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We study the Dunkl convolution operators on Herz-type Hardy spaces JZ,Z and we establish a
version of multiplier theorem for the maximal Bochner-Riesz operators on the Herz-type Hardy
spaces Hh ..

1. Introduction

The classical theory of Hardy spaces on R" has received an important impetus from the
work of Fefferman and Stein, Lu and Yang [1, 2]. Their work resulted in many applications
involving sharp estimates for convolution and multiplier operators.

By using the technique of Herz-type Hardy spaces for the Dunkl operator A,, we are
attempting in this paper to study the Dunkl convolution operators, and we establish a version
of multiplier theorem for the maximal Bochner-Riesz operators on these spaces.

The Dunkl operator A,, a > —1/2, associated with the reflection group Z; on R:

20+ 1
X

Aef () = f () +

f(x) = f(=x)
> ] (1.1)

is the operator devised by Dunkl [3] in connection with a generalization of the classical theory
of spherical harmonics. The Dunkl analysis with respect to & > —1/2 concerns the Dunkl
operator A,, the Dunkl transform ¥,, the Dunkl convolution *,, and a certain measure y, on
R

In this paper we define a Herz-type Hardy spaces J’;q, 0<p<1<gc< oo inthe
Dunkl setting. Next, we consider the Dunkl convolution operators Tk f := kx,f, where k is
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a locally integrable function on R. We use the atomic decomposition of the Herz-type Hardy
spaces 4 to study the HP  —H! -bounded and the H#. , — L-bounded of the operators T.

Fmally, we establish a Vers1on of mu1t1p11er theorem for the maximal Bochner-Riesz operators
O'a,t>0 n>a+1/2:

oa(f) = Stu(lf|®2,t*af / (12)
where
I'(n+1) -1)"
CD’Z = 7 2u+2 ¢ 2n, )
wt(¥) = o ZZZnn!r(n rainr2) (13)

on the Herz- type Hardy spaces <}, .. In this version we prove the #%, ., — [P-bounded of the
operators ol fora+1/2< n<a+3/2.

The content of this work is the following. In Section 2, we recall some results about
harmonic analysis and we define a Herz-type Hardy spaces JHh, 3 0<p <1<q< ooforthe
Dunkl operator A,. In Section 3, we study the £ w2~ HK le-bounded and the H# 111,2 —L'-bounded

of the convolution operators T. In Section 4, we prove the Jfﬁm —LP-bounded of the maximal

Bochner-Riesz operators oy..

Throughout the paper we use the classic notation. Thus S(R) and S'(R) are the
Schwartz space on R and the space of tempered distributions on R, respectively. Finally, C
will denote a positive constant not necessary the same in each occurrence.

2. The Dunkl Harmonic Analysis on R

For a > -1/2 and A € C, the initial problem
Aaf(x) = Af(x), f(0)=1, (2.1)

has a unique analytic solution E,(Ax) called Dunkl kernel [4-6] given by

~ Ax
Ea()tx) = Ja()tx) + mJa+1 (.)Lx), X € ]R, (22)
where
Ju(Ax) = T(a + 1)i ()™ (2.3)
e LpI T(n+a+1) '

is the modified spherical Bessel function of order a.
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We notice that, the Dunkl kernel E,(Ax) can be expanded in a power series [7] in the
form

o0 (/\x)n
E.(\x) = , 2.4
(Ax) nZ:O by () (2.4)
where
22!

bou(a) = mf(n +a+1), bons1(a) =2(a+1)boy(a +1). (2.5)

Note 1. Let p, be the measure on R given by
Apa(x) := ;|x|z“+1dx (2.6)

T 2T (a4 1) ‘ '

We denote by LP(R, pa), p €]0, o], the space of measurable functions f on R, such that

1/p
I|f = UR | f ()P dpa(x) <o, pelo, o,

(2.7)

I1f

L = esssup|f(x)] < oo.
“ x€R

The Dunkl kernel gives rise to an integral transform, called Dunkl transform on
R, which was introduced by Dunkl in [8], where already many basic properties were
established. Dunkl’s results were completed and extended later on by de Jeu in [5].

The Dunkl transform of a function f € Lt (R, pa), is given by

F2()O) = [ E(ciA0f@dpn(x), LeR (28)

For T € S'(R), we define the Dunkl transform ¥,(T) of T, by

Note 2. Forall x,y,z € R, we put

Wa(x,y,2) = {1 =0xyz+ Ozxy + 0=y} Aa(|x], Y], |12]), (2.10)
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where
2, .2 .2
ad Z 2 ifx,y€R\ {0)
Oxy,z = y
0, otherwise
2 o\ 7a-1/2
(Gl +y))? = 22) (2= (== D)
da 2a if |Z| € Ax,y/ (2 11)
Au(lx], |y, 12l) = |xyz]| :
0, otherwise,
21T (a + 1))
a=——————, Axy= -yl .
Jr T(a+1/2) v =[xl =yl lxl + |y ]]
We denote by v, , the following signed measure:
Wa(x,y,2z)dpu(z) if x,y € R\ {0},
Avyy(z) = | d6x(z) if y =0, (2.12)

doéy(z) if x =0.

The Dunkl translation operators 7y, x € R (see [6]) are defined for f € C(R) (the space of
continuous functions on R), by

=[lxl-lyl|
| f(z2)dvyy(2) +I f(2)dvyy(z). (2.13)

~(Ixl+lyl)

xl+lyl

= f(y) = f

[1xl-1y

Let f and g be two functions in S(R). We define the Dunkl convolution product *, of
f and g by

frag(x) = fR o f (~y)g(y)dpa(y), x€R (2.14)

For T € S'(R) and f € S(R), we define the Dunkl convolution product T*, f by
Txaf (x) =(T(y),7xf(-y)), x€R (2.15)

We begin by recalling the definition of the Herz-type Hardy space in the Dunkl setting.
Firstly we introduce a class of fundamental functions that we will call atoms.
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Let0 < p <1 < g < oo. Ameasurable function a on Ris called a (p, g) atom, if a satisfies
the following conditions:

(i) there exists r > 0 such that supp(a) C [-r,7];
(ii) [lallys < r2@DA/P-1/9) \where r is given in (i);
(iii) [ a(x)x/dpa(x) =0, forall j =0,1,...,25+1,

where s = [(a + 1)(1/p — 1)], (the integer part of (a +1)(1/p - 1)).
Let0 < p <1 < g £ oo. Our Herz-type Hardy space JZZ,q is constituted by all those
f € S'(R) that can be represented by

f=2 Ajaj, (2.16)
j=0

where A; € C and a; is a (p,q) atom, for all j € N, such that Z?Zo |Aj[P < oo and the series in
(2.16) converges in S'(R).
We define on JZZ,q the norm || - [| » , by

o p
HfH4@:=inf<}SMﬂ”> , (2.17)

j=0

where the infimum is taken over all those sequences {1} oy C Csuch that f is given by (2.16)
for certain (p, q) atoms a;, j € N.
As the same in [7], we prove the following theorem.

Theorem 2.1. Let 0 <p<1<g<ooand f € Jff@q. Then

%2 (F) (v)]< Cly [P PP | £]

w, VER (2.18)

3. Dunkl Convolution Operators on !,

In the following, we study on JZZ,Z, 0 < p < 1 the Dunkl convolution operators defined by

Tk f = k. f, where k is a locally integrable function on R.

Theorem 3.1. Let 0 < p < g < 1. Assume that for every n € N we are given &, > 0 and a function g,
such that
(i) gn(x) =0, [x] 227",
(i) [|gnllpy < g2 D /a1/pm,
(i) [l Fu(gn) 1z < §u22 @DV TVDM, s = [(a+1)(1/p - 1)].
Suppose also that 35 (&,)7 < oo and define k = 3.7, gn. Then Ty defines a bounded linear

mapping from JZZ,Z into Jz,z'
To prove this theorem the following lemma is needed.
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Lemma 3.2. For y,z € Rand j € N, there are a constants Ajas such that

7y (+/) (2) = A’“Zb(a)b] @7 3.1

where bj(a) are the constants given by (2.4).

Proof. Lety, z € R. By dominated convergence theorem, we can write
j =li ]
7, (x )(z) lim fo Eq(tx)dv, . (x), (3.2)
and by derivation under the integral sign, we get
7, (xf>(z) = lim A/ tf Eq(tx)dvy - (). (3.3)
t—0 IR
Then, from Theorem 2.4, [6] we obtain
7,(+)(2) = lim A} (Ea(ty)E, (t2)). (3.4)

Let F(t) = E,(ty)Ex(tz) for |t| < ¢, where ¢ > 0. According to (2.11), [9],

AL E()=F (1) ;i {21'13].71 <tg, - t?)p(i) (t . t?) +2Q; 4 (t}, . .,t]1._1>F<f> <t . t}) }
i=1

(3.5)

where Py (£,...,19),i=1,2,...,j-1,and Qja (4, ..., t}l._l) are polynomials of degree at most
j — 1 with respect to each variable. Moreover,

FO(¢) = i <] > Y2 ED (ty) V) (t2). (36)
1

i=0

Then, from (2.4) we deduce

G) N i —i)! d i j-i
fim FT(D) = Z<>b(cx)b] @Y Zb(cx)b] @Y7 (37)

Therefore,

) j i
j — lim A AN i 3.8
Ty (X )(Z) }E% Au, tF(t) A]:“% bi([X)b]'_i(CX)y z ( )
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where

-1

A =1+ 2 {2 (B, 8) +2Q (8, 8) ] (3.9)

i

—.

IN
—_

This finishes the proof of the lemma. O

Proof of Theorem 3.1. Firstly, notice that [|g,ll;1 < &, n € N. Hence, the series defining k
converges in L'(R, y,) and k € LY(R, o).

Let a be a (p,2) atom. Suppose that a(x) = 0, |x| > r and that ||al|;2 < r=2(*D1/p=1/2),
where r > 0. We can write

Tka = Z Sn*aa. (3.10)

n=0
Step 1. Let n € N. From (2.13), for ||y| - |z|| > 27", we have

~|lyl-1=l]

[yl+]z]
T,8n(2) = J. gn(x)dvy . (x) +I gn(x)dvy . (x) = 0. (3.11)
EE ~([ly1+1=1])
Hence, for |y| > r + 27", we deduce
gn*qa(y) = J. a(-z)Tygn(z)dpa(z) = 0. (3.12)
-r

Step 2. Firstly, let us consider that » > 27". From (Proposition 3(i), [10]) and condition (ii) of
the theorem, we have

pallall < 4g, (r+27m) 2D/ (3.13)

| gn*aall 2 < 4||gn

Assume now that r < 27". Since fR a(x)xfd‘ua(x) =0,j=01,...,25+1, with s =
[(a+1)(1/p-1)], we have

2s5+1

y/
In*qa(x) :f a(-y) I:Tygn(x) Z Af,,gn(x) dus(y), x€R, (3.14)

where bj(a) are the constants given by (2.4).



8 International Journal of Mathematics and Mathematical Sciences

Using the properties of the Dunkl transform established by de Jeu [5] (see also [7, 10]),
we deduce

l|gn*aall ;2 < [pla(=v)|||7y8n - Z mAL dﬂu(]/)
= Jela(=9) || Fa(Ty8n) - Z m% (Aign> dpa(y)
L
(3.15)
(lxy)
- a2 - 5 G2 || amto)
L
According to page 302, [7]
25+1 (lxy)] 96s2
Ea(ixy) - Z bi(@) |- 2T (a+ 1) [yl (316)
Using condition (iii) of the theorem and Holder’s inequality, we get
1 T
lgwesall; < g 122 Fe(en) |, [ a1y due(y)
1 2612 " s 2 (3.17)
< mnx 2 (8n) L§||a||L§ [2 fo v dpa ()
< Yn22(u+1)(1/q—1/2)nr25—2(u+1)(1/p—1)+2,
where
Vo= b = cén. (3.18)
22T (a +1)4/(25 + a + 3)27* T (a + 1)
Using the fact thats — (« +1)(1/p-1) +1 > 0 and r < 27", we obtain
”gn*aa”L2 <Y 92(a+1)(1/4-1/2)n <y (T 10 n) 2(a+1)(1/q- 1/2) (3.19)

Step 3. We now prove forall j =0,...,2s+1;s = [(a+1)(1/p - 1)], that

fR x! (gu*a) (x)dpta(x) = 0. (3.20)
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Fubini’s theorem and [6] (see also page 20, [10]) lead to

fR 2 (guwkat) () i (x)

= fR x/ fR a(y) UR gn(z)dvx,_y(z)] Apa(y)dpa(x)

~[ at) [ s |[ *ian,.00|dpo(dps (v) -

- [ a) [_si@m () @@ e ().

Hence, by Lemma 3.2 and by taking into account that fR a(x)xjd‘uu(x) =0,j=0,1,...,25s+1,
with s = [(a+1)(1/p—-1)], we get

IR xj(g”*“a)(x)dnu“(x) AI“Z b; (ll)b] 1(“) [J. Y a(y)d/’t“(y)] [J. gn(Z)Z] ld/"ﬂ(z) =0.
(3.22)

Accordmg to the previous three steps, we conclude that (1/7;,)(gn*a) is a (g,2) atom.
Then, Tiya € Jfa 5 and

o 1/q
ITall s, < c<2<§n>q> : (3.23)
n=0

Let now f bein JZI Assume that f = 32 1;a;, where \; € C and g; is a (p, 2) atom,
for every j € N, and such that 3,7 |1’ < co. The series defining f converges in LY (R, pa)-

In fact, it is sufficient to note that [|all;; < (1/4/2°T (a +1))r*@*D-1/p) Hence f € L'(R, pa).
Moreover, k € L'(R, ). Then by (Proposition 3(i), [10]), the operator Ty is bounded from
LY(R, Ue) into itself, and from this, we deduce that Ty f = Z;’ZO AiTa;. Using the fact that

20Nl (X2 |,\].|p)1/P, we obtain

o0 1/q
I TNl s < c<Z(§n)q> I£1ler - (3.24)
n=0 ’

This completes the proof of the Theorem 3.1. m

We now study the Dunkl convolution operators Ty on the Herz-type Hardy spaces
i
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Theorem 3.3. Let k be a locally integrable function on R. Assume that the following three conditions
are satisfied:

(i) Ty defines a bounded linear operator from L*(R, pq) into itself.
(ii) Tk defines a bounded linear operator from L*(R, pn ) into S'(R).
(iii) There exist A and ¢ > 1 such that

[aperlTxk(2) = k(2)|dpa(z) < A, |x| € (O,R) , R>0. (3.25)

Then Ty defines a bounded linear mapping from Jf}llz into LY(R, pa ).

Proof. Let abe a (1,2) atom. We choose r > 0 such that supp(a) C [-r,7] and |lal|;2 < 7@,
We can write

fuwwwwam=[f «f }nmwumww=h+b (3.26)
R |x|<cr |x|>cr

Here ¢ > 1 is the one given in (iii).
From condition (i) of the theorem and Holder’s inequality, we deduce that

1/2 cr 1/2
L < U |Tka(x)|2d,ua(x)] [2f d,ua(x)] <Clallz ™' < C. (3.27)
R 0

Also, by taking into account that fR a(y)dua(y) = 0, the condition (iii) of the theorem allows
us to write

b:f
|x|>cr
J‘|x|>cr

[| 7k av) () ot

[ trek(y) - k) (=) () )

, (3.28)
<[ a1 | ko) -k dpa s ()
-r x|=cr
r r 1/2
<c| Ja@)lan ) < Clali: [ du)]  <c
Hence, it concludes that
ITialy < C. (3.29)

Note that the positive constant C is not depending on the (1,2) atom a.
Let now f be in JZ;Z. Then f € S'(R) and f = Z}‘Zo Ajaj, where \; € Cand a;isa (1,2)
atom, for every j € Nand 32, |A;| < co.
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The series defining f converges in L' (R, ). In fact, it is sufficient to note that ||a||;; <

1/4/2°T (a + 1), for every (1,2) atom a. Hence f € L!(R, p,). Then the condition (ii) of the
theorem implies that

Tif = D, \iTka;. (3.30)
j=0

ITefll, < Clifller,- O

By (3.29) the series in (3.30) converges in L'(R,u,) and Tk fllr < CZ]?‘ZO |A;|. Hence

4. Maximal Bochner-Riesz Operators on J//, ,

The Bochner-Riesz mean og,t, fort > 0and 7 > a + 1/2 associated to the Dunkl transform ¥,
is defined by
t yz 1
(= [ (1-% ) EEFND W, fes@.
The maximal operator ol 1 > a + 1/2 associated to the Bochner-Riesz means og,t, t>0,is
defined by
0 (f) i=supal, (). «2)
Lemma 4.1. For t >0and n > a +1/2, one has
(i) GZ,t( f)= (I)Z,t*u f, where
I'(n+1
! (x) = (1+1) 22 g (itx). (4.3)

2041 (a + 1+ 2)

Here 34 is the modified spherical Bessel function given by (2.3).
(ii) The operator o is bounded from LP (R, py), 1 < p < oo into itself.

Proof. Lett>0and > a+1/2.

(i) By taking into account that the functions |z|“+1/ 23,(iz) and J,(iz) are bounded on
R it is not hard to see that

I(n+1)

1 -
Lh 20410 (a + 17+ 2)

Ui _
o, - o,

fR|3u+n+l (ix) | dpa (x) < 0. (4.4)
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On the other hand, from [11], we have

! Fa+1)I(n+1)
1-12)" 3, (it 2041 3,
fo( v?)" Ja(itxy) y**dy T (arn+2)

Thus,

1 2t ! 2\" . 2a+l
D), (x) = T D) . <1 -y > Ja(itxy)y***'dy

:Jit<1-—%;> E,(ixy)dpua(y).

Applying Inversion Theorem[5], we obtain

2\ 1
Yy
(1)) = (1= ) xen).
where y (4 is the characteristic function of the set (-¢,t). Thus,
L)) = [ Eulix) (@) ) Fe () ) e (),

and from (Proposition 3 (ii), [10]), we deduce that

on, (f)(x) = @) ke f ().

(ii) Using (i) and (Proposition 3 (i), [10]), we obtain

Yl
q)u,l

oa (f)

Lh-

Lﬁs4|

s

This clearly yields the result.

ja+yl+1 (itx) .

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

O

Theorem 4.2. [et0<p<1l<g<ocoand f € Jff@q. Fort > 0and n > a +1/2, the operator Gg,t

extended to a bounded operator from JZZ,q into S'(R).

Proof. According to Theorem 2.1, if f € sz,q, then O';llt( f) isin S'(R) and it is defined by

t

<02,t(f),¢>=f

~t

(1-%) FDOR@OIE, pes@.  am
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Moreover,
a+1)(1/p-
(a2 (£) 9)|< Clif Il fR PP DIL (D) () |dpa (), 9 SER).  (412)
Hence o;l,t is a bounded operator from o, ; into S'(R). O

We now study the behavior of the maximal Bochner-Riesz operator o, on < ..

Theorem 4.3. Let 2(a +1)/(a + 11+ 3/2) < p < 1. Then the maximal Bochner-Riesz operator oy,
a+1/2 <1 <a+3/2is bounded from ¥, ., into LP(R, py).
To prove this theorem we need the following lemma.

Lemma4.4. (i) Forx,y e Randn>a+1/2,

77 (y) | < o2 |x| — [y ||, (4.13)

(if) ForO<|y| <|x|and n>a+1/2,

O (y) - O (x)| < Cly| /2 [jx| = y| [, (4.14)

Proof. (i) Since the function |z|**1/23,(iz) is bounded on R, it follows that

O} (2)| Clrr 2, s, zeR (4.15)

According to [6] and the fact that @Z,t is even, we obtain

T
r 0, (1) = | @G 9)o)dpes(0), (4.16)
where
Ia+1) . 2
dpx,y(e) = m{l - Sgl’l(xy) COS 9}511’12 9d9 ,
(4.17)
(% y)y = \/x2 + % = 2|xy| cos 6.
By (4.15) and using the fact that (x,y), > ||x| - |||, we deduce that
m®l ()] < CEE [ ), T sy 0)

’ (4.18)

< Ct“7’7+1/2||x| _ |]/| |—(u+rz+3/2).
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(ii) From [11], we have

r 1
i(DZt(z) __ (n+1) pard
dz % 2027 (a + 1 + 3)

Zja+,1+2 (itz) .

Then, similarly to the proof in (i), we have

d
‘Ed)zlt(z) < 2|z T3,y 0,z e R,

JT
TchZ,t(]/) - (I)Z,t(x) = fo [‘I’Z,t((x/y)e) - CDZ/t((x,O)e)]dpx,y(Q),
which can be written as

70, (y) — O (%) = fﬂ fl i[fb’l ((x,5)p) | dsclpry (6)
Xt a,t 0 Jo ds at ’ 0 Pxy

1 e
d
<l [ [ 2@ (Grsw)o)dpny (©)ds:
0Jo
Then from (4.20), it follows

1 por
qu)z,t(y) _ (Dz,t(x)| < Clyltu—ms/z f f (x’ Sy)é(MmS/Z)dPx,y(@)dS
070

1
<yl [l sy s,
0

Hence, if 0 < |y| < |x|, we obtain

@, (y) - ®Z,t(x)| < Cly|t= 32| |x| = |y| |12,

which completes the proof of the lemma.

Proof of Theorem 4.3. Let us first show that C > 0, exists such that

oz ()

= G

for every (p, oo) atom a.

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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Let a be an (p, o) atom. Suppose that a(x) = 0, |x| > r and ||a|j;» < r2@D/P. We
choose ¢ € Z such that 2°7! < r < 2¢, we write

|x|>4r

(@))| dppa(x) < L+ I, (4.26)

where

h=y f sup|o?,(a) (x) | dpe (), (4.27)
(i+1)2¢<|x|<(i+2)2¢ 1>6;
P
=3 0! (@) ()| dpa (), (428)
i=1 ¥ (i+1)20<|x|<(i+2)2¢  t<&;

being 6; = 27¢/i® where b will be specified later.
According to Lemma 4.4 (i), for [x| € [(i + 1)2¢, (i +2)2¢],i=1,2,..., we get

@) @] < [ [a(-)1 [0, () s )

2¢

< Cta—q+1/2r—2(a+1)/pf ||x| _ |}/| |—(u+rl+3/2)d#a (}/) (4.29)
0

(2gt)u—q+l/2
jorn+3/242(at1) /p :

Then, using the fact that 2°~! < r < 2¢, we obtain

0 6”‘_'1"'1/22(_’[a711+1/272(a+1)/p] !
i 2a+1~28(a+1)
L < Czl jatn+3/2 ! . 4 (4'30)
P
and hence, it concludes that
[ee]
Z 2a+1-{a+n+3/2+(a— rl+1/2)b} (4'31)

_

Note that the last series is convergent provide that b < (p(a+n+3/2)-2(a+1)/p(n-a-1/2)).
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On the other hand, since jR a(y)dp«(y) =0, from Lemma 4.4 (ii) we have

2@ @) < [ Jacy)

D7, () - @, ()| dia(v)

2é7
< Cta—q+3/2r—2(a+1)/pf ||x| _ |]/| |—(vc+71+3/2) |]/|d#u (]/) (4.32)
0

(Zet) a-n+3/2
= jatn+3/242(atl)/p

Then, for |x| > 4r, we obtain

= 5" 143/ 250 (a-n+3/2-2a+1) /p) \ T e
Do+ a+
Z prrewEYs 20417 , (4.33)

and in fact, we deduce that

12 < Ci i2u+1—[u+q+3/2+(u—q+3/2)b]p. (4.34)
i=1

pla+n+3/2) -2(a+1)

p(n—-a-3/2)
Note that we can find b such that the series in (4.31) and (4.34) converge if and only if

p> (2(a+1)/a+mn+3/2). By combining (4.31) and (4.34) we show that

f|x|24r

for a certain C > 0 that is not depending on a.
From Lemma 4.1 (ii) and (4.35) we deduce that

S (R

< C[||a||r’? —[| . Apta(x) +1] <C,

The last series converges provided that b >

ol(@) ()| dpa(x) < C, (4.35)

ol(@) ()| dpa )

(4.36)

that is, (4.25) holds. Let now f be in H#% . Assume that f = > 20Ajaj, where the series
converges in $'(R), and for every j € N, g; is a (p, o0) atom and \; € C, such that 3172, |A;[P <
co. From Theorem 4.2, for 0 < p < 1, we can write

an (f)(x) = i Aoy (aj)(x); t>0, xeR (4.37)
j=0
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Hence, from (4.25) it follows ||o.( f )||Z,, <C Z}‘Zo |A;[P. Thus we conclude that lloak( Pl <
Cllfller, - 0
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