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In a free group no nontrivial commutator is a square. And in the free group F2 = F(x1, x2) freely
generated by x1, x2 the commutator [x1, x2] is never the product of two squares in F2, although it
is always the product of three squares. Let F2,3 = 〈x1, x2〉 be a free nilpotent group of rank 2 and
class 3 freely generated by x1, x2. We prove that in F2,3 = 〈x1, x2〉, it is possible to write certain
commutators as a square. We denote by Sq(γ) the minimal number of squares which is required
to write γ as a product of squares in group G. And we define Sq(G) = sup{Sq(γ); γ ∈ G′}. We
discuss the question of when the square length of a given commutator of F2,3 is equal to 1 or 2 or
3. The precise formulas for expressing any commutator of F2,3 as the minimal number of squares
are given. Finally as an application of these results we prove that Sq(F ′

2,3) = 3.
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1. Introduction

Schützenberger [1] proved that in a free group the equation

[
x, y

]
= zr, r ≥ 2 (1.1)

implies z = 1; that is, no nontrivial commutator is a proper power. It means that it is
impossible to write [x, y] as an rth powers where r ≥ 2. Lyndon andNewman [2] have shown
that in the free group F2 = F(x1, x2) freely generated by x1, x2, the commutator [x1, x2] is
never a product of two squares in F2, although it is always the product of three squares. In
[3] we proved that for an odd integer k, [x2, x1]

k is not a product of two squares in F2, and
it is the product of three squares. Putw = [x2, x1] and k = 2n + 1. We presented the following
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expression of [x2, x1]
2n+1 as a product of the minimal number of squares:

[x2, x1]2n+1 =
(
(wnx2x1)

wn
)2(

wnx−1
1

)2((
w−nx−1

2

)x1
)2
. (1.2)

Recently Abdollahi [4] generalized these results as the following theorem.

Theorem 1.1 (Abdollahi [4]). Let F be a free group with a basis of distinct elements x1, . . . , x2n,
and N any odd integer. Then there exist elements u1, . . . , um in F such that

([x1, x2] · · · [x2n−1, x2n])N = u2
1 . . . , u

2
m (1.3)

if and only ifm ≥ 2n + 1.

Definition 1.2. LetG be a group and γ ∈ G′. The minimal number of squares which is required
to write γ as a product of squares in G is called the square length of γ and denoted by Sq(γ).
And we define Sq(G) = sup{Sq(γ); γ ∈ G′}.

We prove that in the free nilpotent group F2,3 = 〈x1, x2〉 of rank 2 and class 3 freely
generated by x1, x2 it is possible to write certain nontrivial commutators as a proper power.
We consider certain equations over free group F2,3. Using this, we find Sq[h, g] where h, g ∈
F2,3. Then we prove that Sq(F ′

2,3) = 3.

2. Main Results

We will prove the following theorems.

Theorem 2.1. Let F2,3 = 〈x1, x2〉 be a free nilpotent group of rank 2 and class 3 freely generated by
x1, x2. Then Sq(F ′

2,3) = 3.

An application of Theorem 2.1 is displayed in the next result.

Corollary 2.2. In a free nilpotent group of rank 2 and class 3, it is possible to find nontrivial solutions
for the equation

[
x, y

]
= zr, r ≥ 2. (2.1)

Wewill use the following well-known identities regarding groups which are nilpotent
of class 3.

Lemma 2.3. Let G = 〈x, y〉 be nilpotent of class 3. Then, for all integers r, s the following hold:

[
xr, y

]
=
[
x, y

]r[
x, y, x

]r(r−1)/2
,

[
xr, ys] =

[
x, y

]rs[
x, y, x

]rs(r−1)/2[
x, y, y

]rs(s−1)/2
.

(2.2)



International Journal of Mathematics and Mathematical Sciences 3

3. Proofs of the Main Result

Proof of Theorem 2.1. Let h, g be any two elements of F2,3 \ γ3(F2,3). First we study the form of
the element [h, g]. Since γ3(F2,3) lies in the center of F2,3 we may express h as xr1

1 x
r2
2 [x2, x1]

β

and g as xs1
1 x

s2
2 [x2, x1]

α.We have shown in [5] that.

[
h, g

]
= [x2, x1]λ[x2, x1, x2]μ[x2, x1, x1]ν, (3.1)

where

λ = r2s1 − r1s2,

μ =
s1r2(r2 − 1)

2
− r1s2(s2 − 1)

2
− r1r2s2 + r2s1s2 + βs2 − αr2,

ν =
r2s1(s1 − 1)

2
− s2r1(r1 − 1)

2
+ βs1 − αr1.

(3.2)

Now we consider the equation [h, g] = u2(�). The element u has a presentation of the
following form:

u = x
r ′1
1 x

r ′2
2 [x2, x1]α

′
[x2, x1, x2]γ

′
[x2, x1, x1]β

′
, (3.3)

where r ′1, r
′
2, α′, β′, and γ ′ are unique integer elements.

Lemma 2.3 implies that

u2 = x
2r ′1
1 x

2r ′2
2 [x2, x1]2α

′+r ′1r
′
2[x2, x1, x2]2γ

′+α′r ′2+r
′
1r

′
2(r

′
2−1)/2+r ′1r ′2

2

× [x2, x1, x1]2β
′+α′r ′1+r

′
1r

′
2(r

′
1−1)/2.

(3.4)

Thus equation (�) holds in F2,3 if and only if

r ′1 = r ′2 = 0, 2α′ = λ, 2β′ = ν, 2γ ′ = μ. (3.5)

In particular the equation (�) has a solution only if λ, μ, and ν are even. Put c1 =
αr2 − βs2, c2 = αr1 − βs1, then

α =

∣∣∣
c1 −s2
c2 −s1

∣∣∣
∣∣∣
r2 −s2
r1 −s1

∣∣∣
=

s1c1 − s2c2
2α′ , β =

∣∣∣
r2 c1

r1 c2

∣∣∣

−2α′ =
r1c1 − r2c2

2α′ . (3.6)

Hence we need s1c1 − s2c2 and r1c1 − r2c2 to be even. We have the following two cases.
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Case 1. If r1s2 = 2k, for some integer k, then r2s1 = 2α′ + 2k, and hence r2s1 ≡2 0. And we have

c1 = −α′ + α′(r2 + s2) − kr2 +
(
α′ + k

)
s2 − 2γ ′,

c2 = α′ +
(
α′ + k

)
s1 − kr1 − 2β′.

(3.7)

Further,

0≡2 s1c1 + s2c2 ≡2 α
′(s1 + s1s2 + s2),

0≡2 r1c1 + r2c2 ≡2 α
′(r1 + r1r2 + r2).

(3.8)

Now if α′ is an odd integer, then we have

0≡2 r1 + r1r2 + r2 ≡2 s1 + s1s2 + s2. (3.9)

It follows that r1, r2, s1, and s2 are all even. Hence λ = r2s1 − r1s2 is divisible by 4. But λ = 2α′

implies that α′ ≡2 0, a contradiction. Hence in Case 1 we have α′ ≡2 0 and λ≡4 0.
Now r1s2 = 2k, and r2s1 = 2α′ + 2k imply that

μ = α′r2 − kr2 − α′ + ks2 + 2α′s2 + βs2 − αr2 = 2γ ′,

ν = α′s1 + ks1 − α′ − kr1 + βs1 − αr1 = 2β′.
(3.10)

Hence we have

μ ≡2 r2(k + α) + s2
(
k + β

)
,

ν ≡2 r1(k + α) + s1
(
k + β

)
.

(3.11)

And we have the following cases.

Subcase 1.1. If r1 ≡2 r2 ≡2 s1 ≡2 s2 ≡2 0, then it is clear that for any integer numbers α and β we
have;

λ≡4 0, μ ≡2 ν ≡2 0. (3.12)

And the equation (�) has solution.

Subcase 1.2. If r1 ≡2 r2 ≡2 s1 ≡2 0 and s2 ≡2 1, then r1s2 ≡4 λ≡4 0. We have the following two
cases.

(1.2.1) If r1 ≡4 0, then we have λ≡4 0. Also from r1s2 = 2k, it follows that k ≡20. Now if we
choose β ≡2 0, then from (3.11) it follows that μ ≡2 0 and ν ≡2 0 for any α ∈ Z. And
in this case the equation (�) has a solution.

(1.2.2) If r1 ≡4 2, then λ≡4 2, and the equation (�) has no solution.
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Hence in Subcase 1.2 if r1 ≡4 0, r2 ≡2 s1 ≡2 0, s2 ≡2 1, and β ≡2 0, for any α ∈ Z the
equation (�) has a solution.

Subcase 1.3. If r1 ≡2 r2 ≡2 s2 ≡2 0 and s1 ≡2 1, then s1r2 ≡4 λ≡4 0. We have two cases.

(1.3.1) If r2 ≡4 0, then λ≡4 0. Since r1s2 = 2k, and r1 ≡2 s2 ≡2 0, hence k ≡2 0. Now if we
identify β ≡2 0, then from (3.11) it follows that μ ≡2 0 and ν ≡2 0. And the equation
(�) has a solution.

(1.3.2) If r2 ≡4 2, then λ≡4 2, and the equation (�) has no solution.

Hence in Subcase 1.3 if r1 ≡2 s2 ≡2 0, r2 ≡4 0, and β ≡2 0, for any α ∈ Z the equation (�)
has a solution.

Subcase 1.4. If r1 ≡2 r2 ≡2 0 and s1 ≡2 s2 ≡2 1, then we have the following two cases.

(1.4.1) If r1 ≡4 0, then λ≡4 s1r2 ≡4 0.Now s1 ≡2 1 implies r2 ≡4 2. If we choose β ≡2 0, then for
any α ∈ Z the equation (�) has a solution. Hence if r1 ≡4 r2 ≡4 0, s1 ≡2 s2 ≡2 1, and
β ≡2 0, then for any α ∈ Z, the equation (�) has a solution.

(1.4.2) Ifr1 ≡4 2. Since λ≡4 s1r2 − r1s2 ≡4 0, hence r2 ≡4 2. If we identify β ≡2 1, for any α ∈ Z

then μ ≡2 ν ≡2 0. And the equation (�) has a solution.

Subcase 1.5. If r1 ≡2 s1 ≡2 r2 ≡2 0, and r2 ≡2 1, we have the following two cases.

(1.5.1) If s1 ≡4 0, then λ≡4 0. Since r1s2 = 2k, hence k ≡2 0. If we identify α≡2 0, for any β ∈ Z,
then μ ≡2 ν ≡2 0. And the equation (�) has a solution.

(1.5.2) If s1 ≡4 2, then λ≡4 2. And the equation (�) has no solution. Hence in this case only
if s1 ≡4 0, the equation (�) has a solution.

Subcase 1.6. If r1 ≡2 s1 ≡2 0 and r2 ≡2 s2 ≡2 1, then similar to Case 4, if r1 ≡4 s1 ≡4 0 or r1 ≡4 s1 ≡4 2
then λ≡4 0. And for any α≡2 β, μ ≡2 ν ≡2 0, the equation (�) has a solution.

Subcase 1.7. If r1 ≡2 s2 ≡2 0 and r2 ≡2 s1 ≡2 1, then λ≡2 1.Hence the equation (�) has no solution.

Subcase 1.8. If r1 ≡2 0 and r2 ≡2 s2 ≡2 s1 ≡2 1, then λ≡2 1.Hence the equation (�) has no solution.

Subcase 1.9. If r1 ≡2 1 and r2 ≡2 s2 ≡2 s1 ≡2 0, we have two cases.

(1.9.1) If s2 ≡4 0, then λ≡4 0. Since r1s2 = 2k, hence k ≡2 0. If we identify α ≡2 0, for any
β ∈ Z, then μ ≡2 ν ≡2 0. And the equation (�) has a solution.

(1.9.2) If s2 ≡4 2, then λ≡4 2. And the equation (�) has no solution.

Subcase 1.10. If r1 ≡2 s2 ≡2 1 and r2 ≡2 s1 ≡2 0, then r1s2 ≡2 1. And the equation (�) has no
solution.

Subcase 1.11. If r1 ≡2 s1 ≡2 1 and r2 ≡2 s2 ≡2 0, then similar to Subcase 1.6, if r2 ≡4 s2 ≡4 0 or
r2 ≡4 s2 ≡4 2 then λ≡4 0. And for any α ≡2 β, μ ≡2 ν ≡20, the equation (�) has a solution.

Subcase 1.12. If r1 ≡2 s1 ≡2 s2 ≡2 1 and r2 ≡2 0, then r1s2 ≡2 1. And the equation (�) has no
solution.

Subcase 1.13. If r1 ≡2 r2 ≡2 1 and s1 ≡2 s2 ≡2 0, then we have two cases.
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(1.13.1) If s1 ≡4 0, then λ≡4 0 implies s2 ≡2 0. If we identify α ≡2 0, for any β ∈ Z, the equation
(�) has a solution.

(1.13.2) If s1 ≡4 2, then s2 ≡4 2. And if α ≡2 1, for any β ∈ Z, the equation (�) has a solution.

Subcase 1.14. If r1 ≡2 r2 ≡2 s2 ≡2 1 and s1 ≡2 0, then r1s2 ≡2 1. In this case the equation (�) has no
solution.

Subcase 1.15. If r1 ≡2r2 ≡2s1 ≡21 and s1 ≡2 0, then r2s1 ≡2 1. In this case the equation (�) has no
solution.

Case 2. If r1s2 ≡2 1. Since λ = s1r2 − r1s2 ≡2 0, hence r1 ≡2 r2 ≡2 s1 ≡2 s2 ≡2 1. If we identify α ≡2 β,
then μ ≡2 ν ≡2 0. In this case the equation (�) has a solution.

Hence we show that in the following twelve cases the equation (�) has solution. And
Sq[h, g] = 1.

(1) r1 ≡2 s1 ≡2 r2 ≡2 s2 ≡2 0, for all α, β.

(2) s1 ≡2 r2 ≡2 0, s2 ≡2 1, r1 ≡4 0, for all α, β ≡2 0.

(3) r1 ≡2 s2 ≡2 0, s1 ≡2 1, r2 ≡4 0, for all α, β ≡2 0.

(4) s1 ≡2 s2 ≡2 1, r1 ≡4 r2 ≡2 0, for all α, β ≡20.

(5) s1 ≡2 s2 ≡2 1, r1 ≡4 r2 ≡4 2, for all α, β ≡2 0.

(6) r1 ≡2 s2 ≡2 0, r2 ≡2 1, s1 ≡4 0, α ≡2 0, for all β.

(7) r1 ≡2 s1 ≡2 1, r2 ≡2 s2 ≡2 0, α ≡2β .

(8) r1 ≡2 s1 ≡2 0, r2 ≡2 s2 ≡2 1, α ≡2 β.

(9) r1 ≡2 1, r2 ≡2 s1 ≡2 0, s2 ≡4 0, α ≡2 0, for all β.

(10) r1 ≡2 r2 ≡2 1, s1 ≡4 s2 ≡4 0, α ≡2 0, for all β.

(11) r1 ≡2 r2 ≡2 1, s1 ≡4 s2 ≡4 2, α ≡2 1, for all β.

(12) r1 ≡2 s1 ≡2 r2 ≡2 s2 ≡2 1, α ≡2 β.

And more precisely we have

[
h, g

]
=
(
[x2, x1]λ/2[x2, x1, x2]μ/2[x2, x1, x1]ν/2

)2
. (3.13)

Now in the following ten cases the equation (�) has no solution.

(13) r2 ≡2 s1 ≡2 0, s2 ≡2 1, r1 ≡4 2.

(14) r1 ≡2 s2 ≡2 0, s1 ≡2 1, r2 ≡4 2.

(15) r1 ≡2 s2 ≡2 0, r2 ≡2 1, s1 ≡4 2.

(16) r2 ≡2 s1 ≡2 0, r1 ≡2 1, s2 ≡4 2.

(17) r1 ≡2 s2 ≡2 0, r2 ≡2 s1 ≡2 1.

(18) r1 ≡2 s2 ≡2 1, r2 ≡2 s1 ≡2 0.

(19) r1 ≡2 s1 ≡2 s2 ≡2 1, r2 ≡2 0.

(20) r1 ≡2 r2 ≡2 s2 ≡2 1, s1 ≡2 0.
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(21) r1 ≡2 s1 ≡2 r2 ≡2 1, s2 ≡2 0.

(22) r2 ≡2 s1 ≡2 s2 ≡2 1, r1 ≡2 0.

We consider the equation [h, g] = u2
1u

2
2 (♦). Suppose that the equation (♦) has a

nontrivial solution(u1, u2). The elements u1 and u2 have a representation of the following
forms:

u1 = xr11
1 xr21

2 [x2, x1]α1[x2, x1, x1]β1[x2, x1, x2]γ1 ,

u2 = xr12
1 xr22

2 [x2, x1]α2[x2, x1, x1]β2[x2, x1, x2]γ2 ,
(3.14)

where rij , αi, βi, and γi are unique integer numbers. By applying Lemma 2.3 one obtains

u2
i = x2r1i

1 x2r2i
2 [x2, x1]2αi+r1ir2i

× [x2, x1, x1]2βi+αir1i+r1ir2i((r1i−1)/2)

× [x2, x1, x2]
2γi+αir2i+r1ir2i(

r2i − 1
2

)+r1ir22i
.

(3.15)

Hence

u2
1u

2
2 = x

2(r11+r12)
1 x

2(r21+r122)
2 [x2, x1]2(α1+α2)+r11r21+r12r22+4r21r12

× [x2, x1, x2]n1+n2+2k1r22+4r21r12((2r21−1)/2)+8r21r12r22

× [x2, x1, x1]m1+m2+2k1r12+4r21r12((2r12−1)/2),

(3.16)

where for i = 1, 2,

ki = 2αi + r1ir2i,

mi = 2βi + αir1i + r1ir2i

(
r1i − 1

2

)
,

ni = 2γi + αir2i + r1ir2i

(
r2i − 1

2

)
+ r1ir

2
2i.

(3.17)

Hence equation (♦) holds if

r11 = −r12, r21 = −r21,
λ = 2(α1 + α2) − 2r11r21,

μ = 2
(
γ1 + γ2

)
+ r21(α1 − α2) − 2k1r21 + r11r21(−4r21 + 1),

ν = 2
(
β1 + β2

)
+ r11(α1 − α2) − 2k1r11 + r11r21(4r11 + 1).

(3.18)
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Note that second equation gives λ≡2 0; hence equation (♦) has nontrivial solution only if
λ≡2 0. In particular in the cases from (17) to (22), since λ is odd, the equation has no solution
and Sq[h, g] = 3.

Finally it remains to consider the cases from (13) to (16). In these cases we have λ≡4 2.
And we prove that if ν ≡2 1, then μ ≡2 0. It is clear that ν ≡2 1 implies m1 + m2 ≡2 1. Hence
r11(α1 + α2 + r21)≡2 1. In particular r11 ≡2 1 and α1 + α2 + r21 ≡2 1. Now we have

μ ≡2 n1 + n2 ≡2 α1r21 + r11r21

(
r21 − 1

2

)
+ r11r

2
21

+ α2r22 + r12r22

(
r22 − 1

2

)
+ r12r

2
22

≡2 (1 + r12)r12 ≡20.

(3.19)

Now in the cases from (13) and (15), we have ν ≡2 1.Hence μ ≡2 0. And if we identify:

r11 = −s1 + 1, r12 = s1 − 1, r22 = −r21 = 0,

α1 = β2 = γ2 = 0, α2 =
λ

2
, β1 =

ν + r11α2

2
, γ1 =

μ

2
.

(3.20)

then for the elements

u1 = x−s+1
1 [x2, x1, x1](ν+r11(λ/2))/2)[x2, x1, x2]μ/2,

u2 = xs1−1
1 [x2, x1]λ/2.

(3.21)

we have [h, g] = u2
1u

2
2. It covers the cases from (13) and (15).

Nowwe consider the cases from (14) and (16). Since in these cases μ ≡2 1, hence ν ≡2 0.
If we identify

r11 = r12 = 0, r21 = 1, r22 = −1,

α1 = β2 = γ1 = 0, α2 =
λ

2
, β1 =

ν

2
, γ1 =

μ + α2

2
.

(3.22)

then for the elements

u1 = x2[x2, x1, x1]ν/2,

u2 = x−1
2 [x2, x1]λ/2[x2, x1, x2](μ+λ/2)/2.

(3.23)

one obtains [h, g] = u2
1u

2
2. And the equation (♦) satisfies.

In particular in the cases from (13) to (16), we have Sq[h, g]=2. This completes the
proof.
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As an immediate consequence of Theorem 2.1, we obtain the exact value of the
Sq(F ′

2,3).
The proof of Corollary 2.2 is based on our previous result [5] which we summarize

here.

Theorem 3.1 (Rhemtulla-Akhavan[5] ). Let F2,3 = 〈x1, x2〉 be a free nilpotent group of rank 2 and
class 3 freely generated by x1, x2. Then any element of F ′

2,3 can be expressed as a product of at most
two commutators.

We will also use the fact that if a, b, and c are any elements of a group G, then

a2[b, c] =
(
a2b−1c−1

)2(
aba−1c−1a−1

)2
(ac)2. (†)

Proof of Corollary 2.2. Let ζ = [x, y][w, z] be any element of F ′
2,3. We may write

[
x, y

]
= [x2, x1]λ[x2, x1, x2]μ[x2, x1, x1]ν,

[z,w] = [x2, x1]λ
′
[x2, x1, x2]μ

′
[x2, x1, x1]ν

′
,

(3.24)

where λ, λ′, μ, μ′, ν, and ν′ are suitable integer numbers. Since γ3(F2,3) lies in the center of F2,3

and F ′
2,3 is abelian, we may express ζ as

ζ = [x2, x1]λ+λ
′[
x2, x1, x

μ+μ′

2 xν+ν′
1

]
. (3.25)

There are two cases:

(1) λ + λ′ ≡2 0,

(2) λ + λ′ ≡2 1.

Case 1. By (†), we may write ζ as a product of three squares.

Case 2. We may write

ζ = [x2, x1]λ+λ
′−1[x1, x2]x

μ+μ′
2 xν+ν′

1 . (3.26)

Since λ + λ′ − 1 is even, (†) yields Sq(ζ) ≤ 3. In Theorem 2.1 we produce elements of
square length equal to three. This shows that Sq(F ′

2,3) = 3 and completes the proof.

Note. Let G = 〈x1, x2〉 be a free nilpotent group of rank 2 and class c ≥ 3 freely generated
by x1, x2. Now F2,3 is a quotient of G. Since the equations (�) and (♦) do not hold in the
cases from (17) to (22) in F2,3, these equations should not hold in G. And similarly since the
equation (�) does not hold in the cases from (13) to (16) in F2,3, hence these equations will
not hold in G.
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