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This paper investigates steady-state solutions to MHD thermally radiating and reacting
thermosolutal viscous flow through a channel with porous medium. The reaction is assumed
to be strongly exothermic under generalized Arrhenius kinetics, neglecting the consumption
of the material. Approximate solutions are constructed for the governing nonlinear boundary
value problem using WKBJ approximations. The results, which are discussed with the aid of the
dimensionless parameters entering the problem, are seen to depend sensitively on the parameters.

1. Introduction

Thermosolutal or double diffusive convection is a transition process that involves concurrent
heat and mass whenever there exist temperature and species concentration differences in a
medium or between media, with one dependent on the other. This simultaneous occurrence
of heat and mass transfer gradients is considered under conditions of technological and
engineering importance. These are usually found in fluid-saturated porous media and are
encountered in a wide range of thermal engineering applications such as in geothermal
systems, oil extraction, ground water pollution, thermal insulation, heat exchangers, storage
of nuclear wastes, packed bed catalytic reactors, atmospheric and oceanic circulation.
Buoyancy induced flows are rife with references as provided in the text by Rubin and
Atkinson [1].

The study of an electrically conducting fluid, which influences many natural and man-
made flows, has many applications in engineering problems such as magnetohydrodynamics
(MHDs) generators, plasma studies, nuclear reactors, geothermal energy extraction, and the
boundary layer control in the field of aerodynamics. Sharma and Chaudhary [2] classified
magnetic fields according to their various applications, namely, terrestrial magnetic field,
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which is maintained by fluid motion in the earths core, the solar magnetic field which gener-
ates sunspots and solar flares, and the galactic field which influences the formation of stars. A
valuable review of the recent advances and applications of MHD-based microfluidic devices
have been report by Qian and Bau [3], providing an extensive coverage. Many scientific
researches also have transcended the MHD applications to geophysics and astrophysics due
to high temperature phenomena or high-power radiation sources. Examples are found in
combustion applications such as fires, furnaces, and IC engines; in nuclear reactions such as
in the sun or in nuclear explosions as reported by Ghoshdastidar [4]; in compressors in ships
and gas flares in the petroleum industries as provided by Abowei and Sikoki [5]. Peterson
et al. [6] stated that where considerations of safety from waste-gases and emissions are
concerned in petroleum industries, one of the performance parameters of interest is thermal
radiation generated by the flare as a function of the waste-gas flowrate and composition. This
implies that thermal radiation is very important in the study of combustion processes.

Combustion processes are very fast and exothermic reactions. Therefore, once the
reaction is ignited the process proceeds very quickly and tends to be very nonisothermal.
Hence, combustion processes release large amounts of energy, and they have many
applications in the production of power, heat, and in incineration processes. Generally,
combustion processes are complex because of the combination of complex kinetics, mass
transfer control, and large temperature variations. For example, chemical reactions in high
speed turbulent flows are accompanied with high temperatures and are of practical import.
These are involved in hypersonic aircraft and re-entry vehicles. For nonisothermal chemical
reactors, Schmidt [7] stated that they have nonlinearities that never occur in nonreacting
systems. This explains the fact that in modeling chemically reactive combustible flows, the
evolving equations are highly nonlinear. One feature of such equations as provided by Chung
[8] is that the sensible enthalpy is coupled with the chemical species, which contributes to
the heat source and diffusion of species interacting with temperature. Therefore, solutions
to the evolving equations are mostly examined computationally. However, due to limited
computational resources, the construction of approximate and ad hoc solutions to these
nonlinear equations are in order.

The previous investigation on combustible flow of gas in a horizontal pipe in the
presence of free convection with radiative heat transfer was carried out by Idowu and Adeoti
[9]. The approximate analytical solutions of Idowu and Adeotu revealed the characteristics
of the problem. It is the objective of this paper, therefore, to construct approximate solutions
to the problem of MHD thermally radiating and reacting thermosolutal viscous flow through
a channel with porous medium using a global approximation. These approximate solutions
give a wider applicability in understanding the basic physics and chemistry of the problem,
which are particularly important in industrial and technological fields.

In Section 2, the mathematical formulation of the problem and dimensionless forms
of the governing equations are established. Solution method to these equations for the flow
variables are briefly examined in Section 3. The results of the previous sections are discussed
in Section 4. In Section 5, general concluding remarks of the results of the previous sections
are given.

2. Formulation of the Problem

We consider the buoyancy induced steady flow in a porous medium bounded by two
horizontal impermeable parallel walls. The lower wall which is on y = −d/2 is maintained
at a temperature T = T1 and mass concentration C = C1 and the upper wall which is on
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y = d/2 is maintained at a temperature T = T2 and mass concentration C = C2, where d is the
distance between the upper and lower wall (see Figure 1). A chemical reaction takes place
with a rate constant kr and a generalized Arrhenius activation energy is invoked in the mass
concentration. A magnetic field of uniform strength B0 is applied in the transverse direction
of the channel and the induced magnetic field is neglected. With the aid of the Boussinesq
approximation, the governing equations of the flow for an optically thin medium are then
reduced to the following system of equations:

ν
d2u

dy2
+ gβT (T − T0) + gβC(C − C0) −

σcB
2
0

ρ0
u − ν

k
u = 0, (2.1a)

αd
d2T

dy2
− 1
ρ0cp

dq

dy
= 0, (2.1b)

D
d2C

dy2
− R(T)C = 0, (2.1c)

dq

dy
= 4ασ

(
T4 − T4

0

)
, (2.1d)

R(T) = k2
r T

ne−EA/KBT , (2.1e)

where u, T, y, ρ, αd, D, B0, k, ν, σc, α, σ, βT , βC, R(T), kr , n, EA, and KB represents flow,
temperature, transverse coordinate, fluid density, thermal diffusivity, mass diffusivity,
applied magnetic field strength, permeability of porous medium, kinematic viscosity,
electric conductivity of the fluid, absorption coefficient or penetration depth, Stefan-
Boltzmann constant, thermal expansion for temperature, solutal expansion for concentration,
temperature dependent reaction rate coefficient, pre-exponential or frequency factor, an
exponential constant, activation energy, and Boltzmann or universal gas constant. g is the
acceleration due to gravity.

The governing boundary conditions associated to (2.1a)–(2.1e) are

u = 0, T = T1, C = C1 fory = −d
2
,

u = 0, T = T2, C = C2 fory =
d

2
.

(2.2)

The radiative flux equation (2.1d) is highly nonlinear in T . However, when it is
assumed that the temperature differences within the flow are sufficiently small, then the
linear differential approximation of Cogley-Vincenti-Gilles equilibrium model [10] of the
radiation flux becomes significant. In this case T4 can be expressed as a linear function of
temperature in Taylor series about T0 neglecting higher-order terms. Thus,

T4 ∼= 4T3
0T − 3T4

0 . (2.3)

Therefore, (2.1d) is now written as

dq

dy
= 16ασ T3

0 (T − T0). (2.4)
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u = 0, T = T2, C = C2

u = Um, T = T0, C = C0

u = 0, T = T1, C = C1
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Figure 1: Physical model.

The functional form (2.1e) of the reaction-rate coefficient predicts a very strong
dependence of reaction rates on temperature, and this fact is central in describing the
complexities of chemical reactions. The factor exp(−EA/KBT) describes the probability of
crossing a potential energy barrier between reactant and product molecules. In other words,
EA is defined as this energy barrier (or threshold) that must be surmounted to enable the
occurrence of the bond redistribution steps required to convert reactants into products. It
is generally accepted that variations in the rate coefficient with temperature dependence
using (2.1e) are with satisfactory accuracy for homogeneous processes with few exceptions
as contained in the review by Angell et al. [11].

In order to facilitate the analysis, the following dimensionless variables and
parameters are employed:

Y =
y

d
, U =

u

Um
, Θ =

T

T0
, Φ =

C

C0
,

M =
σcB

2
0d

2

μ
, GT =

ρ0d
2βTgT0

μUm
, GC =

ρ0d
2βCgC0

μUm
,

χ =
k

d2
, r2 =

k2
r d

2Tn0
D

, E =
EA
KBT0

, N =
16ασT3

0d
2

αd
,

(2.5)

where u = Um is the mean flow.
Therefore, the dimensionless governing equations are

d2U

dY 2
+GT (Θ − 1) +GCs(Φ − 1) −

(
M +

1
χ

)
U = 0, (2.6a)

d2Θ
dY 2

−N(Θ − 1) = 0, (2.6b)

d2Φ
dY 2

− r2Q(Y )Φ = 0, (2.6c)

where

Q(Y ) = Θne−E/Θ. (2.7)
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The boundary conditions are now

U = 0, Θ = Θ1, Φ = Φ1 forY = −1
2
, (2.8a)

U = 0, Θ = Θ2, Φ = Φ2 forY =
1
2
. (2.8b)

The parameters entering the problem are M, magnetic parameter; GT , thermal Grashof
number; GC, mass Grashof number; χ, ratio of permeability of the porous medium and
square of the characteristic length; N, radiation parameter; E, activation energy parameter;
n, exponential constant and r2, reaction-rate constant. The mathematical statement of the
problem embodies the solution of (2.6a), (2.6b), and (2.6c) subject to (2.8a) and (2.8b).

3. Solution of the Problem

The posed problem (2.6a), (2.6b), and (2.6c) represents a system of coupled and nonlinear
partial differential equations (PDEs). Exact and approximate analytical results of (2.6a),
(2.6b), and (2.6c) subject to (2.8a), and (2.8b) are herein deduced. The energy (2.6b) is
uncoupled from the momentum and concentration equation ((2.6a) and (2.6c)). One can
advance solution for the temperature variable Θ(Y ) whereupon the solution of the flowU(Y )
and concentration Φ(Y ) is then derived. Therefore, the solution for the temperature is given
as follows:

Θ(Y ) =
1

2 cosh
(
(1/2)

√
N
)

sinh
(
(1/2)

√
N
)

×
[
(Θ2 + Θ1) sinh

(
1
2

√
N

)
cosh

(√
NY
)
− 2 sinh

(
1
2

√
N

)
cosh

(√
NY
)

+(Θ2 −Θ1) cosh
(

1
2

√
N

)
sinh

(√
NY
)
+ 2 cosh

(
1
2

√
N

)
sinh

(
1
2

√
N

)]
.

(3.1)

The concentration equation (2.6c) is nonlinear, and is not easily amenable to an exact solution.
However, if we consider that the exponential constant n and the activation energy E are small,
we can take n = E = 0. In this case, the solution to (2.6c) becomes

Φ(Y ) =
1

2 cosh((1/2)r) sinh((1/2)r)

×
[
(Φ2 + Φ1) sinh

(
1
2
r

)
cosh(rY ) + (Φ2 −Φ1) cosh

(
1
2
r

)
sinh(rY )

]
.

(3.2)

Suppose that the constant exponent n and the activation energy parameter E are not
necessarily small, then the ad hoc solution (3.2) is unacceptable. On the alternative, we
assume that the chemical reaction rate r is large and define it as

r =
1
ε
, (3.3)
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Figure 2: Potential function profiles for variations in the parameters: (a) Exponential constant, n; (b)
Radiation parameter, N.

where ε is considered to be a small parameter. Equation (2.6c) now becomes

ε2d
2Φ
dY 2

−Q(Y )Φ = 0. (3.4)

A powerful tool for obtaining a global approximate solution of a linear differential equation
whose highest derivative is multiplied by a small parameter is the theory of Wentzel-
Kramers-Brillouin (WKB) or Wentzel-Kramers-Brillouin-Jeffrey (WKBJ), which is discussed
in the texts by Stephenson and Radmore [12] and Hinch [13], respectively. An important
application of the theory of WKBJ is in quantum mechanics, where it is used in the study of
Schrödinger equation when particularly dealing with slowly varying potentials.

For the problem at hand, in applying the WKBJ approximation, only the eikonal and
transport terms will be retained. Therefore, the general solution to (3.4) becomes

Φ(Y ) = Q(Y )−1/4

⎡
⎢⎣
{
Φ2Q

(
1
2

)1/4

−Φ1Q

(
−1

2

)1/4
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(
−1
ε

∫1/2

−1/2
Q(s)1/2ds

)}

×
sinh

(
1/ε
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−1/2 Q(s)1/2ds

)

sinh
(

1/ε
∫1/2
−1/2 Q(s)1/2ds

) + Φ1Q

(
−1

2

)1/4

exp

(
−1
ε

∫Y
−1/2

Q(s)1/2ds

)⎤
⎥⎦.

(3.5)

It is pertinent to remark here that the solution (3.5) will differ from the exact solution (if
any) of the (3.4) by terms of order ε whenever Q(Y )/= 0. However, if points exist where
Q(Y ) = 0 (called the turning points of the equation), solution (3.5) will diverge at these points
whereas a numerical integration of (3.4) will give a finite solution. In this case the WKBJ
approximation exhibits the wrong behaviour close to the turning points. However, the way
to handling solutions near turning points is a bit technical and is not presented in this paper.
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Now, having obtained the solutions for the temperature and concentration, we can
proceed to the solution of the velocity. Therefore, the solution to (2.6a) becomes

U(Y ) = B1 cosh(λY ) + B2 sinh(λY )

−
[
G

λ2
+
GT

λ

∫Y
−1/2

sinh{λ(Y − z)}Θ(z)dz +
GC

λ

∫Y
−1/2

sinh{λ(Y − z)}Φ(z)dz

]
,

(3.6)

where λ2 = 1/χ +M, G = GT + GC, and B1 and B2 are integration constants which are given
by the following relations:

B1 =
1

2 cosh((1/2)λ)

[
2G
λ2

+
GT

λ

∫1/2

−1/2
sinh

{
λ

(
1
2
− z
)}

Θ(z)dz

+
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λ

∫1/2

−1/2
sinh

{
λ

(
1
2
− z
)}

Φ(z)dz

]
,

(3.7)

B2 =
B1 cosh((1/2)λ)

sinh((1/2)λ)
− G

λ2 sinh((1/2)λ)
. (3.8)

This completes the solutions of the problem.

4. Discussion

The potential function (2.7) together with the solutions (3.2), (3.5), and (3.6) make it possible
to investigate quantitatively the manifestation of the effects of the various parameters
entering the problem.

An understanding of the factors that control the potential function (2.7) that are
relating to combustible materials is of fundamental importance in many industrial processes.
Therefore, we begin the discussion with the potential function by investigating the effects of
the exponential constant, n and the radiation parameter,N. The potential function profiles are
presented in Figure 2. It is observed in Figure 2(a) that for a given N and activation energy
parameter, E, the potential function increases with an increase in the exponential constant, n.
On the other hand, Figure 2(b) depicts that for a given n and E, an increase in the radiation
parameter, N sags the potential function, which appears to curve inwards.

We also considered the effect of the radiation parameter, N on the temperature
solution (3.1). From Figure 3, it is observed that an increase in the radiation parameter causes
the temperature to move towards Y = 1/2.

Now, the ad hoc concentration solution (3.2) depends only on the reaction-rate
constant, r. Figure 4 demonstrates that the reaction-rate constant sags the concentration
towards Y = 1/2, just like what the radiation parameter does to the temperature.

In most of combustion calculations, there are several hundreds of reactions that could
be considered. However, due to limited computational resources, it is customary to select
only important reaction mechanisms, neglecting those that are less important (i.e., those
reactions whose rates cannot be measured). Preliminary investigations in this work revealed
that for n ≥ 1, Q(Y ) = 0 gives turning points, where solution (3.5) at these points behaves
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Figure 3: Temperature profiles for variations in the radiation parameter, N.
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Figure 4: Concentration profiles as a function of Y for variations in the reaction-rate constant, r.

wrongly. In fact, at these points, the computations using a Computer Symbolic Algebra
Package (MAPLE) in a Macintosh Pentium 4 Machine shuts down the kernel. This means that
the available memory is completely used up and MAPLE cannot continue without allocating
more memory. Therefore, for the purpose of illustration, we consider the global system of
hydrogen and oxygen:

H2 + O2 = OH + OH (4.1)
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Figure 5: Concentration profiles as a function of Y for variations in the radiation parameter, N.

as one example with n = 0. Such information is available from existing literatures and are
discussed extensively by Schmidt [7] and Chung [8]. Other example applications that take
n = 0 include kinetics of solid state reactions (mainly ionic crystals) as provided by Galwey
and Brown [14], and deterioration and cooking of foods as examined in the article by Petrou
et al. [15].

The WKBJ approximate concentration solution (3.5) is with the effect of the radiation
parameter, N via the temperature solution (3.1). Figure 5 results from the solution (3.5),
and it shows that an increase in the radiation parameter causes the concentration to move
towards Φ2.

Next, we examine the contributions of the temperature and concentration solutions
to the velocity solution (3.6). Firstly, we consider the effect of the ad hoc concentration
solution (3.2). Figures 6(a), 6(b), and 6(c) demonstrate the velocity profiles for different
values of radiation parameter, N, magnetic-porosity parameter, λ and reaction-rate constant,
r, respectively, due to the ad hoc concentration solution. The maximum velocity is somewhere
at the centre of the channel and tilts towards the right of the channel. It is evident that an
increase in radiation, magnetic-porosity, and reaction-rate constant, reduces the velocity. For
the radiation, it is so because it reduces the temperature, and the decrease in temperature
changes the energy content of the reactants and the frequency of collisions, which affects
the rate of a reaction. The application of the transverse magnetic field plays the role of a
resistive type force (Lorentz force) similar to drag force (that acts in the opposite direction of
the fluid motion), which tends to resist the flow thereby reducing its velocity. On the other
hand, increasing χ, physically indicates that the presence of a porous medium increases the
resistance to flow and hence when χ = ∞, the effect of porosity vanishes, which implies
that the velocity would become greater in the flow field. One factor that affects the rate of a
reaction is the concentration of reactants, which changes the frequency of collisions. In this
case, the reaction-rate constant reduces the concentration, and hence the concentration in turn
reduces the flow. This is depicted in Figure 6(c).
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Figure 6: Velocity profiles as a function of Y for variations in the parameters: (a) Radiation, N; (b)
magnetic-porosity, r; (c) reaction-rate, r.

Secondly, we explore the effect of the WKBJ approximate concentration solution (3.2)
on the velocity solution (3.6). It was evident that the solution replicates the patterns (i.e.,
Figure 6 for the ad hoc concentration solution) shown by radiation parameter, N, magnetic-
porosity parameter, λ and reaction-rate constant, r, when n = 0 and E = 2. However,
significant differences between the two solutions were only seen at about the centre of the
channel. Therefore, tabular representations (see Table 1) are herein made at Y = 0 for the
comparison.

In each of the columns (1–3) in the table, (3.2) and (3.5), refer to the velocity solution
due to the concentration solution (3.2) and (3.5), respectively. Therefore, it can be seen from
Table 1 that the velocity solution (3.2) and (3.5) at the centre of the channel, increases with
a decrease in the value of N and λ, with the values of the velocity solution (3.5) appearing
dominantly greater than those for (3.2). On the other hand, an increase in r causes a decrease
in the velocity solution (3.2) and (3.5). Here for 0.0 ≤ r ≤ 0.4, the values of (3.2) are greater
than the values of (3.5), and vice versa for 0.7 ≤ r ≤ 1.0.
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Table 1: Comparison of velocity solution (3.6) at the centre of the channel due to (3.2) and (3.5),
respectively.

(1) (2) (3)

N
Velocity
equation
(3.2)

Velocity
equation
(3.5)

λ
Velocity
equation
(3.2)

Velocity
equation
(3.5)

r
Velocity
equation
(3.2)

Velocity
equation
(3.5)

0 0.0742590085 0.0784487847 2.5 0.0578335848 0.0636934325 0.0 0.0791013367 0.0765976954

2 0.0666834061 0.0733996050 3.0 0.0489935405 0.0539958380 0.4 0.0769449694 0.0760755165

5 0.0591602527 0.0688520731 3.5 0.0414079865 0.0456719438 0.7 0.0727141684 0.0750122273

10 0.0517051176 0.0649783577 4.0 0.0350527304 0.0386955124 1.0 0.0666834061 0.0733996049

5. Concluding Remarks

It is hoped that the present investigation may serve as toolkits for numerical experimenta-
tions. It is noted here that the efficient computation of thermal radiation effect with strongly
exothermic reaction under generalized Arrhenius kinetics is essential for the design and
analysis of industrial thermal systems, such as furnaces, boilers, burners, nuclear power
plants, combustion products (such as H2O and CO2), and gas turbines. The results of the
problem are also of great interest in geophysics in the study of interaction of the geomagnetic
field with the fluid in the geothermal region.
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