
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2009, Article ID 465387, 8 pages
doi:10.1155/2009/465387

Research Article
On Semicompact Sets and Associated Properties

Mohammad S. Sarsak

Department of Mathematics, Faculty of Science, The Hashemite University,
P.O. Box 150459, Zarqa 13115, Jordan

Correspondence should be addressed to Mohammad S. Sarsak, sarsak@hu.edu.jo

Received 27 October 2009; Accepted 24 December 2009

Recommended by Naseer Shahzad

We continue the study of semicompact sets in a topological space. Several properties, mapping
properties of semicompact sets are studied. A special interest to SCS spaces is given, where a
space X is SCS if every subset of X which is semicompact in X is semiclosed; we study several
properties of such spaces, it is mainly shown that a semi-T2 semicompact space is SCS if and only
if it is extremally disconnected. It is also shown that in an os-regular space X if every point has an
SCS neighborhood, then X is SCS.
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1. Introduction and Preliminaries

A subset A of a space X is called semi-open [1] if A ⊂ IntA, or equivalently, if there exists
an open subset U of X such that U ⊂ A ⊂ U; A is called semiclosed if X \ A is semi-open.
The semiclosure scl(A) of a subset A of a space X is the intersection of all semiclosed subsets
of X that contain A or equivalently the smallest semiclosed subset of X that contains A.
Clearly, A is semiclosed if and only if scl(A) = A; it is also clear that if A is a subset of
a space X and x ∈ X, then x ∈ scl(A) if and only if S ∩ A/=φ for each semi-open subset
S of X containing x. A subset A of a space X is called preopen [2] (resp., α-open [3]) if
A ⊂ IntA (resp., A ⊂ Int IntA). Njastad [3] pointed out that the family of all α-open subsets
of a space (X, τ), denoted by τα, is a topology onX finer than τ . We will denote the families of
semi-open (resp., preopen, α-open) subsets of a space X by SO(X) (resp., PO(X), αO(X)). If
(X, τ) is a topological space, we will denote the space (X, τα) by Xα. Janković [4] pointed out
that PO(X) = PO(Xα), SO(X) = SO(Xα) and αO(X) = αO(Xα). Reilly and Vamanamurthy
observed in [5] that τα = SO(X) ∩ PO(X). It is known that the intersection of a semi-open
(resp., preopen) set with an α-open set is semi-open (resp., preopen) and that the arbitrary
union of semi-open (resp., preopen) sets is semi-open (resp., preopen).
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A space X is called semicompact [6] (resp., semi-Lindelöf [7]) if any semi-open
cover of X has a finite (resp., countable) subcover. A subset A of a space X will be called
semicompact (resp., semi-Lindelöf) if it is semicompact (resp., semi-Lindelöf) as a subspace.

A function f from a space X into a space Y is called semi-continuous [1] if the inverse
image of each open subset of Y is semi-open in X, irresolute [8] if the inverse image of each
semi-open subset of Y is semi-open in X and f is called pre-semi-open (resp., pre-semiclosed
[8]) if it maps semi-open (resp., semiclosed) subsets of X onto semi-open (resp., semiclosed)
subsets of Y .

A space X is called semi-T2 [9] if for each distinct points x and y of X, there exist two
disjoint semi-open subsets U and V of X containing x and y, respectively.

A space X is called extremally disconnected [10] if the closure of each open subset of
X is open or equivalently if every regular closed subset of X is preopen.

Throughout this paper, a space X stands for a topological space, and if X is a space
and A ⊂ X, then A and IntA stand respectively for the closure of A in X and the interior of
A in X. For the concepts not defined here, we refer the reader to [11].

In concluding this section, we recall the following facts for their importance in the
material of our paper.

Proposition 1.1. Let A ⊂ B ⊂ X, where X is a space. Then

(i) If A is semi-open in X, then A is semi-open in B;
(ii) [12] If A is semi-open in B and B is semi-open in X, then A is semi-open in X.

Proposition 1.2. Let A ⊂ B ⊂ X, where X is a space and B is preopen in X. Then A is semi-open
(resp., semiclosed) in B if and only if A = S ∩ B, where S is semi-open (resp., semi-closed) in X.

2. Semicompact Sets

This section is mainly devoted to continue the study of semicompact sets. We also introduce
and study semi-Lindelöf sets.

Definition 2.1 (see [13]). A subset A of a space X is called semicompact relative to X if any
semi-open cover of A in X has a finite subcover of A.

By semicompact in X, we will mean semicompact relative to X.

Definition 2.2. A subset A of a space X is called semi-Lindelöf in X if any semi-open cover of
A in X has a countable subcover of A.

Remark 2.3. It is easy to see from the fact that SO(X) = SO(Xα), that a subsetA of a spaceX is
semicompact (resp., semi-Lindelöf) inX if and only if it is semicompact (resp., semi-Lindelöf)
in Xα.

The proof of the following proposition is straightforward, and thus omitted.

Proposition 2.4. The finite (resp., countable) union of semicompact (resp., semi-Lindelöf) sets in a
space X is semicompact (resp., semi-Lindelöf) in X.

Proposition 2.5. Let B be a preopen subset of a space X and A ⊂ B. If A is semicompact (resp.,
semi-Lindelöf) in X, then A is semicompact (resp., semi-Lindelöf) in B.
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Proof. We will show the case when A is semicompact in X, the other case is similar. Suppose
that A = {Aα : α ∈ Λ} is a cover of A by semi-open sets in B. By Proposition 1.2, Aα = Sα ∩ B
for each α ∈ Λ, where Sα is semi-open in X for each α ∈ Λ. Thus S = {Sα : α ∈ Λ} is a cover
of A by semi-open sets in X, but A is semicompact in X, so there exist α1, α2, . . . , αn ∈ Λ such
that A ⊂ ⋃i=n

i=1 Sαi , and thus A ⊂ ⋃i=n
i=1(Sαi ∩ B) =

⋃i=n
i=1 Aαi . Hence, A is semicompact in B.

Corollary 2.6. Let A be subset of a space X. If A is semicompact (resp., semi-Lindelöf) in X, then A
is semicompact (resp., semi-Lindelöf).

Proposition 2.7. Let B be a preopen subset of a space X and A ⊂ B. Then A is semicompact (resp.,
semi-Lindelöf) in X if and only if A is semicompact (resp., semi-Lindelöf) in B.

Proof. Necessity. It follows from Proposition 2.5.
Sufficiency. Wewill show the case whenA is semicompact in B, the other case is similar.

Suppose that S = {Sα : α ∈ Λ} is a cover of A by semi-open sets in X. Then A = {Sα ∩ B : α ∈
Λ} is a cover ofA. Since Sα is semi-open in X for each α ∈ Λ and B is preopen in X, it follows
from Proposition 1.2 that Sα ∩ B is semi-open in B for each α ∈ Λ, but A is semicompact in B,
so there exist α1, α2, . . . αn ∈ Λ such thatA ⊂ ⋃i=n

i=1(Sαi ∩B) ⊂
⋃i=n

i=1 Sαi . Hence,A is semicompact
in X.

Corollary 2.8. A preopen subsetA of a space X is semicompact (resp., semi-Lindelöf) if and only ifA
is semicompact (resp., semi-Lindelöf) in X.

Proposition 2.9. Let A be a semicompact (resp., semi-Lindelöf) set in a space X and B be a semi-
closed subset of X. ThenA∩B is semicompact (resp., semi-Lindelöf) in X. In particular, a semi-closed
subset A of a semicompact (resp., semi-Lindelöf) space X is semicompact (resp., semi-Lindelöf) in X.

Proof. We will show the case when A is semicompact in X, the other case is similar. Suppose
that S = {Sα : α ∈ Λ} is a cover of A ∩ B by semi-open sets in X. Then A = {Sα : α ∈
Λ} ∪ {X \ B} is a cover of A by semi-open sets in X, but A is semicompact in X, so there exist
α1, α2, . . . , αn ∈ Λ such that A ⊂ (

⋃i=n
i=1 Sαi) ∪ (X \ B). Thus A ∩ B ⊂ ⋃i=n

i=1(Sαi ∩ B) ⊂ ⋃i=n
i=1 Sαi .

Hence, A ∩ B is strongly compact in X.

Proposition 2.10. Let f : X → Y be an irresolute function. Then

(i) [13] If A is semicompact in X, then f(A) is semicompact in Y ;

(ii) If A is semi-Lindelöf in X, then f(A) is semi-Lindelöf in Y .

Proof. (ii) The proof is similar to that of (i). We will, however, show it for the convenience of
the reader. Suppose that S = {Sα : α ∈ Λ} is a cover of f(A) by semi-open sets in Y . Then
A = {f−1(Sα) : α ∈ Λ} is a cover ofA, but f is irresolute, so f−1(Sα) is semi-open inX for each
α ∈ Λ. SinceA is semi-Lindelöf in X, there exist α1, α2, α3, . . . ∈ Λ such thatA ⊂ ⋃i=∞

i=1 f−1(Sαi).
Thus f(A) ⊂ ⋃i=∞

i=1 f(f−1(Sαi)) ⊂
⋃i=∞

i=1 Sαi . Hence, f(A) is semi-Lindelöf in X.

Proposition 2.11. Let f : X → Y be a pre-semi-closed surjection. If for each y ∈ Y , f−1(y)
is semicompact (resp., semi-Lindelöf) in X, then f−1(A) is semicompact (resp., semi-Lindelöf) in X
whenever A is semicompact (resp., semi-Lindelöf) in Y .

Proof. We will show the case when A is semicompact in X, the other case is similar. Suppose
that S = {Sα : α ∈ Λ} is a cover of f−1(A) by semi-open sets in X. Then it follows



4 International Journal of Mathematics and Mathematical Sciences

by assumption that for each y ∈ A, there exists a finite subcollection Sy of S such that
f−1(y) ⊂ ⋃Sy. Let Vy = ∪Sy. Then Vy is semi-open in X as any union of semi-open sets
is semi-open. Let Hy = Y \ f(X \ Vy). Then Hy is semi-open in Y as f is pre-semi-closed,
also y ∈ Hy for each y ∈ A as f−1(y) ⊂ Vy. Thus, H = {Hy : y ∈ A} is a cover of A by
semi-open sets in Y , but A is semicompact in Y , so there exist y1, y2, . . . , yn ∈ A such that
A ⊂ ⋃i=n

i=1 Hyi . Thus, f
−1(A) ⊂ ⋃i=n

i=1 f
−1(Hyi) ⊂

⋃i=n
i=1 Vyi . Since Syi is a finite subcollection of S

for each i ∈ {1, 2, . . . , n}, it follows that
⋃i=n

i=1 Syi is a finite subcollection of S. Hence, f−1(A) is
semicompact in X.

3. SCS Spaces

Definition 3.1. A space X is said to be SCS if any subset of X which is semicompact in X is
semi-closed.

Remark 3.2. It follows from Remark 2.3, that a space X is SCS if and only if Xα is SCS.

We recall the following result from [3], it will be helpful to show the next two theorems.

Proposition 3.3. A space X is extremally disconnected if and only if the intersection of any two
semi-open subsets of X is semi-open.

Theorem 3.4. Let X be a semi-T2 extremally disconnected space. Then X is SCS.

Proof. Let F be a subset of X which is semicompact in X and let x /∈F. Then for each y ∈ F
there exist two disjoint semi-open sets U and V containing x and y respectively (as X is
semi-T2). Since F is semicompact in X, there exist y1, y2, . . . , yn ∈ F such that F ⊂ ⋃n

i=1 Vyi . Let
U =

⋂n
i=1 Uyi . Then U is a semi-open subset of X that contains x and disjoint from F (as X is

extremally disconnected using Proposition 3.3). Thus, x /∈ scl(F). Hence, F is semi-closed in
X.

Theorem 3.5. If X is an SCS space such that every semi-closed subset A of X is semicompact
in X, then X is extremally disconnected. In particular, an SCS semicompact space is extremally
disconnected.

Proof. Let F = A ∪ B, where A and B are semi-closed in X. It follows by assumption that A
and B are semicompact in X and thus by Proposition 2.4, F is semicompact in X, but X is
SCS, so F is semi-closed in X. Hence by Proposition 3.3, X is extremally disconnected. The
last part follows by Proposition 2.9.

Corollary 3.6. For a semi-T2 semicompact space, the followings are equivalent:

(i) X is SCS.

(ii) X is extremally disconnected.

Observing that a singleton of a space X is semi-open if and only if it is open, the
following proposition seems clear.

Proposition 3.7. If every subset of a space X is semicompact in X, then X is SCS if and only if X is
a finite discrete space.



International Journal of Mathematics and Mathematical Sciences 5

Theorem 3.8. Let f be a pre-semi-closed function from a space X onto a space Y such that for each
y ∈ Y , f−1(y) is semicompact in X. If X is SCS, then so is Y .

Proof. Let F be a semicompact set in Y . Then by Proposition 2.11, f−1(F) is semicompact
in X, but X is SCS, so f−1(F) is semi-closed in X, but f is a pre-semi-closed surjection, so
F = f(f−1(F)) is semi-closed. Hence, Y is SCS.

Theorem 3.9. Let f be an irresolute one-to-one function from a space X into an SCS space Y . Then
X is SCS.

Proof. Let F be a semicompact set in X. Then it follows from Proposition 2.10(i) that f(F)
is semicompact in Y , but Y is SCS, so f(F) is semi-closed in Y . Since f is one-to-one and
irresolute, F = f−1(f(F)) is semi-closed in X. Hence, X is SCS.

Lemma 3.10. A subset A of ⊕Xα is semi-open if and only if A ∩ Xα is semi-open in Xα for each α.
Thus a subset A of ⊕Xα is semi-closed if and only if A ∩Xα is semi-closed in Xα for each α.

Proof. Since Xα is open in ⊕Xα, it follows that if A is semi-open in ⊕Xα, then A ∩ Xα is semi-
open in ⊕Xα and thus semi-open in Xα for each α. Now suppose that A ∩ Xα is semi-open in
Xα for each α. Then A ∩Xα is semi-open in ⊕Xα for each α because Xα is open and thus semi-
open in ⊕Xα. Thus, A = ∪(A ∩ Xα) is semi-open in ⊕Xα as the arbitrary union of semi-open
sets is semi-open.

Corollary 3.11. Being SCS is hereditary with respect to preopen subsets.

Proof. Let A be a preopen subset of an SCS space X and let B be semicompact in A. Then
by Proposition 2.7, B is semicompact in X, but X is SCS, so B is semi-closed in X. By
Proposition 1.2, B is semi-closed in A. Hence, A is SCS.

Corollary 3.12. ⊕Xα is SCS if and only if Xα is SCS for each α.

Proof. Necessity. It follows from Corollary 3.11 since Xα is open and thus preopen in ⊕Xα.
Sufficiency. Suppose that Xα is an SCS space for each α and let F be a subset of ⊕Xα

which is semicompact in ⊕Xα. Since Xα is closed and thus semi-closed in ⊕Xα, it follows from
Proposition 2.9 that F ∩ Xα is semicompact in ⊕Xα, but Xα is preopen in ⊕Xα, so it follows
from Proposition 2.7 that F ∩Xα is semicompact in Xα. Since Xα is SCS, F ∩Xα is semi-closed
in Xα for each α, thus by Lemma 3.10, F is semi-closed in ⊕Xα. Hence, ⊕Xα is SCS.

Recall that a space X is called s-regular [14] if wheneverU is an open subset of X and
x ∈ U, there exists a semi-open subset K of X and a semi-closed subset S of X such that
x ∈ K ⊂ S ⊂ U. We now define a type of regularity which is stronger than s-regularity and
weaker than regularity.

Definition 3.13. A spaceX is called os-regular if wheneverU is an open subset ofX and x ∈ U,
there exists an open subset K of X and a semi-closed subset S of X such that x ∈ K ⊂ S ⊂ U.

Theorem 3.14. If X is an os-regular space in which every point has an SCS neighborhood, then X is
SCS.

Proof. Let F be a subset of X which is semicompact in X and let x /∈F. Then by assumption
there exists an SCS neighborhood of x. Since being SCS is hereditary with respect to preopen
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sets (Corollary 3.11), it follows that x has an open SCS neighborhood U. Now since X is
os-regular, there exists an open subset K of X and a semi-closed subset S of X such that
x ∈ K ⊂ S ⊂ U. Since F is semicompact inX and S is a semi-closed subset ofX, it follows from
Proposition 2.9 that F ∩ S is semicompact in X, thus by Proposition 2.5, F ∩ S is semicompact
in U, but U is SCS, so F ∩ S is semi-closed in U, that is, U \ (F ∩ S) is semi-open in U
and thus semi-open in X by Proposition 1.1(ii) as U is open and thus semi-open in X. Thus
K ∩ (U \ (F ∩S)) is a semi-open subset of X that contains x and disjoint from F and therefore,
x /∈ scl(F). Hence, F is semi-closed in X, and therefore, X is SCS.

Corollary 3.15. If X is a regular space in which every point has an SCS neighborhood, then X is
SCS.

Theorem 3.16. LetX be a space in which every semi-closed subset is semicompact inX, Y be an SCS
space. Then any irresolute function f from X into Y is pre-semi-closed. In particular, any irresolute
function from a semicompact space X into an SCS space Y is pre-semi-closed.

Proof. Let F be a semi-closed subset of X. By assumption, F is semicompact in X. Since f is
irresolute, it follows by Proposition 2.10 that f(F) is semicompact in Y . Since Y is SCS, it
follows that f(F) is semi-closed in Y . The last part follows from Proposition 2.9.

The following lemma will be helpful to show the next result, the easy proof is omitted.

Lemma 3.17. (i) The projection function is irresolute.
(ii) Let f : X → Y be irresolute and A be an α-open subspace of X. Then the restriction

function f |A : A → Y is irresolute.

Theorem 3.18. Let X be an SCS space and Y be any space. If f : X → Y is a function whose graph
Gf is an α-open subspace of X × Y in which every semi-closed subset is semicompact in Gf , then f
is irresolute. In particular, any function having an SCS domain and an α-open, semicompact graph is
irresolute.

Proof. Let PX : X × Y → X and PY : X × Y → Y be the projection functions. Since Gf is an
α-open subspace of X ×Y , it follows from Lemma 3.17 that PX |Gf is irresolute. Thus it follows
from Theorem 3.16 that PX |Gf is pre-semi-closed, that is, (PX |Gf )

−1 is irresolute. Also, PY is
irresolute. Thus, f = PY ◦(PX |Gf )

−1 is irresolute. The last part follows from Proposition 2.9.

4. SLS Spaces

The study of this section is analogous to that of the preceding section, similar proofs are
omitted.

Definition 4.1. A space X is said to be SLS if any subset of X which is semi-Lindelöf in X is
semi-closed.

Remark 4.2. It follows from Remark 2.3, that a space X is SLS if and only if Xα is SLS.

Following Proposition 3.3, we will call a space X ω-extremally disconnected if the
countable intersection of semi-open subsets of X is semi-open.

Theorem 4.3. Let X be a semi-T2 ω-extremally disconnected. Then X is SLS.



International Journal of Mathematics and Mathematical Sciences 7

Theorem 4.4. If X is an SLS space such that every semi-closed subset A of X is semi-Lindelöf in
X, then X is ω-extremally disconnected. In particular, an SLS semi-Lindelöf space is ω-extremally
disconnected.

Corollary 4.5. For a semi-T2 semi-Lindelöf space, the followings are equivalent:

(i) X is SLS.
(ii) X is ω-extremally disconnected.

Proposition 4.6. If every subset of a space X is semi-Lindelöf in X, then X is SLS if and only if X is
a countable discrete space.

Theorem 4.7. Let f be a pre-semi-closed function from a space X onto a space Y such that for each
y ∈ Y , f−1(y) is semi-Lindelöf in X. If X is SLS, then so is Y .

Theorem 4.8. Let f be an irresolute one-to-one function from a space X into an SLS space Y . Then
X is SLS.

Proposition 4.9. Being SLS is hereditary with respect to preopen subsets.

Corollary 4.10. ⊕Xα is SLS if and only if Xα is SLS for each α.

Theorem 4.11. If X is an os-regular space in which every point has an SLS neighborhood, then X is
SLS.

Corollary 4.12. If X is a regular space in which every point has an SLS neighborhood, then X is
SLS.

Theorem 4.13. LetX be a space in which every semi-closed subset is semi-Lindelöf inX, Y be an SLS
space. Then any irresolute function f from X into Y is pre-semi-closed. In particular, any irresolute
function from a semi-Lindelöf space X into an SLS space Y is pre-semi-closed.

Theorem 4.14. Let X be an SLS space and Y be any space. If f : X → Y is a function whose graph
Gf is an α-open subspace of X × Y in which every semi-closed subset is semi-Lindelöf in Gf , then f is
irresolute. In particular, any function having an SLS domain and an α-open, semi-Lindelöf graph is
irresolute.
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