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Let R be an integral domain with quotient field L. Call a nonzero (fractional) ideal A of R a colon-
multiplication ideal any ideal A, such that B(A : B) = A for every nonzero (fractional) ideal B of R.
In this note, we characterize integral domains for which every maximal ideal (resp., every nonzero
ideal) is a colon-multiplication ideal. It turns that this notion unifies Dedekind andMTP domains.

1. Introduction

Let R be an integral domain which is not a field with quotient field L. For any nonzero
(fractional) ideals A and B, B(A : B) ⊆ A and the inclusion may be strict. We say that A
is B-colon-multiplication if equality holds, that is, A = B(A : B). A nonzero (fractional) ideal
A is said to be a colon-multiplication ideal if A is B-colon-multiplication for every nonzero
(fractional) ideal B of R, and the domain R is called a colon-multiplication domain if all
its nonzero (fractional) ideals are colon-multiplication ideals. The purpose of this note is to
characterize integral domainsR that are colon-multiplication domains. This notion unifies the
notions of Dedekind domains andMTP domains (i.e., domains R such that for every nonzero
(fractional) ideal I, either I is invertible or II−1 is a maximal ideal of R). Precisely we prove
that for a domain R, every maximal ideal is a colon-multiplication ideal if and only if either
R is a Dedekind domain or a local MTP domain (Theorem 2.2), and a domain R is a colon-
multiplication domain if and only if R is a Dedekind domain (Theorem 2.4). We also provide
an example showing that the notions of colon-multiplication ideals and multiplication ideals
(i.e., ideals A such that for every ideal B ⊆ A, there exists an ideal C such that B = AC)
do not imply each other; however, over Noetherian domains, multiplication domains and
colon-multiplication domains collapse to Dedekind domains.
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Throughout, R is an integral domain with quotient field L, Spec(R) denotes the set of
all prime ideals of R, and F(R) denotes the set of all nonzero fractional ideals of R, that is,
R-submodules of L such that dA ⊆ R for some nonzero d ∈ R. ForA,B ∈ F(R), (A : B) = {x ∈
L | xB ⊆ A} and A−1 = (R : A). Unreferenced material is standard, typically as in [1] or [2].

2. Main Results

Definition 2.1. (1) Let R be a domain, and A and B two nonzero (fractional) ideals of R. We
say that A is B-colon-multiplication if A = B(A : B).

(2) A nonzero (fractional) ideal A is said to be a colon-multiplication ideal if A is B-
colon-multiplication for every nonzero (fractional) ideal B of R.

(3) A domain R is said to be a colon-multiplication domain if every nonzero
(fractional) ideal A of R is colon-multiplication.

Our first main theorem characterizes integral domains for which every maximal ideal
is colon-multiplication. Before stating the result, we recall that a domain R is said to be an
MTP domain (MTP stands for maximal trace property) if for every nonzero (fractional) ideal
I of R either II−1 = R or II−1 = M is a maximal ideal of R [3]. For more details on the trace
properties see [4].

Theorem 2.2. Let R be an integral domain. The following statements are equivalent.

(1) Every nonzero prime ideal of R is colon-multiplication;

(2) Every maximal ideal of R is colon-multiplication;

(3) Either R is a Dedekind domain or a local MTP domain.

We need the following lemma.

Lemma 2.3. Let R be an integral domain and I a nonzero invertible (fractional) ideal of R. Then every
nonzero (fractional) ideal A of R is I-colon-multiplication.

Proof. This follows immediately from the (easily verified) fact that if I is invertible, then (A :
I) = AI−1 for each nonzero ideal A.

Proof of Theorem 2.2. (1)⇒ (2) Trivial.
(2) ⇒ (3) First we claim that R is an MTP domain. Indeed, let I be a nonzero

(fractional) ideal of R. Assume that II−1 � R and let M be a maximal ideal such that
II−1 ⊆ M. Then I−1 ⊆ (M : I) ⊆ I−1 and so I−1 = (M : I). Since M is I-colon-multiplication,
M = I(M : I) = II−1, and therefore R is an MTP domain. Now, if R is a Dedekind domain,
we are done. Assume that R is not Dedekind. Then R is an MTP domain with a unique
noninvertible maximal idealM [4, Corollary 2.11]. ThenMM−1 = M. Now ifN is a maximal
ideal of R, by (2) N is M-colon-multiplication. So N = M(N : M) ⊆ MM−1 = M and, by
maximality, N = M. It follows that R is a local MTP domain, as desired.

(3) ⇒ (1) If R is a Dedekind domain, then (1) it holds by Lemma 2.3. Assume that
R is a local MTP domain. Then R is a one-dimensional domain [3, Proposition 2.10]. Hence
Spec(R) = {(0) � M} and so M is the unique nonzero prime ideal of R. Now, let A be a
nonzero (fractional) ideal of R. IfA is invertible, by Lemma 2.3,M isA-colon-multiplication.
Assume that AA−1 � R. Then necessarily AA−1 = M. Hence A−1 = (M : A) and therefore
M = AA−1 = A(M : A), as desired.
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The next result shows that colon-multiplication domains collapse to Dedekind
domains.

Theorem 2.4. Let R be an integral domain. The following statements are equivalent.

(1) R is a colon-multiplication domain;

(2) Every nonzero principal (fractional) ideal of R is colon-multiplication;

(3) R has a nonzero principal (fractional) ideal that is colon-multiplication;

(4) R is a Dedekind domain.

Proof. (1)⇒(2)⇒(3) are trivial.
(3)⇒(4) Suppose that R has a nonzero principal (fractional) ideal I = aR that is colon-

multiplication. Let J be any nonzero ideal of R. Then I is J-colon-multiplication. Hence aR =
I = J(I : J) = J(aR : J) = aJJ−1 and therefore R = JJ−1, as desired.

(4)⇒(1). it Follows immediately from Lemma 2.3.

We recall that an ideal A of a commutative ring R is a multiplication ideal if for every
ideal B ⊆ A there exists an ideal C such that B = AC, and the ring R is a multiplication
ring if each ideal of R is a multiplication ideal. Note that from the equation B = AC, we
have C ⊆ (B : A). Thus B = AC ⊆ A(B : A), and so we have B = A(B : A). Hence if
A is a multiplication ideal of an integral domain R, then every subideal B of A is A-colon-
multiplication. According to [5], a multiplication ideal is locally principal, but not conversely.
However, a finitely generated locally principal ideal is a multiplication ideal [6]. In particular,
in Noetherian domain, multiplication domain and colon-multiplication domain collapse to
Dedekind domain. However, the two notions (multiplication and colon-multiplication) do
not imply each other as is shown by the following example.

Example 2.5. (1) It provides a maximal ideal M of a domain R which is colon-multiplication
but not a multiplication ideal.

Let k be a field and X and Y indeterminates over k. Set R = k + Yk(X)[[Y ]] = k +M.
Clearly R is a one-dimensional PVD (pseudovaluation domain) and therefore a local MTP
domain (here note that pseudovaluation domains have the trace property, [3, Example 2.12],
and so the maximal trace property if dimR = 1). By Theorem 2.2, M is colon-multiplication.
However, M is not a multiplication ideal since M is not “locally” principal [5].

(2) Let R be a non-Dedekind domain. By Theorem 2.4, not every nonzero principal
ideal is colon-multiplication. However, every principal ideal is a multiplication ideal [6].

Given a nonzero (fractional) ideal A of an integral domain, we define the map ϕA :
F(R) → F(R), B �→ A(B : A). The next proposition characterizes maps ϕA that are surjective.

Proposition 2.6. Let R be an integral domain and A a nonzero (fractional) ideal of R. The following
conditions are equivalent.

(1) ϕA = id (i.e., B is A-colon-multiplication for each B ∈ F(R));

(2) ϕA is surjective;

(3) A is invertible.

Proof. (1)⇒(2) Trivial.
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(2)⇒(3) Assume that ϕA is surjective. Then there exists B ∈ F(R) such that A(B : A) =
ϕA(B) = R. Hence A is invertible.

(3)⇒(1) Assume that A is invertible. By Lemma 2.3, every B ∈ F(R) is A-colon-
multiplication. Hence ϕA(B) = A(B : A) = B and so ϕA = id.
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