [13, Section 2.2]. For results of this
type in the statistical literature, obtained in a different manner, see, for instance, Hall and
Horowitz [14] and Florens [15].

4.2. Some Asymptotics for Functional Canonical Correlations

Let X be a real random element in the Hilbert space L2(0, 1) and assume that E‖X‖4 < ∞.
Its mean μ ∈ L2(0, 1) and covariance operator S : L2(0, 1) → L2(0, 1) are well defined by the
relations E〈f,X〉 = 〈f, μ〉, E〈f,X−μ〉〈X−μ, g〉 = 〈f, Sg〉 for all f, g ∈ L2(0, 1). The operator S
is known to be of finite trace and hence Hilbert-Schmidt and compact. It is also nonnegative
Hermitian. Without real loss of generality, we will assume S to be injective, so that it will be
strictly positive.

Next suppose that we are given a random sample X1, . . . , Xn of independent copies of
X. The usual estimators of μ and S areX = (1/n)

∑n
i=1Xi and Ŝ = (1/n)

∑n
i=1(Xi−X)⊗(Xi−X),

respectively, where Ŝ shares all the properties of S, except that it cannot be injective because
it has a finite dimensional kernel whose range has dimension at most n − 1.

Because Ŝ cannot be injective, the finite dimensional definition of sample canonical
correlation has to be modified, and some kind of smoothing or regularization is recom-
mended in literature [16]. Regularization might even be useful when the population is
considered, although S is injective [17]. This regularization yields Tikhonov type inverses
in an expression for the canonical correlation .

For a precise definition, let H1 and H2 be two closed subspaces of L2(0, 1) and Ij the
orthogonal projection onto Hj (j = 1, 2). Let us write Sjk = IjSIk, and note that Ij(αI + S)Ik =
Sjk for j /= k. Similar notation will be used for Ŝ. The regularized squared principal canonical
correlation for the population is now defined as

ρ2 = sup
f1,f2 /= 0

〈
f1, S12f2

〉2
〈
f1,

(
αI1 + S11

)
f1
〉〈
f2,

(
αI2 + S22

)
f2
〉 . (4.14)

Its sample analogue ρ̂2 is obtained by replacing the Sjk with Ŝjk in (4.14). The supremum
is actually a maximum, and pairs of maximizers will be denoted by f∗

1 , f
∗
2 , and f̂∗

1 , f̂
∗
2 ,
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respectively. The corresponding canonical variates then are

〈
X, f∗

j

〉
,

〈
X, f̂∗

j

〉
, j = 1, 2. (4.15)

For an alternative description of these canonical correlations, let us introduce the
operator

R1 =
(
αI1 + S11

)−1/2
S12

(
αI2 + S22

)−1
S21

(
αI1 + S11

)−1/2
. (4.16)

Interchanging the indices 1 and 2 yields R2, and replacing Sjk with Ŝjk yields R̂1 and R̂2. It can
be seen that all these operators are Hilbert-Schmidt and strictly positive Hermitian. It will be
assumed that Rj has the largest eigenvalue with one-dimensional eigenspace generated by f∗

j

with ‖f∗
j ‖ = 1. Under this condition, it has been shown in Cupidon et al. [18] that

ρ2 = largest eigenvalue of Rj =
〈
f∗
j , Rjf

∗
j

〉
, (4.17)

for j = 1, 2. A similar result holds true for ρ̂2.
It is well known that the asymptotic distribution of the eigenvalues and eigenfunctions

of a random operator can be derived from the asymptotic distribution of this random
operator itself (see [10] for Euclidean spaces and [4] for Hilbert spaces). This technique is
based on the results of Section 3. In the present situation, this means that we have to show
the convergence in distribution of the suitably standardized R̂j . Because all operators are
Hilbert-Schmidt, it can be shown that

Rj =
√
n
(
R̂j − Rj

) d−→ G, as n −→ ∞ , inL. (4.18)

Result (4.18) follows easily if convergence in distribution can be established for each
of the factors defining R̂j , for instance,

(
αI + Ŝjj

)−1/2
= ϕα

(
Ŝjj

)
, (4.19)

where this time ϕα(z) = (α + z)−1/2, compare (2.29). It is known [4] that

√
n
{
Ŝjj − Sjj

} d−→ Gjj , as n −→ ∞, in LHS, (4.20)

for some Gaussian random element Gjj , whereLHS is the Hilbert space of all Hilbert-Schmidt
operators mapping H into itself. Writing ϕ′

α,j for the Fréchet derivative evaluated at Sjj
(Section 2) and exploiting the fact that the imbedding of LHS is L are continuous, we obtain
via a kind of delta-method [18, 19]

√
n
{
ϕα

(
Ŝjj

) − ϕα
(
Sjj

)} d−→ ϕ′
α,jGjj , as n −→ ∞, inL (4.21)

the desired result. A combination of results like this for each of the factors of R̂j yields (4.18).
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4.3. Solution of a Nonlinear Operator Equation

In Bakushinsky and Kokurin [13], the following problem is considered. Let H1 and H2 be
Hilbert spaces and F : H1 → H2 an operator, not necessarily linear. The (nonlinear) equation

F(x) = 0, x ∈ H, (4.22)

is studied. Let x∗ be a solution of (4.22) and introduce a set Ω = {x ∈ H1 : ‖x − x∗‖1 ≤ r}, for
some r > 0. It is assumed that F is Fréchet differentiable on Ω. If F ′

x is the derivative at x ∈ Ω
it is, moreover, assumed that

∥
∥F ′

x − F ′
y

∥
∥
L(H1,H2)

≤ L‖x − y‖1, x, y ∈ Ω, (4.23)

where 0 < L < ∞ is a given number. Given an initial point x0 ∈ Ω and a sequence {αn},
αn > 0, of regularization parameters, these authors show that, under some further conditions,
the generalized Gauss-Newton method generates a sequence of points {xn} such that

∥∥xn − x∗∥∥ = O(
α
p
n

)
, for some p ≥ 1

2
. (4.24)

In their proof of this result, the authors need a crucial upper bound. Under some
additional assumptions, we want to derive this upper bound as an immediate consequence
of Theorem 2.1. In order to relate the present problem to the setup of our paper, let us assume
that H1 = H2 = H, and note that

(
F ′
x∗
)∗(

F ′
x∗
)
= T ∈ LH. (4.25)

For xn, let

(
F ′
xn

)∗(
F ′
xn

)
= T̃ ∈ LH, (4.26)

and set

T̃ = T + T̃ − T = T + Π, (4.27)

where obviously Π ∈ LH . It is not hard to see that (4.23) entails

‖Π‖L ≤ a∥∥x∗ − xn
∥∥, (4.28)

for some 0 < a < ∞. Let Γ be the contour in (2.1) and D the corresponding domain. As in
Bakushinsky and Kokurin [13], a functionΘ(z, α), z ∈ D, is employed in the iteration scheme,
which is analytic on D.
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Narrowing down the generality in Bakushinsky and Kokurin [13] somewhat further,
so that the current conditions are satisfied, their proof of the convergence of the iterations
requires an upper bound for the expression (in our notation)

1
2πi

∮

Γ

{
1 −Θ

(
z, αn

)}{R(z) − R̃(z)}dz = 1 −Θ
(
T, αn

) − {
1 −Θ

(
T̃ , αn

)}

= Θ
(
T̃ , αn

) −Θ
(
T, αn

)
.

(4.29)

Keeping n fixed, let us briefly write this last expression as Θ(T̃) − Θ(T). Now Theorem 2.1
applies with ϕ = Θ, and application yields at once

‖Θ(T̃) −Θ(T)‖L ≤ ∥
∥Θ′

T (T̃ − T)∥∥L +O(‖T̃ − T‖2L
)

≤ b‖T̃ − T‖L +O(‖T̃ − T‖2L
)

≤ ab∥∥x∗ − xn
∥∥ +O(∥∥x∗ − xn

∥∥2)
,

(4.30)

for some 0 < b <∞, by (4.28).
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