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The notion of compatible apparition points is introduced for non-Hausdorff manifolds, and
properties of these points are studied. It is well known that the Hausdorff property is independent
of the other conditions given in the standard definition of a topological manifold. In much of
literature, a topological manifold of dimension n is a Hausdorff topological space which has a
countable base of open sets and is locally Euclidean of dimension n. We begin with the definition
of a non-Hausdorff topological manifold.
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1. Topological Properties of Non-Hausdorff Manifolds

Definition 1.1. A non-Hausdorff manifold of dimension n is a topological space which has a
countable base of open sets and is locally Euclidean of dimension n.

Since every point of a non-Hausdorff manifold has a Euclidean neighborhood, it is
easy to show that every non-Hausdorff manifold is T1.

We now briefly review some of the well-known properties of non-Hausdorff
manifolds. Since R

n is locally compact, a non-Hausdorff manifold of dimension n is locally
compact. In some of literature, compactness is only defined in Hausdorff spaces. In such
cases, compact subsets must be closed. Compact subsets of T1-spaces, however, need not to
be closed. This remains true for non-Hausdorff manifolds (Example 1.2). A non-Hausdorff
manifold of dimension n must be locally connected. Since a non-Hausdorff manifold M has
a countable base of open sets, M is Lindelöf; that is, every open cover of M has a countable
subcover. Further, since locally compact Lindelöf spaces are sigma-compact, it follows that a
non-Hausdorff manifold M of dimension n is sigma-compact. Finally, we note that when M
is not Hausdorff, it is not regular.

We now consider the property of paracompactness. A Hausdorff space X is
paracompact if every open covering U of X has a locally finite refinement V. That is, each
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V ∈ V is contained in some U ∈ U and each x ∈ X has a neighborhood N which meets
only finitely many sets in V. Paracompactness can be defined for T1-spaces as follows. A
T1-space X is paracompact if and only if each open covering of X has an open barycentric
refinement, whereV is a barycentric refinement ofU if the collection {St(x,V) : x ∈ X} refines
U, where St(x,V) = ∪{V ∈ V : x ∈ V }. A space is metacompact if every open cover has a
point finite refinement. Since Hausdorff second countable manifolds are metrizable, they are
paracompact and hence metacompact. In [1], an example of a non-Hausdorffmanifold which
is not metacompact is given. We present another one.

Example 1.2. A non-Hausdorff manifold M need not to be metacompact.

Let M = R ∪ (Q × {1}) and define a topology on M as follows.

(i) For each x ∈ R, a basic open neighborhood of x is open inRwith the usual topology.

(ii) For each (q, 1) ∈ Q×{1}, a basic open neighborhood of (q, 1) is of the form [{(q, 1)}∪
U] \ {q}where U is an open neighborhood of q in R with the usual topology.

Claim 1. The non-Hausdorff manifold M is not metacompact.

Proof. Let U = {{(q, 1)} ∪ R : q ∈ Q}. To see that U has no point finite refinement, let V
be a refinement of U. Let q0 ∈ Q and ε0 > 0 such that (q0 − ε0, q0 + ε0) is a subset of some
element of V. For each n ∈ N, choose qn ∈ Q, εn > 0, and Vn ∈ V such that [qn − εn, qn + εn] ⊆
(qn−1 − εn−1, qn−1 + εn−1) \ {qn−1}, εn < 1/n, and ({(qn, 1)} ∪ [qn − εn, qn + εn]) \ {qn} ⊆ Vn.
By the way U is defined, no element of U contains more than one element of Q × {1}. Since
V is a refinement of U, no element of V contains more than one element of Q × {1}. Hence,
Vj /=Vk whenever j /= k. By Cantor’s Intersection theorem, there exists x ∈ R such that {x} =
⋂∞

n=1[qn − εn, qn + εn] ⊆
⋂∞

n=1Vn. Therefore, V is not point finite.

Remark 1.3. In the above example, [0, 1] is compact and Hausdorff but not closed.

Remark 1.4. For each n ∈ N,Rn is a complete metric space and Q
n is a countable dense subset

ofR
n. Therefore, a construction similar to the one above can be used to create a non-Hausdorff

manifold of dimension n that is not metacompact.

2. Compatible Apparition Points

If amanifoldM of dimension n is non-Hausdorff, there exist at least two points x and ywhich
cannot be separated by disjoint open sets. Also, the points x and y cannot be contained in the
same Euclidean neighborhood since Euclidean neighborhoods are Hausdorff.

Definition 2.1. Let M be a non-Hausdorff manifold and let x and y be distinct points of M.
Then x and y are compatible apparition points if there do not exist disjoint open sets U and
V with x ∈ U and y ∈ V . By a “set of compatible apparition points,” we will mean that any
pair of distinct points in the set are compatible apparition points.

Remark 2.2. Since a non-Hausdorff manifold is locally Hausdorff, then no more than one
element of a set of compatible apparition points can be contained in a single Euclidean
neighborhood. Hence, a set of compatible apparition points is a closed discrete set.
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Remark 2.3. Since a non-Hausdorffmanifold has a countable base and each point is contained
in its own Euclidean neighborhood, any set of compatible apparition points must be
countable.

A non-Hausdorff manifold can have an uncountable collection of sets of compatible
apparition points.

Example 2.4. Let C denote the Cantor ternary set and define X = R ∪ (C × {0}). Define a
topology on X as follows.

(i) For each x ∈ R, a basic open neighborhood of x is open inRwith the usual topology.

(ii) For each x ∈ C, a basic open neighborhood of (x, 0) is of the form [(x − ε, x + ε) ∩
C] × {0} ∪ (x − ε, x + ε) \ C.

Note that for each x ∈ C, {x, (x, 0)} is a set of compatible apparition points. Also, note
that since each ε can be chosen to be rational, X is second countable.

Recall that a subset of a topological space is nowhere dense if the interior of its closure
is empty.

Proposition 2.5. Let S be a set of compatible apparition points in a non-HausdorffmanifoldM. Then
S is nowhere dense inM.

Proof. Since S is closed and discrete and every element of M has a Euclidean neighborhood,
S is the frontier of M \ S which is open. Hence, S is nowhere dense by [2, 4G part 2 on page
37].

Proposition 2.6. Let M be an n-dimensional non-Hausdorff manifold. Suppose that M contains
a nonempty set S of compatible apparition points. Then every continuous function from M to a
Hausdorff space X is constant on S.

Proof. Suppose that f : M → X is continuous. Attempting a contradiction, suppose that
x1, x2 ∈ S such that f(x1)/= f(x2). SinceX is Hausdorff, there are disjoint open setsU1, U2 ⊆ X
such that f(x1) ∈ U1 and f(x2) ∈ U2. Then f−1(U1) and f−1(U2) are disjoint open subsets of
M with x1 ∈ f−1(U1) and x2 ∈ f−1(U2), a contradiction.

Theorem 2.7. In a non-Hausdorff manifold, the set of points which are not apparition points is
dense.

Proof. Suppose thatM is a non-Hausdorffmanifold. SinceM is locally Hausdorff, Lemma 4.2
of [3] implies that each x ∈ M has a dense open Hausdorff neighborhood Ux. Since M is
Lindelöf, the cover {Ux}x∈M has a countable subcover C. Since M is Baire, ∩C is dense in M.
Since the elements of C are Hausdorff, any point in ∩C can be separated from any other point
in M. Therefore, ∩C is a dense set of nonapparition points.
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