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The aim of this paper is the characterization of the generalized growth of entire functions of
several complex variables by means of the best polynomial approximation and interpolation on
a compact K with respect to the set Ωr = {z ∈ Cn; expVK(z) ≤ r}, where VK = sup{(1/d) ln |Pd|,
Pd polynomial of degree ≤ d, ‖Pd‖K ≤ 1} is the Siciak extremal function of a L-regular compactK.

1. Introduction

Let f(z) =
∑+∞

k=0 ak · zλk be a no constant entire function in complex plane C and let

M
(
f, r
)
= sup

{∣
∣f(z)

∣
∣, |z| = r, r > 0

}
. (1.1)

It is well known that the function r → ln(M(f, r)) is convex and decreasing of ln(r). To
estimate the growth of f , the concept of order, defined by the number ρ (0 ≤ ρ ≤ +∞), such
that

ρ = lim sup
r→+∞

ln lnM
(
f, r
)

ln(r)
(1.2)

has been given (see [1]).
The concept of type has been introduced to establish the relative growth of two

functions having the same nonzero finite order. So an entire function, in complex plane C,
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of order ρ (0 < ρ < +∞), is said to be of type σ (0 ≤ σ ≤ +∞) if

σ = lim sup
r→+∞

lnM
(
f, r
)

rρ
. (1.3)

If f is an entire function of infinite or zero order, the definition of type is not valid
and the growth of such function can not be precisely measured by the above concept. Bajpai
and Juneja (see [2]) have introduced the concept of index-pair of an entire function. Thus, for
p ≥ q ≥ 1, they have defined the number

ρ
(
p, q

)
= lim sup

r→+∞

log[p]
(
M
(
f, r
))

log[q](r)
. (1.4)

It is easy to show that b ≤ ρ(p, q) ≤ +∞where b = 0 if p > q and b = 1 if p = q.
The function f is said to be of index-pair (p, q) if ρ(p−1, q−1) is nonzero finite number.

The number ρ(p, q) is called the (p, q)-order of f .
Bajpai and Juneja have also defined the concept of the (p, q)-type σ(p, q), for b <

ρ(p, q) < +∞, by

σ
(
p, q

)
= lim sup

r→+∞

log[p−1]
(
M
(
f, r
))

(
log[q−1](r)

)ρ(p,q) . (1.5)

In their works, the authors have established the relationship of (p, q)-growth of f with
respect to the coefficients ak in the Maclaurin series of f in complex plane C (for (p, q) = (2, 1)
we obtain the classical case).

We have also many results in terms in polynomial approximation in classical case. Let
K be a compact subset of the complex plane C, of positive logarithmic capacity and f be a
complex function defined and bounded on K. For k ∈ N put

Ek

(
K, f

)
=
∥
∥f − Tk

∥
∥
K, (1.6)

where the norm ‖ · ‖K is the maximum on K and Tk is the kth Chebytchev polynomial of the
best approximation to f on K.

It is known (see [3]) that

lim
k→+∞

k

√
Ek

(
K, f

)
= 0 (1.7)

if and only if f is the restriction to K of an entire function g in C.
This result has been generalized by Reddy (see [4, 5]) as follows:

lim
k→+∞

k

√
Ek

(
K, f

)
=
(
ρ · e · σ)2−ρ (1.8)
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if and only if f is the restriction to K of an entire function g of order ρ and type σ for
K = [−1, 1].

In the same way Winiarski (see [6]) has generalized this result for a compact K of the
complex plane C, of positive logarithmic capacity noted c = cap(K) as follows.

IfK be a compact subset of the complex plane C, of positive logarithmic capacity then

lim
k→+∞

k(1/ρ) k

√
Ek

(
K, f

)
= c
(
eρσ

)1/ρ (1.9)

if and only if f is the restriction toK of an entire function of order ρ (0 < ρ < +∞) and type σ.
Recall that cap([−1, 1]) = 1/2 and capacity of a disk unit is cap(D(O, 1)) = 1.
The authors considered the Taylor development of f with respect to the sequence (zn)n

and the development of f with respect to the sequence (Wn)n defined by

Wn(z) =
j=n∏

j=1

(
z − ηnj

)
, (1.10)

where (anj)n is the thnth extremal points system of K.
The aim of this paper is to establish relationship between the rate at which

(πp

k
(K, f))1/k tends to zero in terms of best approximation in Lp-norm, and the generalized

growth of entire functions of several complex variables for a compact subset K of C
n, where

K is a compact well-selected. In this work we give the generalization of these results in C
n,

replacing the circle {z ∈ C; |z| = r} by the set {z ∈ C
n; exp(VE(z)) < r}, where VE is the

Siciak’s extremal function of E a compact of C
n which will be defined later satisfying some

properties.

2. Definitions and Notations

Before we give some definitions and results which will be frequently used in this paper.

Definition 2.1 (see Siciak [7]). LetK be a compact set in C
n and let ‖ · ‖K denote the maximum

norm on K. The function

VK = sup
{
1
d
log|Pd|, Pd polynomial of degree ≤ d, ‖Pd‖K ≤ 1, d ∈ N

}

(2.1)

is called the Siciak’s extremal function of the compact K.

Definition 2.2. A compact K in C
n is said to be L-regular if the extremal function, VK,

associated to K is continuous on C
n.

Regularity is equivalent to the following Bernstein-Markov inequality (see [8]).
For any ε > 0, there exists an open U ⊃ K such that for any polynomial P

‖P‖U ≤ eε·deg(P)‖P‖K. (2.2)
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In this case we take U = {z ∈ C
n; VK(z) < ε}.

Regularity also arises in polynomial approximation. For f ∈ C(K), we let

εd
(
K, f

)
= inf

{∥
∥f − P

∥
∥
K, P ∈ Pk(Cn)

}
, (2.3)

where Pk(Cn) is the set of polynomials of degree at most d. Siciak (see [7]) showed the
following.

If K is L-regular, then

lim sup
d→+∞

(
εd
(
K, f

))1/d =
1
r
< 1 (2.4)

if and only if f has an analytic continuation to {z ∈ Cn; VK(z) < log(1/r)}.
Let f be a function defined and bounded on K. For k ∈ N put

π
p

k

(
K, f

)
= inf

{∥
∥f − P

∥
∥
Lp(K,μ), P ∈ Pk(Cn)

}
, (2.5)

where Pk(Cn) is the family of all polynomial of degree ≤ k and μ the well-selected measure
(The equilibrium measure μ = (ddcVK)

n associated to a L-regular compact E) (see [9]) and
Lp(K,μ), p ≥ 1, is the class of all function such that:

∥
∥f
∥
∥
Lp(K,μ) =

(∫

K

∣
∣f
∣
∣pdμ

)1/p

< ∞. (2.6)

For an entire function f ∈ C
n we establish a precise relationship between the general

growth with respect to the set:

Ωr =
{
exp(VK) < r

}
(2.7)

and the coefficients of the development of f with respect to the sequence (Ak)k, called
extremal polynomial (see [10]). Therefore, we use these results to give the relationship
between the generalized growth of f and the sequence (πp

k
(K, f))k.

Recall that the subset ofC
n,Ωr ={exp(VK)< r}, replaces the unit discD(O, r)={|z| < r}

in the classical case.
It is known that if K is an compact L-regular of C

n, there exists a measure μ, called
extremal measure, having interesting properties (see [7, 8]), in particular, we have:

(P1) Bernstein-Markov Inequality.

For all ε > 0, there exists C = Cε is a constant such that

(BM) : ‖Pd‖K = C(1 + ε)sk‖Pd‖L2(K,μ), (2.8)

for every polynomial of n complex variables of degree at most d.
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(P2) Bernstein-Waish (B.W) Inequality.

For every set L-regular K and every real r > 1, we have:

∥
∥f
∥
∥
K ≤ M · rdeg(f)

(∫

K

∣
∣f
∣
∣p · dμ

)1/p

. (2.9)

Note that the regularity is equivalent to the Bernstein-Markov inequality.
Let α : N → N

n, k → α(k) = (α1(k), . . . , αn(k)) be a bijection such that

|α(k + 1)| ≥ |α(k)| where |α(k)| = α1(k) + · · · + αn(k). (2.10)

Zériahi (see [10]) has constructed according to the Hilbert-Shmidt method a sequence
of monic orthogonal polynomial according to a extremal measure (see [8]), (Ak)k, called
extremal polynomial, defined by

Ak(z) = zα(k) +
k−1∑

j=1

ajz
α(j) (2.11)

such that

‖Ak‖Lp(K,μ) =

⎡

⎢
⎣inf

⎧
⎪⎨

⎪⎩

∥
∥
∥
∥
∥
∥
zα(k) +

k−1∑

j=1

ajz
α(j)

∥
∥
∥
∥
∥
∥
L2
(K,μ)

, (a1, a2, . . . , an) ∈ C
n

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦

1/αk

. (2.12)

We need the following notations which will be used in the sequel:

(N1) νk = νk(K) = ‖Ak‖L2(K,μ).

(N2) ak = ak(K) = ‖Ak‖K = maxz∈K|Ak(z)| and τk = (ak)
1/sk , where sk = deg(Ak).

With that notations and (B.W) inequality, we have

‖Ak‖Ωr
≤ ak · rsk , (2.13)

where sk = deg(Ak). For more details (see [9]).
Let α and β be two positives, strictly increasing to infinity differentiable functions

]0,+∞[ to ]0,+∞[ such that for every c > 0:

lim
x→+∞

α(cx)
α(x)

= 1,

lim
x→+∞

β(1 + xω(x))
β(x)

= 1,

(2.14)

where ω a function such that limx→+∞ω(x) = 0.
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Assume that, for every c > 0, there exists two constants a and b such that for every
x ≥ a:

∣
∣
∣
∣
∣

d
(
β−1(cα(x))

)

α
(
log(x)

)

∣
∣
∣
∣
∣
≤ b, (2.15)

where d(u)means the differential of u.

Definition 2.3. Let K be a compact L-regular, we put

Ωr =
{
z ∈ C

n; expVK(z) ≤ r
}
. (2.16)

If f is an entire function we define the (α, β)-order and the (α, β)-type of f (or
generalized order and generalized type), respectively, by

ρ
(
α, β

)
= lim sup

r→+∞

α
(
log
(
‖f‖Ωr

))

β
(
log(r)

) ,

σ
(
α, β

)
= lim sup

r→+∞

α
(∥
∥f
∥
∥
Ωr

)

[
β(r)

]ρ(α,β) ,

(2.17)

where ‖f‖Ωr
= supΩr

|f(z)|.

Note that in the classical case α(x) = log(x) and β(x) = x.
In this paper we will consider a more generalized growth to extend the classical results

to a large class of entire functions of several variables.
We need the following lemma, see [10].

Lemma 2.4. Let K be a compact L-regular subset of C
n. Then for every θ > 1, there exists an integer

Nθ ≥ 1 and a constant Cθ such that:

π
p

k

(
K, f

) ≤ Cθ
(r + 1)Nθ

(r − 1)2N−1

∥
∥f
∥
∥
Ωrθ

rk
. (2.18)

Let f =
∑+∞

k=0 fk · Ak be an entire function. Then for every θ > 1, there exists Nθ ∈ N and Cθ > 0
such that

∣
∣fk
∣
∣νk ≤ Cθ

(r + 1)Nθ

(r − 1)2N−1

∥
∥f
∥
∥
Ωrθ

rsk
, (2.19)

for every k ≥ 1 and r > 1.

Note that the second assertion of the lemma is a consequence of the first assertion and
it replaces Cauchy inequality for complex function defined on the complex plane C.
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3. Generalized Growth and Coefficients of the Development with
Respect to Extremal Polynomial

The purpose of this section is to establish this relationship of the generalized growth of an
entire function with respect to the set

Ωr =
{
exp(VK) < r

}
(3.1)

and the coefficient of entire function f ∈ C
n of the development with respect to the sequence

of extremal polynomials.
Let (Ak)k be a basis of extremal polynomial associated to the setK defined the relation

(2.11). We recall that (Ak)k is a basis of O(Cn) (the set of entire functions on C
n). So if f is an

entire function then

f =
∑

k≥1
fk ·Ak (3.2)

and we have the following results.

Theorem 3.1. If f =
∑

k≥1 fk ·Ak then the (α, β)-order ρ(α, β) of f is given by formula

ρ
(
α, β

)
= lim sup

k→+∞

α(sk)
β
(−(1/sk) ln

∣
∣fk
∣
∣ · τskk

) < +∞. (3.3)

To prove theorem we need the following lemmas.

Lemma 3.2. Let K be a compact L-regular subset of C
n. Then

lim
k→+∞

[ |Ak(z)|
νk

]1/sk
= exp(VK(z)), (3.4)

for every z ∈ C
n \ K̂ the connected component of C

n \K,

lim
k→+∞

[‖Ak‖K
νk

]1/sk
= 1. (3.5)

Lemma 3.3. For every r > 1 the maximum of the function

x −→ ω(x, r) = rx exp
[

−xβ−1
(
1
μ
α(x)

)]

(3.6)

is reached for x = xr solution of the equation

x = α−1
{

μβ

[

log(r) − d
(
β−1
((
1/μ

)
α(x)

))

d
(
log(x)

)

]}

. (3.7)
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Consequence. This relation is equivalent to

x ≤ α−1(β
(
log(r) + b

))
. (3.8)

Indeed, the relations

∣
∣
∣
∣
∣

d
(
β−1(cα(x))

)

d
(
log(x)

)

∣
∣
∣
∣
∣
≤ b,

β−1
(
α(x)
μ

)

= log(r) − d
(
β−1(cα(x))

)

d
(
log(x)

)

(3.9)

give

log(r) − b ≤ log(r) − d
(
β−1(cα(x))

)

d
(
log(x)

) ≤ log(r) + b. (3.10)

Then

β−1
(
α(x)
μ

)

≤ log(r) + b,

x ≤ α−1(β
(
log(r) + b

))
.

(3.11)

We verify easily with the relation

∣
∣
∣
∣
∣

d
(
β−1(cα(x))

)

α
(
log(x)

)

∣
∣
∣
∣
∣
≤ b, (3.12)

that

rn exp
[

−nβ−1
(
1
μ
α(n)

)]

≤ exp
{
bα−1(μ · β(log(r) + b

))}
(3.13)

for every n > n0 and r > 0.

Proof of Theorem 3.1. Put γ = lim supk→+∞(α(sk)/β(−(1/sk) ln |fk| · τskk )) and show that γ =
ρ(α, β).

(1) Show that γ ≤ ρ(α, β).
By definition of γ , we have, for all ε > 0, ∃kε such that for all k > kε

α(sk)
β
(−(1/sk) ln

∣
∣fk
∣
∣ · νsk

k

) < γ + ε. (3.14)
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From the second assertion of the Lemma 3.2, we have for every θ > 1, there exists
Nθ ∈ N and Cθ > 0 such that

log
(∣
∣fk
∣
∣τsk

k

) ≤ log(Cθ) + log

(
(r + 1)Nθ

(r − 1)2N−1

)

− sk log(r) + α−1[(ρ + ε
) · β(log(rθ))] = ϕ(r)

(3.15)

or

− 1
sk

log
(∣
∣fk
∣
∣τsk

k

) ≥ − 1
sk

log(Cθ) − Nθ

sk
log(r + 1) − 2N − 1

sk
log(r − 1) + log(r)

− 1
sk

α−1((ρ + ε
)
β
(
log(rθ)

))
= ϕ(r, k).

(3.16)

But limk→+∞ϕ(r, k) = log(r) so ϕ(r, k) ∼ log(r) for r sufficiently large.
Then

− 1
sk

log
(∣
∣fk
∣
∣τskk

) ≥ (1 + o(1)) log(r). (3.17)

Let rk be a real satisfying

rk = exp
[

β−1
(

1
ρ + ε

α(sk)
)]

. (3.18)

Then

− 1
sk

log
(∣
∣fk
∣
∣τskk

) ≥ β−1
(

1
ρ + ε

· α(sk)
)

(1 + o(1)). (3.19)

This is equivalent to

β
[−(1/sk) log

(∣
∣fk
∣
∣τsk

k

)]

α(sk)
≥ 1

ρ + ε
, (3.20)

or

α(sk)
β
[−(1/sk) log

(∣
∣fk
∣
∣τsk

k

)] ≤ ρ + ε, (3.21)

hence

γ ≤ ρ
(
α, β

)
. (3.22)
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(2) Show that γ ≥ ρ(α, β). According to the definition of γ , we have for every ε > 0
there exists kε such that for all k > kε

∣
∣fk
∣
∣τskk ≤ exp

[

−skβ−1
(
α(sk)
γ + ε

)]

(3.23)

for k ≥ kε sufficiently large.
According to the first assertion of Lemma 3.2 and (BM) and (BW) inequalities, we

have

‖Ak‖Ωr
≤ ak · rsk (3.24)

and for every entire function

f(z) =
∑

k≥0
fk ·Ak(z),

∥
∥f
∥
∥
Ωr

≤
kε∑

k=0

ak · rsk
︸ ︷︷ ︸

(1)

+ Cε

kr∑

k=kε+1

|fk| · νsk · (1 + ε)rsk

︸ ︷︷ ︸
(2)

+ Cε

+∞∑

k=kr+1

|fk| · τskk · rsk
︸ ︷︷ ︸

(3)

.
(3.25)

The term (1) is a constant denoted C0, and

kr∑

k=kε+1

∣
∣fk
∣
∣ · τskk · (1 + ε)rsk ≤ ((1 + ε)r)sk(r)

+∞∑

k=0

∣
∣fk
∣
∣ · τskk

︸ ︷︷ ︸
(4)

.
(3.26)

The series (4) is convergent.
Let, for r sufficiently,

N(r) = E
[
α−1((γ + ε

)
β
(
log 2(1 + ε)r

))]
, (3.27)

where E(x)means the integer part of x.
Then

∣
∣fk
∣
∣ · νk · ((1 + ε)r)sk ≤ exp

[

−sk · β−1
(
α(sk)
γ + ε

)]

((1 + ε)r)sk . (3.28)

Applying the the relation (3.13)with μ = γ +ε and if we replace r by (1+ε)r, we obtain:

∥
∥f
∥
∥
Ωr

≤ exp
[
b · α−1((γ + ε

) · β(log((1 + ε)r) + b
))]

. (3.29)
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And so

∥
∥f
∥
∥
Ωr

≤ C · ((1 + ε)r)sk · exp
[

−sk · β−1
(
α(sk)
γ + ε

)]

, (3.30)

or

∥
∥f
∥
∥
Ωr

≤ C · exp b · α−1((γ + ε
) · β(log((1 + ε)r) + b

))
. (3.31)

Thus

log
(∥
∥f
∥
∥
Ωr

)
≤ log(C) + b · α−1((γ + ε

) · β(log((1 + ε)r) + b
))

(3.32)

and for r sufficiently large, we have

α
(
b−1 log

(∥
∥f
∥
∥
Ωr

))

β
(
log((1 + ε)r) + b

) ≤ γ + ε. (3.33)

But α(c · x) ∼ α(x) near to the infinity, thus

α
(
b−1 log

(∣
∣f
∣
∣
Ωr

))
∼ α

(
log
(∥
∥f
∥
∥
Ωr

))
. (3.34)

If we put x = log((1 + ε)r), then β(log((1 + ε)r) + b) ∼ β(log((1 + ε)r)) and,

α
(
log
(∥
∥f
∥
∥
Ωr

))

β
(
log(r)

) ≤ γ + ε. (3.35)

This is true for every ε > 0 hence ρ(α, β) ≤ γ . Thus the assertion is proved.

4. Best Approximation Polynomial in Lp-Norm

To our knowledge, no similar result is known according to polynomial approximation in Lp-
norm (1 ≤ p ≤ ∞)with respect to a measure μ on K in C

n.
The purpose of this paragraph is to give the relationship between the generalized order

and speed of convergence to 0 in the best polynomial. We need the following lemma.

Lemma 4.1. Let f =
∑

k≥0 fk ·Ak an element of Lp(K,μ), for p ≥ 1, then

lim sup
k→+∞

α(k)

β
[
−(1/k) log

(
π

p

k

(
K, f

))] = lim sup
k→+∞

α(sk)
β
[−(1/sk) log

(∣
∣fk
∣
∣ · τsk

k

)] . (4.1)
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Proof of Lemma 4.1. The proof is done in two steps p ≥ 2 and 1 < p < 2.

Step 1. If f ∈ Lp(K,μ)where p ≥ 2, then f =
∑+∞

k=0 fk ·Ak with convergence in L2(K,μ), hence
for k ≥ 0

fk =
1
ν2k

∫

K

f ·Akdμ (4.2)

and therefore

fk =
1
ν2k

∫

K

(
f − Pk−1

) ·Akdμ (4.3)

(because deg(Ak) = sk).
Since the relation,

∣
∣fk
∣
∣ ≤ 1

ν2
k

∫

K

∣
∣f − Pk−1

∣
∣ ·
∣
∣
∣Ak

∣
∣
∣μ (4.4)

satisfied, is easily verified by using inequalities Bernstein-walsh and Holder that, we have for
all ε > 0

∣
∣fk
∣
∣ · νk ≤ Cε · (1 + ε)sk · πp

sk−1
(
K, f

)
. (4.5)

for all k ≥ 0.

Step 2. If 1 ≤ p < 2, let p′ such that 1/p + 1/p′ = 1, we have p′ ≥ 2. According to the inequality
of Hölder, we have:

∣
∣fk
∣
∣ · ν2k ≤ ∥∥f − Pk−1

∥
∥
Lp(K,μ) · ‖Ak‖Lp′ (K,μ). (4.6)

But,

‖Ak‖Lp′ (K,μ) ≤ C · ‖Ak‖K = C · ak(K). (4.7)

This shows, according to inequality (BM), that:

∣
∣fk
∣
∣ · ν2k ≤ C · Cε · (1 + ε)sk · ∥∥f − Psk−1

∥
∥
Lp(K,μ). (4.8)

Hence the result

∣
∣fk
∣
∣ · ν2k ≤ C′

ε · (1 + ε)sk · πp
sk

(
K, f

)
. (4.9)
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In both cases, we have therefore

∣
∣fk
∣
∣ · ν2k ≤ Aε · (1 + ε)sk · πp

sk

(
K, f

)
, (4.10)

where Aε is a constant which depends only on ε.
After passing to the upper limit in the relation (4.10) and Applying the relation (3.5)

of the Lemma 3.2 we get

lim sup
k→+∞

α(k)

β
[
−(1/k) log

(
π

p

k

(
K, f

))] ≥ lim sup
k→+∞

α(sk)
β
[−(1/sk) log

(∣
∣fk
∣
∣ · τsk

k

)] . (4.11)

To prove the other inequality we consider the polynomial of degree sk,

Pk(z) =
k∑

sj=0

fj ·Aj (4.12)

then

π
p

sk−1
(
K, f

) ≤
+∞∑

sj=sk

∣
∣fj
∣
∣ · ∥∥Aj

∥
∥
Lp(K,μ) ≤ C0

+∞∑

sj=sk

∣
∣fj
∣
∣ · ∥∥Aj

∥
∥
K
. (4.13)

By Bernstein-Walsh inequality, we have

π
p

k

(
K, f

) ≤ Cε

+∞∑

sj=sk

(1 + ε)sj
∣
∣fj
∣
∣ · νj (4.14)

for k ≥ 0 and p ≥ 1. If we take as a common factor (1+ε)sk ·|fk|·νk the other factor is convergent
thus, we have

π
p

k

(
K, f

) ≤ C(1 + ε)sk · ∣∣fk
∣
∣ · νk (4.15)

and by (3.5) of Lemma 3.2, we have, then

π
p

k

(
K, f

) ≤ C(1 + ε)2sk · ∣∣fk
∣
∣ · τsk

k
. (4.16)

We deduce

lim sup
k→+∞

α(k)

β
[
−(1/k) log

(
π

p

k

(
K, f

))] = lim sup
k→+∞

α(sk)
β
[−(1/sk) log

(∣
∣fk · τskk

∣
∣
)] . (4.17)
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This inequality is a direct consequence of the relation (4.10) and the inequality on
coefficients |fk| given by

∣
∣fk
∣
∣ · τsk

k
≤ exp

[
−skβ−1

(
α(sk)1/(ρ+ε)

)]
,

∣
∣fk
∣
∣ · ν2 ≤ Cε · (1 + ε)sk · πp

sk

(
K, f

)
.

(4.18)

Applying this lemma we get the following main result:

Theorem 4.2. Let f ∈ Lp(K,μ), then f is μ-almost-surely the restriction to K of an entire function
in C

n of finite generalized order ρ(α, β) finite if and only if

ρ
(
α, β

)
= lim sup

k→+∞

α(k)

β
[
−(1/k) log

(
π

p

k

(
K, f

))] < +∞. (4.19)

Proof. Suppose that f is μ-almost-surely the restriction toK of an entire function g of general
order ρ (0 < ρ < +∞) and show that ρ = ρ(α, β).

We have g ∈ Lp(K,μ), p ≥ 2 and g =
∑

k≥0 gk · Ak in L2(K,μ) Since g is an element of
L2(K,μ) then g =

∑+∞
k=0 gk ·Ak and according to the Theorem 3.1.

ρ
(
g, α, β

)
= lim sup

k→+∞

α(sk)
β
[−(1/sk) log

(∣
∣gk
∣
∣ · τsk

k

)] (4.20)

and with the Lemma 4.1, we have

lim sup
k→+∞

α(k)

β
(
−(1/k) log

(
π

p

k

(
K, g

))) = lim sup
k→+∞

α(sk)
β
[−(1/sk) log

(∣
∣gk
∣
∣ · τsk

k

)] . (4.21)

But g = f on K hence

ρ = lim sup
k→+∞

α(k)
β
(−(1/k) log(πt

k

(
K, f

))) < +∞. (4.22)

Suppose now that f is a function of Lp(K,μ) such that the relation (4.19) is verified.
(1) Let p ≥ 2, then f =

∑+∞
k=0 fk ·Ak, because f is an element of L2(K,μ) ((Lp(K,μ))p≥1

is decreasing sequence).
Consider in C

n the series
∑

fk · Ak, k ≥ 0, we verify easily that this series converges
normally on all compact of C

n to an entire function denoted f1. We have f1 = f , obviously,
μ-almost surly on K, and by Theorem 3.1, we have

ρ
(
f1
)
= lim sup

k→+∞

α(sk)
β
[−(1/sk) log

(∣
∣fk
∣
∣ · τsk

k

)] = lim sup
k→+∞

α(k)
β
[−(1/k) log(πt

k

(
K, f

))] < +∞.

(4.23)
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Applying the Lemma 4.1, we find

ρ
(
f1
)
= lim sup

k→+∞

α(k)
β
[−(1/k) log(πt

k

(
K, f

))] < +∞. (4.24)

Consider the function f1 =
∑

k≥0 fk ·Ak, we have f1(z) = f(z)μ-almost surely for every
z in K. Therefore the (α, β)-order of f1 is:

ρ
(
f1, α, β

)
= lim sup

k→+∞

α(k)
β
[−(1/k) log(πt

k

(
K, f

))] < +∞ (4.25)

(see Theorem 3.1).
By Lemma 4.1, we check ρ(f1) = ρ so the proof is completed.

(2) Now let p ∈ [1, 2[ and f ∈ Lp(K,μ).
By (BM) inequality and Hölder inequality, we have again the inequality the relation

(4.10) and by the previous arguments we obtain the result.
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