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The aim of this paper is to prove the stability in the sense of Hyers-Ulam of differential equation of
second order y′′ + p(x)y′ + q(x)y + r(x) = 0. That is, if f is an approximate solution of the equation
y′′ + p(x)y′ + q(x)y + r(x) = 0, then there exists an exact solution of the equation near to f .
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1. Introduction and Preliminaries

In 1940, Ulam [1] posed the following problem concerning the stability of functional
equations: give conditions in order for a linear mapping near an approximately linear
mapping to exist. The problem for the case of approximately additive mappings was solved
by Hyers [2] when G1 and G2 are Banach spaces, and the result of Hyers was generalized
by Rassias (see [3]). Since then, the stability problems of functional equations have been
extensively investigated by several mathematicians (cf. [3–5]).

In connection with the stability of exponential functions, Alsina and Ger [6] remarked
that the differential equation y′ = y has the Hyers-Ulam stability. More explicitly, they proved
that if a differentiable function y : I → R satisfies |y′(t) − y(t)| ≤ ε for all t ∈ I, then there
exists a differentiable function g : I → R satisfying g ′(t) = g(t) for any t ∈ I such that
|y(t) − g(t)| ≤ 3ε for every t ∈ I.

The above result of Alsina and Ger has been generalized by Miura et al. [7], by Miura
[8], and also by Takahasi et al. [9]. Indeed, they dealt with the Hyers-Ulam stability of the
differential equation y′(t) = λy(t), while Alsina and Ger investigated the differential equation
y′(t) = y(t).

Furthermore, the result of Hyers-Ulam stability for first-order linear differential
equations has been generalized by Miura et al. [10], by Takahasi et al. [11], and also by Jung
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[12]. They dealt with the nonhomogeneous linear differential equation of first order

y′ + p(t)y + q(t) = 0. (1.1)

Jung [13] proved the generalized Hyers-Ulam stability of differential equations of the
form

ty′(t) + αy(t) + βtrx0 = 0 (1.2)

and also applied this result to the investigation of the Hyers-Ulam stability of the differential
equation

t2y′′(t) + αty′(t) + βy(t) = 0. (1.3)

Recently, Wang et al. [14] discussed the Hyers-Ulam stability of the first-order nonhomoge-
neous linear differential equation

p(x)y′ + q(x)y + r(x) = 0. (1.4)

They proved the following theorem.

Theorem 1.1 (see [14]). Let p(x), q(x), and r(x) be continuous real functions on the interval I =
(a, b) such that p(x)/= 0 and |q(x)| ≥ δ for all x ∈ I and some δ > 0 independent of x ∈ I. Then (1.4)
has the Hyers-Ulam stability.

The aim of this paper is to investigate the Hyers-Ulam stability of the following linear
differential equations of second order under some special conditions:

y′′ + p(x)y′ + q(x)y + r(x) = 0, (1.5)

where y ∈ C2(I) = C2(a, b),−∞ < a < b < +∞.
For the sake of convenience, all the integrals in the rest of the work will be viewed as

existing. We say that (1.5) has the Hyers-Ulam stability if there exists a constant K > 0 with
the following property: for every ε > 0, y ∈ C2(I), if

∣
∣y′′ + p(x)y′ + q(x)y + r(x)

∣
∣ ≤ ε, (1.6)

then there exists some z ∈ C2(I) satisfying

z′′ + p(x)z′ + q(x)z + r(x) = 0 (1.7)

such that |y(x) − z(x)| < Kε. We call such K a Hyers-Ulam stability constant for (1.5).
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2. Main Results

Now, the main results of this work are given in the following theorems.

Theorem 2.1. If a twice continuously differentiable function y : I → R satisfies the differential
inequality

∣
∣y′′ + p(x)y′ + q(x)y + r(x)

∣
∣ ≤ ε (2.1)

for all t ∈ I and for some ε > 0, and the Riccati equation u′(x) + p(x)u(x) − u2(x) = q(x) has a
particular solution, then there exists a solution v : I → R of (1.5) such that

∣
∣y(x) − v(x)

∣
∣ ≤ Kε, (2.2)

where K > 0 is a constant.

Proof. Let ε > 0 and y : I → R be a continuously differentiable function such that

∣
∣y′′ + p(x)y′ + q(x)y + r(x)

∣
∣ ≤ ε. (2.3)

We will show that there exists a constant K independent of ε and v such that |y − v| <
Kε for some v ∈ C2(I) satisfying v′′ + p(x)v′ + q(x)v + r(x) = 0.

Assume that c(x) is a particular solution of Riccati equation u′(x) + p(x)u(x)−u2(x) =
q(x); if we set

g(x) = y′(x) + c(x)y(x), d(x) = p(x) − c(x), (2.4)

then

g ′(x) = y′′(x) + c(x)y′(x) + c′(x)y(x), (2.5)

thus

∣
∣g ′(x) + d(x)g(x) + r(x)

∣
∣ =

∣
∣y′′(x) + (c(x) + d(x))y′(x) +

(

c′(x) + d(x)c(x)
)

y(x) + r(x)
∣
∣

=
∣
∣y′′ + p(x)y′ + q(x)y + r(x)

∣
∣ ≤ ε.

(2.6)
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Using the similar technique in [14], we can prove

w(x) = exp
{∫x

a

(−d(s))ds
}[

(

g(b) − ε
)

exp

{

−
∫b

a

(−d(x))ds
}

−
∫b

x

− r(s) exp
{

−
∫s

a

(−d(t))dt
}

ds

]

= exp
{∫x

a

(−d(s))ds
}[

(

g(b) − ε
)

exp

{∫b

a

(d(x))ds

}

+
∫b

x

r(s) exp
{∫s

a

(d(t))dt
}

ds

]

(2.7)

satisfying

w′(x) + d(x)w(x) + r(x) = 0, (2.8)

and there exists an L > 0 such that

∣
∣g(x) −w(x)

∣
∣ ≤ Lε. (2.9)

By g(x) = y′(x) + c(x)y(x), we get

∣
∣y′(x) + c(x)y(x) −w(x)

∣
∣ ≤ ε. (2.10)

Using the same technique as above, we know that

v(x) = exp
{∫x

a

(−c(s))ds
}[

(

y(b) − ε
)

exp

{

−
∫b

a

(−c(x))ds
}

−
∫b

x

w(s) exp
{

−
∫s

a

(−c(t))dt
}

ds

]

= exp
{∫x

a

(−c(s))ds
}[

(

y(b) − ε
)

exp

{∫b

a

(c(s))ds

}

−
∫b

x

w(s) exp
{∫s

a

(c(t))dt
}

ds

]

(2.11)

satisfying

v′(x) + c(x)v(x) −w(x) = 0, (2.12)

and there exists a K > 0 such that

∣
∣y(x) − v(x)

∣
∣ ≤ Kε. (2.13)

The desired conclusion is proved.
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Theorem 2.2. Let p(x), q(x), and r(x) be continuous real functions on the interval I = (a, b) such
that p(x)/= 0 and y0(x) is a nonzero bounded particular solution p(x)y′′ + q(x)y′ + r(x)y = 0. If
y : I → R is a twice continuously differentiable function, which satisfies the differential inequality

∣
∣p(x)y′′ + q(x)y′ + r(x)y

∣
∣ ≤ ε (2.14)

for all t ∈ I and for some ε > 0, then there exists a solution v : I → R such that

∣
∣y(x) − v(x)

∣
∣ ≤ Kε, (2.15)

where K > 0 is a constant, and v satisfies p(x)v′′ + q(x)v′ + r(x)v = 0.

Proof. Setting y(x) = y0(x)
∫x

az(s)ds, we obtain

y′(x) = y′
0(x)

∫x

a

z(s)ds + y0(x)z(x) (2.16)

and also

y′′(x) = y′′
0(x)

∫x

a

z(s)ds + 2y′
0(x)z(x) + y0(x)z′(x) (2.17)

By a simple calculation, we see that

∣
∣p(x)y0(x)z′(x) +

[

2p(x)y′
0(x) + q(x)y0(x)

]

z(x)
∣
∣ =

∣
∣p(x)y′′(x) + q(x)y′(x) + r(x)y(x)

∣
∣

≤ ε.

(2.18)

Without loss of generality, we may assume that p(x)y0(x) > 0. Using the similar
technique in [14], we know that

z1(x) = exp

{

−
∫x

a

2p(s)y′
0(s) + q(s)
y0(s)

ds

}[

(z(b) − ε) exp

{∫b

a

2p(s)y′
0(s) + q(s)
y0(s)

ds

}]

(2.19)

satisfies

p(x)y1(x)z′1(x) +
[

2p(x)y′
1(x) + q(x)y1(x)

]

z1(x) = 0 (2.20)

and also

|z(x) − z1(x)| ≤ Lε (2.21)

for some L > 0.
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From the inequalities −Lε ≤ z(x) − z1(x) ≤ Lε and the similar technique in [14], we
further get that

z2(x) =
(

y(b)
y1(b)

− ε

)

−
∫b

x

z1(s)ds (2.22)

satisfies

z2(x) − z1(x) = 0 (2.23)

and also

|z(x) − z2(x)| ≤ Qε (2.24)

for some Q > 0.
Consequently, we have

∣
∣y(x) − z2(x)y0(x)

∣
∣ ≤ Mε (2.25)

for some positive constant M.
Define v(x) = z2(x)y0(x). It then follows from the above inequality that |z(x)−v(x)| ≤

Mε holds for every x ∈ I. We can easily verify that v satisfies p(x)v′′+q(x)v′+ r(x)v = 0. This
completes the proof of our theorem.

We can prove the following corollaries by using an analogous argument. Hence, we
omit the proofs.

Corollary 2.3. Let p(x), q(x), and r(x) be continuous real functions on the interval I = (a, b) such
that p(x)/= 0 and r2 + p(x)r + q(x) = 0. If y : I → R is a twice continuously differentiable function,
which satisfies the differential inequality

∣
∣p(x)y′′ + q(x)y′ + r(x)y

∣
∣ ≤ ε (2.26)

for all t ∈ I and for some ε > 0, then there exists a solution v : I → R such that

∣
∣y(x) − v(x)

∣
∣ ≤ Kε, (2.27)

where K > 0 is a constant, and v satisfies p(x)v′′ + q(x)v′ + r(x)v = 0.

Corollary 2.4. Let p(x), q(x), r(x), and s(x) be continuous real functions on the interval I = (a, b)
such that p(x)/= 0 and y0(x) is a nonzero bounded particular solution p(x)y′′′ + q(x)y′′ + r(x)y′ +
s(x)y = 0. If y : I → R is a twice continuously differentiable function, which satisfies the differential
inequality

∣
∣p(x)y′′′ + q(x)y′′ + r(x)y′ + s(x)y

∣
∣ ≤ ε (2.28)
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for all t ∈ I and for some ε > 0, then there exists a solution v : I → R such that

∣
∣y(x) − v(x)

∣
∣ ≤ Kε, (2.29)

where K > 0 is a constant, and v satisfies p(x)v′′′ + q(x)v′′ + r(x)v′ + s(x)v = 0.
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