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Let X be a real uniformly convex Banach space and C a closed convex nonempty subset of X.
Let {Ti}ri=1 be a finite family of nonexpansive self-mappings of C. For a given x1 ∈ C, let {xn}
and {x(i)

n }, i = 1, 2, . . . , r, be sequences defined x
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(j)
ni ∈ [0, 1] for all j ∈ {1, 2, . . . , r}, n ∈ N

and i = 1, 2, . . . , j. In this paper, weak and strong convergence theorems of the sequence {xn} to a
common fixed point of a finite family of nonexpansive mappings Ti (i = 1, 2, . . . , r) are established
under some certain control conditions.
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1. Introduction

Let X be a real Banach space, C a nonempty closed convex subset of X, and T : C → C a
mapping. Recall that T is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. Let Ti : C →
C, i = 1, 2, . . . , r, be nonexpansive mappings. Let Fix(Ti) denote the fixed points set of Ti, that
is, Fix(Ti) := {x ∈ C : Tix = x}, and let F :=

⋂r
i=1Fix(Ti).

For a given x1 ∈ C, and a fixed r ∈ N (N denote the set of all positive integers), compute
the iterative sequences {x(0)

n }, {x(1)
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n } by

x
(0)
n = xn,

x
(1)
n = a

(1)
n1 T1x

(0)
n +

(
1 − a

(1)
n1

)
x
(0)
n



2 International Journal of Mathematics and Mathematical Sciences

x
(2)
n = a

(2)
n2 T2x

(1)
n + a

(2)
n1 T1xn +

(
1 − a

(2)
n2 − a

(2)
n1

)
xn,

...

xn+1 = x
(r)
n = a

(r)
nr Trx

(r−1)
n + a

(r)
n(r−1)Tr−1x

(r−2)
n + · · · + a

(r)
n1 T1xn

+
(
1 − a

(r)
n(r) − a

(r)
n(r−1) − · · · − a

(r)
n1

)
xn, n ≥ 1,

(1.1)

where a
(j)
ni ∈ [0, 1] for all j ∈ {1, 2, . . . , r}, n ∈ N and i = 1, 2, . . . , j. If a(j)

ni := 0, for all n ∈ N,
j ∈ {1, 2, . . . , r − 1} and i = 1, 2, . . . , j, then (1.1) reduces to the iterative scheme

xn+1 = Snxn, n ≥ 1, (1.2)
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If a(j)

ni := 0, for all n ∈ N, j ∈ {1, 2, . . . , r − 1}, i = 1, 2, . . . , j and a
(r)
ni := αi, for all n ∈ N for

all i = 1, 2, . . . , r, then (1.1) reduces to the iterative scheme defined by Liu et al. [1]

xn+1 = Sxn, n ≥ 1, (1.3)

where S := αrTr + αr−1Tr−1 + · · · + α1T1 + (1 − αr − αr−1 − · · · − α1)I, αi ≥ 0 for all i = 2, 3, . . . , r
and 1 − αr − αr−1 − · · · − α1 > 0. They showed that {xn} defined by (1.3) converges strongly to
a common fixed point of Ti, i = 1, 2, . . . , r, in Banach spaces, provided that Ti, i = 1, 2, . . . , r
satisfy condition A. The result improves the corresponding results of Kirk [2], Maiti and Saha
[3] and Sentor and Dotson [4].

If r = 2 and a
(2)
n1 := 0 for all n ∈ N, then (1.1) reduces to a generalization of Mann and

Ishikawa iteration given by Das and Debata [5] and Takahashi and Tamura [6]. This scheme
dealts with two mappings:
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(1.4)

where {a(1)
n1 }, {a

(2)
n2 } are appropriate sequences in [0, 1].

The purpose of this paper is to establish strong convergence theorems in a uniformly
convex Banach space of the iterative sequence {xn} defined by (1.1) to a common fixed
point of Ti (i = 1, 2, . . . , r) under some appropriate control conditions in the case that one
of Ti (i = 1, 2, . . . , r) is completely continuous or semicompact or {Ti}ri=1 satisfies condition
(B). Moreover, weak convergence theorem of the iterative scheme (1.1) to a common fixed
point of Ti (i = 1, 2, . . . , r) is also established in a uniformly convex Banach spaces having the
Opial’s condition.
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2. Preliminaries

In this section, we recall the well-known results and give a useful lemma that will be used in
the next section.

Recall that a Banach space X is said to satisfy Opial’s condition [7] if xn → x weakly
as n → ∞ and x /=y imply that lim supn→∞‖xn − x‖ < lim supn→∞‖xn − y‖. A finite family
of mappings Ti : C → C (i = 1, 2, . . . , r) with F :=

⋂r
i=1Fix(Ti)/= ∅ is said to satisfy condition

(B) [8] if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(t) > 0
for all t ∈ (0,∞) such that max1≤i≤r{‖x − Tix‖} ≥ f(d(x, F)) for all x ∈ C, where d(x, F) =
inf{‖x − p‖ : p ∈ F}.

Lemma 2.1 (see [9, Theorem 2]). Let p > 1, r > 0 be two fixed numbers. Then a Banach space X
is uniformly convex if and only if there exists a continuous, strictly increasing, and convex function
g : [0,∞) → [0,∞), g(0) = 0 such that

∥
∥λx + (1 − λ)y

∥
∥p ≤ λ‖x‖p + (1 − λ)
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∥p −wp(λ)g

(∥
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∥
)
, (2.1)

for all x, y in Br = {x ∈ X : ‖x‖ ≤ r}, λ ∈ [0, 1], where

wp(λ) = λ(1 − λ)p + λp(1 − λ). (2.2)

Lemma 2.2 (see [10, Lemma 1.6]). LetX be a uniformly convex Banach space,C a nonempty closed
convex subset of X, and T : C → C nonexpansive mapping. Then I − T is demiclosed at 0, that is, if
xn → x weakly and xn − Txn → 0 strongly, then x ∈ Fix(T).

Lemma 2.3 (see [11, Lemma 2.7]). Let X be a Banach space which satisfies Opial’s condition and
let {xn} be a sequence in X. Let u, v ∈ X be such that limn→∞‖xn − u‖ and limn→∞‖xn − v‖ exist.
If {xnk} and {xmk} are subsequences of {xn} which converge weakly to u and v, respectively, then
u = v.

Lemma 2.4. Let X be a uniformly convex Banach space and Br = {x ∈ X : ‖x‖ ≤ r}, r > 0. Then
for each n ∈ N, there exists a continuous, strictly increasing, and convex function g : [0,∞) →
[0,∞), g(0) = 0 such that
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By the inductive hypothesis, there exists a continuous, strictly increasing and convex function
g : [0,∞) → [0,∞), g(0) = 0 such that
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Hence, we have the lemma.

3. Main Results

In this section, we prove weak and strong convergence theorems of the iterative scheme (1.1)
for a finite family of nonexpansive mappings in a uniformly convex Banach space. In order
to prove our main results, the following lemmas are needed.

The next lemma is crucial for proving the main theorems.

Lemma 3.1. Let X be a Banach space and C a nonempty closed and convex subset of X. Let {Ti}ri=1
be a finite family of nonexpansive self-mappings of C. Let a(j)

ni ∈ [0, 1] for all j ∈ {1, 2, . . . , r}, n ∈ N

and i = 1, 2, . . . , j. For a given x1 ∈ C, let the sequence {xn} be defined by (1.1). If F /= ∅, then
‖xn+1 − p‖ ≤ ‖xn − p‖ for all n ∈ N and limn→∞‖xn − p‖ exists for all p ∈ F.
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It follows from (3.1) that
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By (3.1) and (3.2), we have
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By continuing the above argument, we obtain that

∥
∥
∥x

(i)
n − p

∥
∥
∥ ≤ ∥

∥xn − p
∥
∥ ∀i = 1, 2, . . . , r. (3.4)

In particular, we get ‖xn+1 − p‖ ≤ ‖xn − p‖ for all n ∈ N, which implies that limn→∞‖xn − p‖
exists.

Lemma 3.2. LetX be a uniformly convex Banach space andC a nonempty closed and convex subset of
X. Let {Ti}ri=1 be a finite family of nonexpansive self-mappings of C with F /= ∅ and a(j)

ni ∈ [0, 1] for all

j ∈ {1, 2, . . . , r}, n ∈ N and i = 1, 2, . . . , j such that
∑j

i=1a
(j)
ni are in [0, 1] for all j ∈ {1, 2, . . . , r} and

n ∈ N. For a given x1 ∈ C, let {xn} be defined by (1.1). If 0 < lim infn→∞a
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(ii) limn→∞‖Tixn − xn‖ = 0 for all i = 1, 2, . . . , r,

(iii) limn→∞‖x(i)
n − xn‖ = 0 for all i = 1, 2, . . . , r.

Proof. (i) Let p ∈ F, by Lemma 3.1, supn‖xn − p‖ < ∞. Choose a number s > 0 such that
supn‖xn−p‖ < s, it follows by (3.4) that {x(i)

n −p}, {Tix(i−1)
n −p} ⊆ Bs, for all i ∈ {1, 2, . . . , r}.
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By Lemma 2.4, there exists a continuous strictly increasing convex function g :
[0,∞) → [0,∞), g(0) = 0 such that
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∥
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∥
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(3.6)

Therefore
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∥
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∥
∥
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for all i = 1, 2, . . . , r. Since 0 < lim infn→∞a
(r)
ni ≤ lim supn→∞(a

(r)
n(r) + a

(r)
n(r−1) + · · · + a

(r)
n1 ) < 1,

it implies by Lemma 3.1 that limn→∞g(‖Tix(i−1)
n − xn‖) = 0. Since g is strictly increasing and

continuous at 0 with g(0) = 0, it follows that limn→∞‖Tix(i−1)
n − xn‖ = 0 for all i = 1, 2, . . . , r.
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(ii) For i ∈ {1, 2, . . . , r}, we have
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∥
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∥
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∥
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∥
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∥
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∥
∥
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∥
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∥
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∥
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∥
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It follows from (i) that

‖Tixn − xn‖ −→ 0 as n −→ ∞. (3.9)

(iii) For i ∈ {1, 2, . . . , r}, it follows from (i) that

∥
∥
∥x

(i)
n − xn

∥
∥
∥ ≤

i∑

j=1

a
(i)
nj

∥
∥
∥Tjx

(j−1)
n − xn

∥
∥
∥ −→ 0 as n −→ ∞. (3.10)

Theorem 3.3. LetX be a uniformly convex Banach space and C a nonempty closed and convex subset
of X. Let {Ti}ri=1 be a finite family of nonexpansive self-mappings of C with F /= ∅. Let the sequence
{a(j)

ni }∞n=1 be as in Lemma 3.2. For a given x1 ∈ C, let sequences {xn} and {x(i)
n } (i = 0, 1, . . . , r) be

defined by (1.1). If one of {Ti}ri=1 is completely continuous then {xn} and {x(j)
n } converge strongly to

a common fixed point of {Ti}ri=1 for all j = 1, 2, . . . , r.

Proof. Suppose that Ti0 is completely continuous where i0 ∈ {1, 2, . . . , r}. Then there exists a
subsequence {xnk} of {xn} such that {Ti0xnk} converges.

Let limk→∞Ti0xnk = q for some q ∈ C. By Lemma 3.2 (ii), limn→∞‖Ti0xn − xn‖ = 0. It
follows that limk→∞xnk = q. Again by Lemma 3.2(ii), we have limn→∞‖Tixn − xn‖ = 0 for
all i = 1, 2, . . . , r. It implies that limk→∞Tixnk = q. By continuity of Ti, we get Tiq = q, i =
1, 2, . . . , r. So q ∈ F. By Lemma 3.1, limn→∞‖xn − q‖ exists, it follows that limn→∞‖xn − q‖ = 0.
By Lemma 3.2(iii), we have limn→∞‖x(j)

n − xn‖ = 0 for each j ∈ {1, 2, . . . , r}. It follows that
limn→∞x

(j)
n = q for all j = 1, 2, . . . , r.

Theorem 3.4. LetX be a uniformly convex Banach space and C a nonempty closed and convex subset
of X. Let {Ti}ri=1 be a finite family of nonexpansive self-mappings of C with F /= ∅. Let the sequence
{a(j)

ni }∞n=1 be as in Lemma 3.2. For a given x1 ∈ C, let sequences {xn} and {x(i)
n } (i = 0, 1, . . . , r) be

defined by (1.1). If the family {Ti}ri=1 satisfies condition (B) then {xn} and {x(j)
n } converge strongly to

a common fixed point of {Ti}ri=1 for all j = 1, 2, . . . , r.

Proof. Let p ∈ F. Then by Lemma 3.1, limn→∞‖xn − p‖ exists and ‖xn+1 − p‖ ≤ ‖xn − p‖ for all
n ≥ 1. This implies that d(xn+1, F) ≤ d(xn, F) for all n ≥ 1, therefore, we get limn→∞d(xn, F)
exists. By Lemma 3.2(ii), we have limn→∞‖Tixn − xn‖ = 0 for each i = 1, 2, . . . , r. It follows,
by the condition (B) that limn→∞f(d(xn, F)) = 0. Since f is nondecreasing and f(0) = 0,
therefore, we get limn→∞d(xn, F) = 0. Next we show that {xn} is a Cauchy sequence. Since
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limn→∞d(xn, F) = 0, given any ε > 0, there exists a natural number n0 such that d(xn, F) < ε/2
for all n ≥ n0. In particular, d(xn0 , F) < ε/2. Then there exists q ∈ F such that ‖xn0 − q‖ < ε/2.
For all n ≥ n0 andm ≥ 1, it follows by Lemma 3.1 that

‖xn+m − xn‖ ≤ ∥
∥xn+m − q

∥
∥ +

∥
∥xn − q

∥
∥ ≤ ∥

∥xn0 − q
∥
∥ +

∥
∥xn0 − q

∥
∥ < ε. (3.11)

This shows that {xn} is a Cauchy sequence in C, hence it must converge to a point of C.
Let limn→∞xn = p∗. Since limn→∞d(xn, F) = 0 and F is closed, we obtain p∗ ∈ F. By
Lemma 3.2(iii), limn→∞‖x(j)

n −xn‖ = 0 for each j ∈ {1, 2, . . . , r}. It follows that limn→∞x
(j)
n = p∗

for all j = 1, 2, . . . , r.

In Theorem 3.4, if a(j)
ni := 0, for all n ∈ N, j ∈ {1, 2, . . . , r −1} and i = 1, 2, . . . , j, we obtain

the following result.

Corollary 3.5. Let X be a uniformly convex Banach space and C a nonempty closed and convex
subset of X. Let {Ti}ri=1 be a finite family of nonexpansive self-mappings of C with F /= ∅ and a

(r)
ni ∈

[0, 1] for all i = 1, 2, . . . , r and n ∈ N such that
∑r

i=1a
(r)
ni are in [0, 1] for all n ∈ N. For a given

x1 ∈ C, let the sequence {xn} be defined by (1.2). If the family {Ti}ri=1 satisfies condition (B) and
0 < lim infn→∞a

(r)
ni ≤ lim supn→∞(a

(r)
n(r) +a

(r)
n(r−1) + · · ·+a

(r)
n1 ) < 1, then the sequence {xn} converges

strongly to a common fixed point of {Ti}ri=1.

Remark 3.6. In Corollary 3.5, if a(r)
ni = αi, for all n ∈ N and for all i = 1, 2, . . . , r, the iterative

scheme (1.2) reduces to the iterative scheme (1.3) defined by Liu et al. [1] and we obtain
strong convergence of the sequence {xn} defined by Liu et al. when {Ti}ri=1 satisfies condition
(B)which is different from the condition (A) defined by Liu et al. and we note that the result
of Senter and Dotson [4] is a special case of Theorem 3.4 when r = 1.

In the next result, we prove weak convergence for the iterative scheme (1.1) for a finite
family of nonexpansive mappings in a uniformly convex Banach space satisfying Opial’s
condition.

Theorem 3.7. Let X be a uniformly convex Banach space which satisfies Opial’s condition and C a
nonempty closed and convex subset of X. Let {Ti}ri=1 be a finite family of nonexpansive self-mappings
of C with F /= ∅. For a given x1 ∈ C, let {xn} be the sequence defined by (1.1). If the sequence {a(j)

ni }∞n=1
is as in Lemma 3.2, then the sequence {xn} converges weakly to a common fixed point of {Ti}ri=1.

Proof. By Lemma 3.2(ii), limn→∞‖Tixn − xn‖ = 0 for all i = 1, 2, . . . , r. Since X is uniformly
convex and {xn} is bounded, without loss of generality we may assume that xn → u weakly
as n → ∞ for some u ∈ C. By Lemma 2.2, we have u ∈ F. Suppose that there are subsequences
{xnk} and {xmk} of {xn} that converge weakly to u and v, respectively. From Lemma 2.2,
we have u, v ∈ F. By Lemma 3.1, limn→∞‖xn − u‖ and limn→∞‖xn − v‖ exist. It follows
from Lemma 2.3 that u = v. Therefore {xn} converges weakly to a common fixed point of
{Ti}ri=1.

For a(j)
ni := 0, for all n ∈ N, j ∈ {1, 2, . . . , r − 1} and i = 1, 2, . . . , j in Theorem 3.7, we

obtain the following result.
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Corollary 3.8. Let X be a uniformly convex Banach space which satisfies Opial’s condition and C a
nonempty closed and convex subset of X. Let {Ti}ri=1 be a finite family of nonexpansive self-mappings
of C with F /= ∅ and a

(r)
ni ∈ [0, 1] for all i = 1, 2, . . . , r and n ∈ N such that

∑r
i=1a

(r)
ni are in [0, 1] for

all n ∈ N. For a given x1 ∈ C, let {xn} be the sequence defined by (1.2). If 0 < lim infn→∞a
(r)
ni ≤

lim supn→∞(a
(r)
n(r) + a

(r)
n(r−1) + · · · + a

(r)
n1 ) < 1, then the sequence {xn} converges weakly to a common

fixed point of {Ti}ri=1.

Remark 3.9. In Corollary 3.8, if a(r)
ni = αi, for all n ∈ N and for all i = 1, 2, . . . , r, then we obtain

weak convergence of the sequence {xn} defined by Liu et al. [1].
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