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The notion ofN-subalgebras of several types is introduced, and related properties are investigated.
Conditions for an N-structure to be an N-subalgebra of type (q,∈ ∨ q) are provided, and a
characterization of an N-subalgebra of type (∈,∈ ∨ q) is considered.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function
μA : X → {0, 1} yielding the value 1 for elements belonging to the set A and the value 0 for
elements excluded from the setA. So far, most of the generalization of the crisp set have been
conducted on the unit interval [0, 1] and they are consistent with the asymmetry observation.
In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive
information that fit the crisp point {1} into the interval [0, 1]. Because no negative meaning of
information is suggested, we now feel a need to deal with negative information. To do so, we
also feel a need to supply mathematical tool. To attain such object, Jun et al. [1] introduced a
new function which is called negative-valued function, and constructed N-structures. They
applied N-structures to BCK/BCI-algebras, and discussed N-subalgebras and N-ideals in
BCK/BCI-algebras. Jun et al. [2] considered closed ideals in BCH-algebras based on N-
structures. To obtain more general form of anN-subalgebra in BCK/BCI-algebras, we define
the notions of N-subalgebras of types (∈,∈), (∈, q), (∈,∈ ∨ q), (q,∈), (q, q), and (q,∈ ∨ q),
and investigate related properties. We provide a characterization of an N-subalgebra of type
(∈,∈ ∨ q).We give conditions for an N-structure to be an N-subalgebra of type (q,∈ ∨ q).
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2. Preliminaries

Let K(τ) be the class of all algebras with type τ = (2, 0). By a BCI-algebra we mean a system
X := (X, ∗, θ) ∈ K(τ) in which the following axioms hold:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = θ,

(ii) (x ∗ (x ∗ y)) ∗ y = θ,

(iii) x ∗ x = θ,

(iv) x ∗ y = y ∗ x = θ ⇒ x = y

for all x, y, z ∈ X. If a BCI-algebra X satisfies θ ∗ x = θ for all x ∈ X, then we say that X is a
BCK-algebra. We can define a partial ordering � by

(∀x, y ∈ X
) (

x � y ⇐⇒ x ∗ y = θ
)
. (2.1)

In a BCK/BCI-algebra X, the following hold:

(a1) (for all x ∈ X)(x ∗ θ = x),

(a2) (for all x, y, z ∈ X)((x ∗ y) ∗ z = (x ∗ z) ∗ y)
for all x, y, z ∈ X.

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S
for all x, y ∈ S. For our convenience, the empty set ∅ is regarded as a subalgebra of X.

We refer the reader to the books [3, 4] for further information regarding BCK/BCI-
algebras.

For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

⎧
⎨

⎩

max{ai | i ∈ Λ}, if Λ is finite,

sup{ai | i ∈ Λ}, otherwise,

∧
{ai | i ∈ Λ} :=

⎧
⎨

⎩

min{ai | i ∈ Λ}, if Λ is finite,

inf{ai | i ∈ Λ}, otherwise.

(2.2)

Denote by F(X, [−1, 0]) the collection of functions from a set X to [−1, 0]. We say that
an element of F(X, [−1, 0]) is a negative-valued function from X to [−1, 0] (briefly, N-function
on X). By an N-structure we mean an ordered pair (X, f) of X and an N-function f on X. In
what follows, let X denote a BCK/BCI-algebra and f an N-function on X unless otherwise
specified.

Definition 2.1 (see [1]). By a subalgebra of X based on N-function f (briefly, N-subalgebra of
X), we mean anN-structure (X, f) in which f satisfies the following assertion:

(∀x, y ∈ X
) (

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)})

. (2.3)

For any N-structure (X, f) and t ∈ [−1, 0), the set

C
(
f ; t
)
:=
{
x ∈ X | f(x) ≤ t

}
(2.4)
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is called a closed t-support of (X, f), and the set

O
(
f ; t
)
:=
{
x ∈ X | f(x) < t

}
(2.5)

is called an open t-support of (X, f).
Using the similar method to the transfer principle in fuzzy theory (see [5, 6]), Jun et al.

[2] considered transfer principle inN-structures as follows.

Theorem 2.2 (N-transfer principle [2]). An N-structure (X, f) satisfies the property P if and
only if for all α ∈ [−1, 0],

C
(
f ;α
)
/= ∅ =⇒ C

(
f ;α
)
satisfies the property P. (2.6)

Lemma 2.3 (see [1]). An N-structure (X, f) is an N-subalgebra of X if and only if every open
t-support of (X, f) is a subalgebra of X for all t ∈ [−1, 0).

3. Generalized N-Subalgebras

Let (X, f) be an N-structure in which f is given by

f
(
y
)
=

⎧
⎨

⎩

0, if y /=x,

α, if y = x,
(3.1)

where α ∈ [−1, 0). In this case, f is denoted by xα and we call (X, xα) a point N-structure.
For any N-structure (X, g), we say that a point N-structure (X, xα) is an N∈-subset (resp.,
Nq-subset) of (X, g) if g(x) ≤ α (resp., g(x) + α + 1 < 0). If a point N-structure (X, xα) is an
N∈-subset of (X, g) or an Nq-subset of (X, g), we say (X, xα) is an N∈∨ q-subset of (X, g).

Theorem 3.1. For any N-structure (X, f), the following are equivalent:

(1) (X, f) is an N-subalgebra of X;

(2) for any x, y ∈ X and t1, t2 ∈ [−1, 0), if two point N-structures (X, xt1) and (X, yt2) are
N∈-subsets of (X, f), then the point N-structure (X, (x ∗ y)∨{t1,t2}) is an N∈-subset of
(X, f).

Proof. (1) ⇒ (2). Let x, y ∈ X and t1, t2 ∈ [−1, 0) be such that (X, xt1) and (X, yt2) are N∈-
subsets of (X, f). Then f(x) ≤ t1 and f(y) ≤ t2. It follows from (2.3) that

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)} ≤

∨
{t1, t2} (3.2)

so that the point N-structure (X, (x ∗ y)∨{t1,t2}) is an N∈-subset of (X, f).
(2) ⇒ (1). For any x, y ∈ X, note that (X, xf(x)) and (X, yf(y)) are point N-structures

which are N∈-subsets of (X, f). Using (2), we know that the point N-structure (X, (x ∗
y)∨{f(x),f(y)}) is an N∈-subset of (X, f). Thus f(x ∗ y) ≤ ∨{f(x), f(y)}, and so (X, f) is an
N-subalgebra of X.
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Table 1: ∗-operation.

∗ θ a b c d

θ θ θ θ θ θ

a a θ θ θ θ

b b a θ a θ

c c a a θ θ

d d b a b θ

Definition 3.2. AnN-structure (X, f) is called an N-subalgebra of type

(i) (∈,∈) (resp., (∈, q) and (∈,∈ ∨ q)) if whenever two point N-structures (X, xt1) and
(X, yt2) are N∈-subsets of (X, f) then the point N-structure (X, (x ∗ y)∨{t1,t2}) is an
N∈-subset (resp., Nq-subset and N∈∨ q-subset) of (X, f);

(ii) (q,∈) (resp., (q, q) and (q,∈ ∨ q)) if whenever two point N-structures (X, xt1) and
(X, yt2) are Nq-subsets of (X, f) then the point N-structure (X, (x ∗ y)∨{t1,t2}) is an
N∈-subset (resp., Nq-subset and N∈∨ q-subset) of (X, f).

Note that everyN-subalgebra of type (∈,∈) is anN-subalgebra ofX (see Theorem 3.1).
Note also that every N-subalgebra of types (∈,∈) and (∈, q) is an N-subalgebra of type (∈,∈
∨
q).

Example 3.3. Let X = {θ, a, b, c, d} be a set with a ∗-operation table which is given by Table 1.
Then (X; ∗, θ) is a BCK-algebra (see [4]). Consider anN-structure (X, f) in which f is defined
by

f =

(
θ a b c d

−0.9 −0.8 −0.5 −0.7 −0.3

)

. (3.3)

It is routine to verify that (X, f) is anN-subalgebra of types (∈,∈) and (∈,∈ ∨ q). But it is not
of type (q,∈ ∨ q).

Example 3.4. Let X = {θ, a, b, c} be a BCI-algebra with a ∗-operation table which is given by
Table 2. Consider an N-structure (X, f) in which f is defined by

f =
(

θ a b c
−0.5 −0.8 −0.3 −0.3

)

. (3.4)

Then (X, f) is an N-subalgebra of type (∈,∈ ∨ q). But

(1) (X, f) is not of type (∈,∈) since two point N-structures (X, a−0.7) and (X, a−0.76) are
N∈-subsets of (X, f), but the point N-structure

(
X, (a ∗ a)∨{−0.7,−0.76}

)
= (X, θ−0.7) (3.5)

is not an N∈-subset of (X, f) since f(θ) = −0.5/≤ − 0.7;
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Table 2: ∗-operation.

∗ θ a b c

θ θ a b c

a a θ c b

b b c θ a

c c b a θ

Table 3: ∗-operation.

∗ θ a b c d

θ θ θ θ θ θ

a a θ θ θ θ

b b b θ θ b

c c b a θ b

d d d d d θ

(2) (X, f) is not of type (q,∈ ∨ q) since two pointN-structures (X, a−0.42) and (X, b−0.88)
are Nq-subsets of (X, f), but the point N-structure

(
X, (a ∗ b)∨{−0.42,−0.88}

)
= (X, c−0.42) (3.6)

is not an N∈∨ q-subset of (X, f);

(3) (X, f) is not of type (∈ ∨ q,∈ ∨ q) since two point N-structures (X, a−0.6) and
(X, c−0.82) are N∈∨ q-subsets of (X, f), but the point N-structure

(
X, (a ∗ c)∨{−0.6,−0.82}

)
= (X, b−0.6) (3.7)

is not an N∈∨ q-subset of (X, f).

Example 3.5. Let X = {θ, a, b, c, d} be a set with a ∗-operation table which is given by Table 3.
Then (X; ∗, θ) is a BCK-algebra (see [4]). Consider anN-structure (X, f) in which f is defined
by

f =
(

θ a b c d
−0.8 −0.7 0 0 −0.6

)

. (3.8)

Then (X, f) is an N-subalgebra of type (q,∈ ∨ q).

Theorem 3.6. If (X, f) is an N-subalgebra of type (∈,∈), then the open 0-support of (X, f) is a
subalgebra of X.

Proof. Let (X, f) be an N-subalgebra of type (∈,∈). If f is zero, that is, f(x) = 0 for all x ∈ X,
then O(f ; 0) = ∅ which is a subalgebra of X. Assume that f is nonzero and let x, y ∈ O(f ; 0).
Then f(x) < 0 and f(y) < 0. Suppose that f(x ∗ y) = 0. Note that (X, xf(x)) and (X, yf(y))
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are point N-structures which are N∈-subsets of (X, f). But the point N-structure (X, (x ∗
y)∨{f(x),f(y)}) is not an N∈-subset of (X, f) because f(x ∗ y) = 0 >

∨{f(x), f(y)}. This is a
contradiction, and so f(x ∗ y) < 0, that is, x ∗ y ∈ O(f ; 0). Hence O(f ; 0) is a subalgebra of
X.

Theorem 3.7. If (X, f) is an N-subalgebra of type (∈, q), then the open 0-support of (X, f) is a
subalgebra of X.

Proof. Let x, y ∈ O(f ; 0). Then f(x) < 0 and f(y) < 0. If f(x ∗ y) = 0, then

f
(
x ∗ y) +

∨{
f(x), f

(
y
)}

+ 1 =
∨{

f(x), f
(
y
)}

+ 1 ≥ 0. (3.9)

Thus the point N-structure (X, (x ∗ y)∨{f(x),f(y)}) is not an Nq-subset of (X, f), which is
impossible since (X, xf(x)) and (X, yf(y)) are point N-structures which are N∈-subsets of
(X, f). Therefore, f(x ∗ y) < 0, that is, x ∗ y ∈ O(f ; 0). This shows that the open 0-support of
(X, f) is a subalgebra of X.

Theorem 3.8. If (X, f) is an N-subalgebra of type (q,∈), then the open 0-support of (X, f) is a
subalgebra of X.

Proof. Let x, y ∈ O(f ; 0). Then f(x) < 0 and f(y) < 0, which imply that (X, x−1) and (X, y−1)
are point N-structures which are Nq-subsets of (X, f). If f(x ∗ y) = 0, then the point N-
structure (X, (x∗y)∨{−1,−1}) is not anN∈-subset of (X, f), a contradiction. Therefore, f(x∗y) <
0, that is, x ∗ y ∈ O(f ; 0), and so the open 0-support of (X, f) is a subalgebra of X.

Theorem 3.9. If (X, f) is anN-subalgebra of type (q, q), then f is constant on the open 0-support of
(X, f).

Proof. Assume that f is not constant on the open 0-support of (X, f). Then there exists y ∈
O(f ; 0) such that ty = f(y)/= f(θ) = t0. Then either ty < t0 or ty > t0. Suppose that ty > t0 and
choose t1, t2 ∈ [−1, 0) such that t2 < −1 − ty < t1 < −1 − t0. Then f(0) + t1 + 1 = t0 + t1 + 1 < 0
and f(y) + t2 + 1 = ty + t2 + 1 < 0, and so (X, θt1) and (X, yt2) are pointN-structures which are
Nq-subsets of (X, f). Since

f
(
y ∗ θ) +

∨
{t1, t2} + 1 = f

(
y
)
+ t1 + 1 = ty + t1 + 1 > 0, (3.10)

the pointN-structure (X, (y ∗θ)∨{t1,t2}) is not anNq-subset of (X, f),which is a contradiction.
Next assume that ty < t0. Then f(y) + (−1 − t0) + 1 = ty − t0 < 0, and so (X, y−1−t0) is an
Nq -subset of (X, f). Note that

f
(
y ∗ y) + (−1 − t0) + 1 = f(θ) − t0 = t0 − t0 = 0, (3.11)

and thus (X, (y∗y)∨{−1−t0,−1−t0}) is not anNq-subset of (X, f). This is impossible, and therefore
f is constant on the open 0-support of (X, f).
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Theorem 3.10. AnN-structure (X, f) is anN-subalgebra of type (∈,∈ ∨ q) if and only if it satisfies

(∀x, y ∈ X
) (

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,−0.5}

)
. (3.12)

Proof. Suppose that (X, f) is anN-subalgebra of type (∈,∈ ∨ q). For any x, y ∈ X, assume that
∨{f(x), f(y)} > −0.5. If f(a∗b) > ∨{f(a), f(b)} for some a, b ∈ X, then there exists t ∈ [−1, 0)
such that f(a ∗ b) > t ≥ ∨{f(a), f(b)}. Thus, point N-structures (X, at) and (X, bt) are N∈-
subsets of (X, f), but the point N-structure (X, (a ∗ b)∨{t,t}) is not anN∈∨ q-subset of (X, f), a
contradiction. Hence f(x∗y) ≤ ∨{f(x), f(y)}whenever

∨{f(x), f(y)} > −0.5 for all x, y ∈ X.
Now suppose that

∨{f(x), f(y)} ≤ −0.5. Then pointN-structures (X, x−0.5) and (X, y−0.5) are
N∈-subsets of (X, f),which imply that the pointN-structure (X, (x∗y)∨{−0.5,−0.5}) is anN∈∨ q-
subset of (X, f). Hence f(x ∗ y) ≤ −0.5. Otherwise, f(x ∗ y) − 0.5 + 1 > −0.5 − 0.5 + 1 = 0,
that is, (X, (x ∗ y)−0.5) is not an Nq-subset of (X, f). This is a contradiction. Consequently,
f(x ∗ y) ≤ ∨{f(x), f(y),−0.5} for all x, y ∈ X.

Conversely, assume that (3.12) is valid. Let x, y ∈ X and t1, t2 ∈ [−1, 0) be such that
two point N-structures (X, xt1) and (X, yt2) are N∈-subsets of (X, f). If f(x ∗ y) ≤ ∨{t1, t2},
then (X, (x ∗ y)∨{t1,t2}) is an N∈-subset of (X, f). Suppose that f(x ∗ y) >

∨{t1, t2}. Then∨{f(x), f(y)} ≤ −0.5. Otherwise, we have

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,−0.5} =

∨{
f(x), f

(
y
)} ≤

∨
{t1, t2}, (3.13)

a contradiction. It follows that

f
(
x ∗ y) +

∨
{t1, t2} + 1 < 2f

(
x ∗ y) + 1 ≤ 2

∨{
f(x), f

(
y
)
,−0.5} + 1 = 0 (3.14)

and so (X, (x∗y)∨{t1,t2}) is anNq-subset of (X, f). Consequently, (X, (x∗y)∨{t1,t2}) is anN∈∨ q-
subset of (X, f), and thus (X, f) is an N-subalgebra of type (∈,∈ ∨ q).

We provide conditions for an N-structure to be anN-subalgebra of type (q ,∈ ∨ q).

Theorem 3.11. Let S be a subalgebra of X and let (X, f) be an N-structure such that

(1) ( for all x ∈ X) (x ∈ S ⇒ f(x) ≤ −0.5),
(2) ( for all x ∈ X) (x /∈S ⇒ f(x) = 0).

Then (X, f) is an N-subalgebra of type (q,∈ ∨ q).

Proof. Let x, y ∈ X and t1, t2 ∈ [−1, 0) be such that two pointN-structures (X, xt1) and (X, yt2)
areNq-subsets of (X, f). Then f(x) + t1 + 1 < 0 and f(y) + t2 + 1 < 0. Thus x ∗ y ∈ S because if
it is impossible, then x /∈S or y /∈S. Thus f(x) = 0 or f(y) = 0, and so t1 < −1 or t2 < −1. This
is a contradiction. Hence f(x ∗ y) ≤ −0.5. If ∨{t1, t2} < −0.5, then f(x ∗ y) + ∨{t1, t2} + 1 < 0
and thus the point N-structure (X, (x ∗ y)∨{t1,t2}) is an Nq-subset of (X, f). If

∨{t1, t2} ≥ −0.5,
then f(x ∗y) ≤ −0.5 ≤ ∨{t1, t2} and so the pointN-structure (X, (x ∗y)∨{t1,t2}) is anN∈-subset
of (X, f). Therefore, the point N-structure (X, (x ∗ y)∨{t1,t2}) is an N∈∨ q-subset of (X, f). This
completes the proof.

Theorem 3.12. Let (X, f) be an N-subalgebra of type (q,∈ ∨ q). If f is not constant on the open
0-support of (X, f), then f(x) ≤ −0.5 for some x ∈ X. In particular, f(θ) ≤ −0.5.
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Proof. Assume that f(x) > −0.5 for all x ∈ X. Since f is not constant on the open 0-support of
(X, f), there exists x ∈ O(f ; 0) such that tx = f(x)/= f(θ) = t0. Then either t0 < tx or t0 > tx.
For the case t0 < tx, choose r < −0.5 such that t0 + r + 1 < 0 < tx + r + 1. Then the point N-
structure (X, θr) is an Nq-subset of (X, f). Since (X, x−1) is an Nq-subset of (X, f). It follows
from (a1) that the point N-structure (X, (x ∗ θ)∨{r,−1}) = (X, xr) is an N∈∨ q-subset of (X, f).
But, f(x) > −0.5 > r implies that the point N-structure (X, xr) is not an N∈-subset of (X, f).
Also, f(x)+ r +1 = tx + r +1 > 0 implies that the pointN-structure (X, xr) is not anNq-subset
of (X, f). This is a contradiction. Now, if t0 > tx then we can take r < −0.5 such that tx + r + 1 <
0 < t0 + r + 1. Then (X, xr) is an Nq-subset of (X, f), and f(x ∗ x) = f(θ) = t0 > r =

∨{r, r}
induces that (X, (x ∗ x)∨{r,r}) is not anN∈-subset of (X, f). Since

f(x ∗ x) +
∨

{r, r} + 1 = f(θ) + r + 1 = t0 + r + 1 > 0, (3.15)

(X, (x ∗ x)∨{r,r}) is not an Nq-subset of (X, f). Hence (X, (x ∗ x)∨{r,r}) is not an N∈∨ q-subset
of (X, f), which is a contradiction. Therefore f(x) ≤ −0.5 for some x ∈ X. We now prove
that f(θ) ≤ −0.5. Assume that f(θ) = t0 > −0.5. Note that there exists x ∈ X such that
f(x) = tx ≤ −0.5 and so tx < t0. Choose t1 < t0 such that tx + t1 + 1 < 0 < t0 + t1 + 1. Then
f(x) + t1 + 1 = tx + t1 + 1 < 0, and thus the pointN-structure (X, xt1) is anNq-subset of (X, f).
Now we have

f(x ∗ x) +
∨

{t1, t1} + 1 = f(θ) + t1 + 1 = t0 + t1 + 1 > 0 (3.16)

and f(x ∗ x) = f(θ) = t0 > t1 =
∨{t1, t1}. Hence (X, (x ∗ x)∨{t1,t1}) is not an N∈∨ q-subset of

(X, f), a contradiction. Therefore f(θ) ≤ −0.5.

Corollary 3.13. If (X, f) is an N-subalgebra of types (q,∈) or (q, q) in which f is not constant on
the open 0-support of (X, f), then f(x) ≤ −0.5 for some x ∈ X. In particular, f(θ) ≤ −0.5.

Theorem 3.14. Let X be a BCK-algebra and let (X, f) be an N-subalgebra of type (q,∈ ∨ q) such
that f is not constant on the open 0-support of (X, f). If

f(θ) =
∧

x∈X
f(x), (3.17)

then f(x) ≤ −0.5 for all x ∈ O(f ; 0).

Proof. Assume that f(x) > −0.5 for all x ∈ X. Since f is not constant on the open 0-support of
(X, f), there exists y ∈ O(f ; 0) such that ty = f(y)/= f(θ) = t0. Then ty > t0. Choose t1 < −0.5
such that t0 + t1 + 1 < 0 < ty + t1 + 1. Then (X, θt1) is anNq-subset of (X, f).Note that the point
N-structure (X, y−1) is anNq-subset of (X, f). It follows that (X, (y ∗θ)∨{−1,t1}) = (X, yt1) is an
N∈∨ q-subset of (X, f). But f(y) > −0.5 > t1 induces that (X, yt1) is not anN∈-subset of (X, f),
and f(y) + t1 + 1 = ty + t1 + 1 > 0 induces that (X, yt1) is not an Nq-subset of (X, f). This is
a contradiction, and so f(x) ≤ −0.5 for some x ∈ X. Now, if possible, let t0 = f(θ) > −0.5.
Then there exists x ∈ X such that tx = f(x) ≤ −0.5. Thus tx < t0. Take t1 < t0 such that
tx + t1 + 1 < 0 < t0 + t1 + 1. Then two point N-structures (X, xt1) and (X, θ−1) are Nq-subsets
of (X, f), but (X, (θ ∗ x)∨{−1,t1}) = (X, θt1) is not an N∈∨ q-subset of (X, f), a contradiction.
Hence f(θ) ≤ −0.5. Finally let tx = f(x) > −0.5 for some x ∈ O(f ; 0). Taking t1 < 0 such that
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tx + t1 > −0.5, then two point N-structures (X, x−1) and (X, θ−0.5+t1) are Nq-subsets of (X, f).
But

f(x) − 0.5 + t1 + 1 = tx − 0.5 + t1 + 1 > −0.5 − 0.5 + 1 = 0 (3.18)

implies that the point N-structure (X, x−0.5+t1) is not an Nq-subset of (X, f). Hence the
point N-structure (X, (x ∗ θ)∨{−1,−0.5+t1}) = (X, x−0.5+t1) is not an N∈∨ q-subset of (X, f), a
contradiction. Therefore f(x) ≤ −0.5 for all x ∈ O(f ; 0).
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