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We treat the classical concept of domain of holomorphy in Cn when the holomorphic functions
considered are restricted to lie in some Banach space. Positive and negative results are presented.
A new view of the case n = 1 is considered.

1. Introduction

In this paper a domain Ω ⊆ C
n is a connected open set. We let O(Ω) denote the algebra of

holomorphic functions on Ω.
We will use the following notation: D denotes the unit disc in the complex plane. We

let D2 = D × D denote the bidisc, and Dn = D × D × · · · × D the polydisc in C
n. The symbol

B = Bn is the unit ball in C
n.

A domainΩ ⊆ C
n is said to be Runge if any holomorphic f onΩ is the limit, uniformly

on compact subsets of Ω, of polynomials.
In the classical function theory of several complex variables there are two fundamental

concepts: domain of holomorphy and pseudoconvex domain. The Levi problem, which
was solved comprehensively in the 1940s and 1950s, asserts that these two concepts are
equivalent: a domain Ω ⊆ C

n is a domain of holomorphy if and only if it is pseudoconvex.
These matters are discussed in some detail in [1].

Roughly speaking, if Ω is a domain of holomorphy, then there is a holomorphic
function f onΩ such that f cannot be analytically continued to any larger domain. Generally
speaking one cannot say much about the nature of this f—whether it is bounded, or satisfies
some other growth condition.

In the paper [2], Sibony presents the following remarkable example.

Example 1.1. There is a bounded pseudoconvex Runge domain ΩS ⊆ C
2, with ΩS being a

proper subset of the bidisc D2 = D ×D, such that any bounded holomorphic function ϕ on Ω
analytically continues to all of D2.
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Of course this result of Sibony can be extended to C
n in a variety of ways. For one

thing, one may take the product of the Sibony domain with the polydisc in C
n−2 to obtain

an example in C
n. Alternatively, one may replace the first (or z) variable in the Sibony

construction with a tuple in C
n−1 to obtain a counterexample in C

n. The Sibony example and
its implications are studied extensively in [3]. See also [4].

It is interesting to note that in some sense, the Sibony example is generic. In fact we
have the following proposition.

Proposition 1.2. The collection of domains Ω ⊆ D2, with Ω/=D2, such that any bounded
holomorphic function on Ω analytically continues to all of D2 (as in the Sibony example above) is
uncountable.

Proof. We very quickly review the key steps of the Sibony construction.
Let pj be a countable collection of points in the unit disc D, with no interior

accumulation point, so that every boundary point of D is an accumulation point of the set
{pj}. Now define

ϕ(ζ) =
∑

j

λj log

∣∣∣∣∣
ζ − pj
2

∣∣∣∣∣. (1.1)

Here {λj} is a summable sequence of positive, real numbers. Notice that the function ϕ—
being the sum of subharmonic functions—is subharmonic. Define

V0(ζ) = exp
(
ϕ(ζ)

)
. (1.2)

Then V0 has the properties:

(i) V0 is subharmonic;

(ii) 0 < V0(ζ) ≤ 1 for all ζ ∈ D;

(iii) the function V0 is continuous.

The last property holds because the sequence {pj} is discrete and V0 takes the value 0 only at
the pj .

Now define the domain

M(D,V0) =
{
(z,w) ∈ C

2 : z ∈ D, w ∈ C, |w| < exp(−V0(z))
}
. (1.3)

Since V0 is positive, we see that this definition makes sense and that M(D,V0) is a proper
subset of D2.

The remainder of Sibony’s argument shows that any bounded, holomorphic function
on M(D,V0) analytically continues to a bounded, holomorphic function on D2. We will not
repeat it but refer the reader to [2, 5].

The key fact in the Sibony construction is that the points {pj} form a discrete set
that accumulates at every boundary point of D. Apart from this property, there is complete
freedom in choosing the pj . We begin by showing how to construct two biholomorphically
distinct instances of Sibony domains and then consider at the end how to produce
uncountably many biholomorphically distinct domains.
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Define, for � = 1, 2, . . .,

S� =
{
z ∈ D : |z| = 1 − 2−�−1

}
. (1.4)

Set

{p1j } = (the sequence consisting of 4 equally spaced points on S1, 8 equally spaced
points on S2, 16 equally spaced points on S3, etc.),

{p2j } = (the sequence consisting of 8 equally spaced points on S1, 16 equally spaced
points on S2, 32 equally spaced points on S3, etc.).

Define a domain Ω1 using the Sibony construction, as above, with the sequence {p1j } and
define a domain Ω2 using the Sibony construction with the sequence {p2j }. We claim that Ω1

and Ω2 are biholomorphically inequivalent.
To see this, suppose the contrary. So there is a biholomorphic mapping Φ : Ω1 → Ω2.

By the usual classical arguments (see the proof of Proposition 11.1.2 in [1]), we see that Φ
must commute with rotations in the w variable. It follows that any disc in Ω1 of the form

dz =
{
(z,w) : |w| < exp(−V0(z))

}
, (1.5)

for z ∈ D fixed, must be mapped to a similar disc in Ω2.
Further observe that each of the discs dpj ⊆ Ω1 is a totally geodesic submanifold in the

Kobayashi metric. This assertion follows immediately from the existence of the maps

D
i→ Ω1

π→ D, (1.6)

where i is the injection

i(w) =
(
pj ,w

)
, (1.7)

and π is the projection

π
(
pj ,w

)
= w. (1.8)

Observe that π ◦ i = id. Similar reasoning shows that the disc d∗ = {(z, 0)} ⊆ Ω1 is totally
geodisc. Of course similar remarks apply to the corresponding discs in Ω2.

Now it is essential to notice that, inΩ1, the vertical discs of the form dz for z not one of
the pj are not totally geodesic. This follows because, at the point (z, 0), the Kobayashi extremal
disc in the vertical direction 〈0, 1〉 will not be the rigid disc ζ 
→ (0, ζ) but rather a disc that
curves into one of the spikes above a nearby pj .

A final observation that we need to make is this. The vertical totally geodesic discs
will be mapped to each other by the biholomorphic mapping Φ. But more is true. Because
d∗ is totally geodesic, in fact the totally geodesic discs located at the points pj that lie on S1

in Ω1 must be mapped to the totally geodesic discs located at the points pj that lie on S1 in
Ω2 (because both circles consist of points that have the same Kobayashi distance from the
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origin). This is impossible because S1 in Ω1 has four such points while S1 in Ω2 has eight
such points. That is the required contradiction.

Now it is clear how to construct uncountably many inequivalent domains of Sibony
type. For if A = {αj} is any exponentially increasing sequence of positive integers, then,
we may associate to it a domain Ω̃ of Sibony-type with α1 points on S1, α2 points on
S2, and so forth. The preceding argument shows that different choices of A result in
biholomorphically inequivalent domains. And there are clearly uncountably many such
sequences. That completes the argument.

Recall that if Ω ⊆ C
n is a domain and F is a family of functions on Ω, then we say that

Ω is convex with respect to F if, whenever K ⊆ Ω is relatively compact, then

K̂ ≡
{
z ∈ Ω :

∣∣f(z)
∣∣ ≤ sup

w∈K

∣∣f(w)
∣∣
}

(1.9)

is also relatively compact in Ω. It is well known that any domain of holomorphy (i.e., any
pseudoconvex domain) is convex with respect to the family of holomorphic functions on the
domain.

It is natural in our discussion to consider a domain Ω and the family G of all bounded
holomorphic functions on Ω.

Proposition 1.3. The Sibony domain ΩS is convex with respect to the family G.

Proof. Let G be as above for the domain ΩS and let F be the usual family of all holomorphic
functions on ΩS. Let K be a compact subset of ΩS and K̂F the hull with respect to F. Then,
sinceΩS is a domain of holomorphy, K̂F is still compact inΩS. Let z ∈ ΩS be a point that does
not lie in K̂F. Then there is a holomorphic function f on ΩS so that |f(z)| > supw∈K̂F |f(w)|.
Let ε = |f(z)| − supw∈K̂F |f(w)| > 0. Since ΩS is Runge, there is a polynomial p so that |p(m) −
f(m)| < ε/3 on K ∪ {z}. But then p is bounded on ΩS and, by the triangle inequality, |p(z)| >
supw∈K̂F |f(w)|. Thus K̂F = K̂G. This shows that ΩS is convex with respect to the family of
bounded holomorphic functions on ΩS.

In fact the argument just presented (for which I thank Erik Løw) shows that any
bounded, pseudoconvex, Runge domain is convex with respect to the family of bounded,
holomorphic functions.

The Sibony result has an interesting and important interpretation in terms of the
corona problem. We have the following proposition.

Proposition 1.4. LetΩ ⊆ C
n be a bounded domain. Suppose that X is a Banach space of holomorphic

functions on Ω that contains H∞(Ω). Let Ω′ be a strictly larger domain that contains Ω. Assume
that any element of X analytically continues to a holomorphic function on Ω′ (one often assumes that
the extended function satisfies a similar norm estimate to that specified by the norm on X, but that is
not necessary and one does not impose that condition at this time). Then the corona problem cannot be
solved in the space X. That is to say, if f1, f2, . . . , fk are holomorphic functions in X with no common
zero, then there do not exists elements g1, g2, . . . , gk ∈ X such that

f1g1 + f2g2 + · · · fkgk ≡ 1 (1.10)

on Ω.
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Proof. Assume to the contrary that such g1, g2, . . . , gk exist. Of course each gj analytically
continues to Ω′.

Let P = (p1, p2, . . . , pn) be a point of Ω′ \ Ω. Set fj(z) = zj − pj . Then the fj have no
common zero inΩ. So, by hypothesis, the gj exist. And these functions extend analytically to
Ω′. But then

f1g1 + f1g2 + · · · fngn ≡ 1 (1.11)

on Ω′. Since the fj all vanish at P , we see that, at P , the left-hand side of this last equation
vanishes. That is clearly a contradiction. Hence the gj do not exist.

Of course this last proposition means in particular that the point evaluations on Ω are
not weak-∗ dense in the maximal ideal space ofH∞(Ω); see [6] for more on these matters.

By contrast to Sibony’s result, Catlin [7] has shown that any smoothly bounded,
pseudoconvex domain in C

n supports a bounded holomorphic function that cannot be
analytically continued to any larger domain. In fact he has proved something sharper.

Theorem 1.5. Let Ω ⊆ C
n be a smoothly bounded pseudoconvex domain. Then there is a function in

C∞(Ω), holomorphic on the interior, which cannot be analytically continued to any larger domain.

Hakim and Sibony [8] have proved something even more decisive.

Theorem 1.6. Let Ω ⊆ C
n be a smoothly bounded pseudoconvex domain. Then the maximal ideal

space (or spectrum) of the algebra C∞(Ω) ∩ O(Ω) is in fact Ω.

It should be stressed that the proofs of the last two results use an algebraic formalism
of Hörmander [9] which entails the loss of some derivatives; so it is essential to be working
with functions that are C∞ on Ω. Attempts to adapt the arguments to other function spaces
are doomed to failure.

Pflug and Zwonek [10] have shown that the situation for L2 holomorphic functions is
very neat and elegant.

Theorem 1.7. Let Ω ⊆ C
n be any pseudoconvex domain. There is an L2 holomorphic function on Ω

that cannot be continued to any larger domain if and only if, for all w ∈ ∂U and all neighborhoods U
of w,U \Ω is not pluripolar.

There is also a characterization in terms of geometric regularity of the boundary,
expressed terms of external balls (see [11]).

Theorem 1.8. Suppose that Ω in C
n is a domain of holomorphy and that, for each z0 ∈ ∂Ω, there is

a sequence wν ∈ cΩ such that wν → z0 and there are 0 < r ≤ 1 and α > 0 such that B(wν, r|z0 −
wν|α) ∩Ω = ∅. Then there is an L2 holomorphic function on Ω that cannot be analytically continued
to any larger domain.

It is natural to ask for a characterization of those domains Ω which are domains
of holomorphy in the traditional sense but not domains of holomorphy for bounded
holomorphic functions. One would also like to know whether there are analogous results
for Lp holomorphic functions, 1 ≤ p <∞.
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The purpose of the present paper is to consider thesematters.While we cannot provide
a full answer to the questions just posed, we can certainly give some useful partial results, and
point in some new directions. The work in [3] contains a detailed consideration of questions
of this kind for the case ofH∞.

We mention in passing that the paper [12] contains some results that bear on the
questions posed here. The arguments presented in [12] appear to be incomplete.

2. Some Notation

Let us say that a domain Ω ⊆ C
n is of typeHLp, 1 ≤ p ≤ ∞, if there is a holomorphic function

f on Ω, f ∈ Lp(Ω), which cannot be analytically continued to any larger domain. We instead
say that Ω is of type ELp if there is a strictly larger domain Ω̂ so that every holomorphic Lp

function on Ω analytically continues to Ω̂. ObviouslyHLp and ELp are disjoint.
We are interested in giving an extrinsic description of those domains which are of type

HLp and those which are of type ELp. It is not the case in higher dimensions, for instance,
thatHL∞ domains are the same as domains that are convex with respect to G = H∞ (see [3]).
So we seek other characterizations.

3. The Situation in the Complex Plane

Matters in one complex variable are fairly well understood.
First of all, we should note the example of

Ω = D \ {0}. (3.1)

Of course, by the Riemann removable singularities theorem, any bounded holomorphic
function on Ω analytically continues to all of D. So Ω is not a domain of type HL∞. It is a
domain of type EL∞.

In fact it may be noted (for the domainΩ in the last paragraph) that, if p ≥ 2, then any
holomorphic function that is Lp(Ω) will analytically continue to all of D (see [13]). So this Ω
is a domain of type ELp. By contrast, if p < 2, then the function f(ζ) = 1/ζ is holomorphic on
Ω and in Lp(Ω). But of course this f does not analytically continue to the full disc D. So, for
p < 2, the domain is of typeHLp.

The treatment in [13] of the matter just discussed is rather abstract, and it is
worthwhile to have a traditional function-theoretic treatment of these matters. We provide
one now. We thank Richard Rochberg for a helpful conversation about this topic. So let f be
holomorphic onD \ {0} and assume that f ∈ L2(D) (the case p > 2 follows immediately from
this one). We write f(ζ) =

∑∞
j=−∞ ajζ

j . For 0 < a < b < 1 and k a negative integer, consider the
expression

A =
∫b

a

r

∫2π

0
f(ζ)e−ikθdθ dr, (3.2)

where it is understood that ζ = reiθ.



International Journal of Mathematics and Mathematical Sciences 7

On the one hand,

|A| ≤
∫

a≤|ζ|≤b

∣∣f(ζ)
∣∣dA(ζ)

≤
∥∥f

∥∥
L2 · |{ζ : a ≤ |ζ| ≤ b}|1/2

=
∥∥f

∥∥
L2 ·

[
π
(
b2 − a2

)]1/2
.

(3.3)

On the other hand,

|A| =
∣∣∣∣∣

∫b

a

rakr
kdr

∣∣∣∣∣

=

∣∣∣∣∣∣
ak ·

[
rk+2

k + 2

]b

a

∣∣∣∣∣∣

=

∣∣∣∣∣ak

(
bk+2

k + 2
− ak+2

k + 2

)∣∣∣∣∣.

(3.4)

If k < −2 and a = b/2, this gives a contradiction as b → 0+. Of course the cases k = −2 and
k = −1 can be handled separately because ζ−2 and ζ−1 are certainly not in L2.

Remark 3.1. We note that the proof goes through for p < 2 up until the very end. One must
note that ζ−1 in fact does lie in Lp for p < 2. So there is no removable singularities theorem for
this range of p.

Remark 3.2. A standard result coming from potential theory is that, if Ω ⊆ C, P ∈ Ω, and f
is holomorphic on Ω \ {P}, then |f(z)| = o(log[1/|z − P |]) (where we are using Landau’s
notation) implies that f continues analytically to all of Ω. The philosophy here is that a
function f satisfying this growth hypothesis has a singularity at P that is milder than the
singularity of the Green’s function. This point of view is particularly useful in the study of
removable singularities for harmonic functions. This result is not of any particular interest for
us because it is not formulated in the language of Lebesgue spaces. In any event, it is weaker
than the result presented above for L2 because the logarithm function is certainly square
integrable. It is a pleasure to thank Al Baernstein and David Minda for helpful remarks about
these ideas.

The enemy in the results discussed at the beginning of this section is thatΩ is not equal
to the interior of its closure. In fact we have the following proposition.

Proposition 3.3. Suppose that the bounded domain Ω ⊆ C is the interior of its closure. Then Ω is a
domain of typeHLp for 1 ≤ p ≤ ∞.

Proof. The proof that we now present is an adaptation and simplification of an argument from
[4].

Let {pj} be a countable, dense subset of cΩ. For each j, the function ϕj(ζ) = 1/(ζ − pj)
is holomorphic and bounded on Ω and does not analytically continue past pj .
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Now, for each j, let dj be an open disc centered at pj which has nontrivial intersection
with Ω. Consider the linear mapping

Ij : O
(
Ω ∪ dj

)
∩ Lp

(
Ω ∪ dj

)
−→ O(Ω) ∩ Lp(Ω) (3.5)

given by restriction. Of course each of the indicated spaces is equipped with the Lp norm,
and is therefore a Banach space. We note that the example above of ϕj shows that Ij is not
surjective. As a result, the open mapping principle tells us that the imageMj of Ij is of first
category in O(Ω) ∩ Lp(Ω). Therefore, by the Baire category theorem,

M ≡
⋃

j

Mj (3.6)

is of first category in O(Ω)∩Lp(Ω). But this just says that the set of Lp holomorphic functions
on Ω that can be analytically continued to some pj is of first category. Therefore the set of Lp

holomorphic functions that cannot be analytically continued across the boundary is dense in
O(Ω) ∩ Lp(Ω). That completes the proof.

The key point of the proof just presented is that, for each point not in the closure
of the given domain, there is a function holomorphic on the domain (and in the given
function space) that does not analytically continue past the point. Such functions are trivial
to construct in one complex variable, not so in higher dimensions.

We note in passing that when Ω ⊆ C is the unit disc D then it is easy to construct a
bounded holomorphic function that does not analytically continue to a larger domain. Let
{pj} be a discrete set in D that accumulates at every boundary point and so that

∑

j

1 −
∣∣pj

∣∣ <∞. (3.7)

For example, take

p1, p2, p3, p4 to be equally spaced points at distance 1/4 from ∂D,

p5, p6, . . . , p12 to be equally spaced points at distance 1/8 from ∂D,

p13, p6, . . . , p28 to be equally spaced points at distance 1/16 from ∂D,

and so forth. Then the Blaschke product with zeros at the pj will do the job. If Ω is a simply
connected domain having a Jordan curve as its boundary, then conformal mapping together
with Carathéodory’s theorem about continuous boundary extension will give a bounded,
holomorphic, non-continuable function on this Ω.

We close this section by noting that, if Ω is a domain of holomorphy in C
n and if

V = {z ∈ Ω : f(z) = 0} for some holomorphic f on Ω (we call V a variety), then Ω′ =
Ω \ V is also a domain of holomorphy (if ϕ is a holomorphic function on Ω that does not
analytically continue to a larger domain then ϕ/f is a holomorphic function on Ω′ that does
not analytically continue to any larger domain. And it is easy to see thatΩ′ is an EL∞ domain;
see [14, page 19] for the details).
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4. Complications in Dimension n

As we have indicated, the example of Sibony exhibits a domain which is not of type
HL∞ (instead it is of type EL∞). The theorem of Catlin shows that all smoothly bounded,
pseudoconvex domains are of typeHL∞.

It of course makes sense to focus this discussion on pseudoconvex domains. If a
domain Ω is not pseudoconvex, then there will perforce be a larger domain Ω′ to which all
holomorphic functions (regardless of growth) on Ω analytically continue. So this situation is
not interesting.

Thus we see that the domains of interest for us will be pseudoconvex domains that do
not have smooth boundary. Our first result is as follows.

Proposition 4.1. Let D1, D2, . . . , Dn be bounded domains in C, each of which is equal to the interior
of its closure. Define

Ω = D1 ×D2 × · · · ×Dn. (4.1)

Then Ω is a domain of typeHLp for any 1 ≤ p ≤ ∞.

Proof. Fix p as indicated. Then, by Proposition 3.3, there is a holomorphic function ψj on Dj ,
for 1 ≤ j ≤ n, such that ψj is holomorphic and Lp on Dj and does not analytically continue to
any larger domain.

But then

ψ(z1, . . . , zn) = ψ1(z1) · ψ2(z2) · · ·ψn(zn) (4.2)

is holomorphic and Lp on Ω and does not analytically continue to any larger domain.

Proposition 4.2. Let Ω ⊆ C
n be bounded and convex. Let 1 ≤ p ≤ ∞. Then Ω is a domain of type

HLp.

Proof. Just imitate the proof of Proposition 3.3. The main point to note is that if q /∈Ω and ν is
a unit normal vector from ∂Ω out through q, then the function

ψ(z) =
1

(
z − q

)
· ν (4.3)

is holomorphic and bounded on Ω and is singular at q. So the rest of the proof goes through
as before.

In fact more is true.

Proposition 4.3. Let Ω ⊆ C
n be bounded and strongly pseudoconvex with C2 boundary. Let 1 ≤ p ≤

∞. Then Ω is a domain of typeHLp.

Proof. Of course we again endeavor to apply the argument of the proof of Proposition 3.3. It
is enough to restrict attention to points q in cΩ which are sufficiently close to ∂Ω. If q is such
a point, then there is a larger strongly pseudoconvex domain Ω′ with C2 boundary such that
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Ω ⊆ Ω′ and q ∈ ∂Ω′. Now let Lq(z) be the Levi polynomial (see [1]) for Ω′ at q. Then there is
a neighborhoodU of q so that

{
z ∈ U : Lq(z) = 0

}
∩Ω′ =

{
q
}
. (4.4)

Thus fq(z) = 1/Lq(z) is holomorphic on Ω′ ∩ U and singular at q. Let ϕ be a
C∞c function that is compactly supported in U and is identically equal to 1 in a small
neighborhood of q. We wish to choose a bounded function h so that

g(z) =
ϕ(z)
Lq(z)

+ h (4.5)

is holomorphic on Ω′. This entails solving the ∂-problem

∂h = −
∂ϕ(z)
Lq(z)

. (4.6)

Of course the data on the right-hand side of this equation is ∂-closed with bounded
coefficients. By work in [15] or [16] we see that a bounded solution h exists.

This gives us a function g that is (i) holomorphic on Ω′ and (ii) singular at q. This is
just what we need, for points q in cΩ that are close to ∂Ω, in order to imitate the proof of
Proposition 3.3. That completes our argument. See also [4, Theorem 3.6] for a similar result
with a somewhat different proof in the case p =∞.

For finite type domains we can prove the following result. Let Ω ⊆ C
2 be given by

Ω = {z ∈ C
2 : ρ(z) < 0}. Recall that a point q in the boundary of a domain Ω is said to be of

finite geometric typem in the sense of Kohn if there is a nonsingular, one-dimensional analytic
variety ϕ : D → C

2 with ϕ(0) = q and

∣∣ρ
(
ϕ(ζ)

)∣∣ ≤ C ·
∣∣ϕ(ζ) − q

∣∣m, (4.7)

and so that there is no other nonsingular, one-dimensional analytic variety satisfying a similar
inequality withm replaced bym + 1. These ideas are discussed in detail in [1, Chapter 10].

It is known that the geometric definition of finite type given in the last paragraph is
equivalent to a more analytic one in terms of commutators of vector fields. Namely, let

L =
∂ρ

∂z1

∂

∂z2
−
∂ρ

∂z2

∂

∂z1
(4.8)

be a complex tangential vector field to ∂Ω and L its conjugate. A first-order commutator is a
Lie bracket of the form [L, L]. A second-order commutator is a Lie bracket of the form [L,M]
or [L,M], where M is a first-order commutator, and so forth. We say that a point q ∈ ∂Ω is
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of analytic typem if all the commutators L up to and including orderm − 1 have the property
that

L
(
ρ
)[
q
]
= 0, (4.9)

but there is a commutator L′ of orderm such that

L′
(
ρ
)[
q
]
/= 0. (4.10)

It is a result of Kohn [17] and Bloom and Graham [18] that, when Ω ⊆ C
2, a point

q ∈ ∂Ω is of geometric finite type if and only if it is of analytic finite type. Details of these
matters may be found in [1].

Now it is easy to see that the notion of analytic finite type varies semi-continuously
with smooth variation of ρ. In particular, if each point of ∂Ω is of some finite type, then the
type of the point will vary semi-continously. So there is an upper bound M for all types of
points in ∂Ω. In this circumstance we say that Ω is a domain of finite type (at most)M.

As a result of these considerations, one has the following lemma.

Lemma 4.4. LetΩ = {z ∈ C
2 : ρ(z) < 0} be a domain of finite typeM. Then there are domainsΩ′ of

finite type so that Ω′ ⊃ Ω. In particular, if ψ is a smooth, negative function with ‖ψ‖CM+1 sufficiently
small and ρ′ = ρ + ψ then Ω′ ≡ {z ∈ C

2 : ρ′(z) < 0} will contain Ω and be of finite type.

Now we have the following proposition.

Proposition 4.5. Let Ω ⊆ C
2 be smoothly bounded and of finite type m. Let 1 ≤ p ≤ ∞. Then Ω is a

domain of typeHLp.

Proof. The argument is similar to that for the last few propositions. If q /∈Ω and is sufficiently
close to ∂Ω, then we may use the last lemma and the discussion preceding that to construct a
finite type domain Ω′ ⊃ Ω and with q ∈ ∂Ω′. Now the theorem of Bedford and Fornæss [19]
gives us a peaking function fq for the point q on the domain Ω′. That is to say,

(i) fq is continuous on Ω′;

(ii) fq is holomorphic on Ω′;

(iii) |fq(z)| ≤ 1 for all z ∈ Ω′;

(iv) fq(q) = 1;

(v) |fq(z)| < 1 for all z ∈ Ω′ \ {q}.

Then the function gq(z) = 1/[1 − fq(z)] is holomorphic on Ω and singular at q.
The rest of the argument is completed as in the proof of the last proposition.

We note that the Kohn-Nirenberg domain [20] shows that, even on a finite type
domain in C

2, we cannot hope for a holomorphic separating function like Lq in the strongly
pseudoconvex case. But the peak function of Bedford-Fornæss suffices for our purposes.

Proposition 4.6. Let Ω ⊆ C
n be a bounded analytic polyhedron. Certainly Ω is then a domain of

holomorphy. We have that Ω is a domain of typeHLp for 1 ≤ p ≤ ∞.
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Proof. We know by the standard definition (see [1]) that

Ω =
{
z ∈ C

n :
∣∣f1(z)

∣∣ < 1,
∣∣f2(z)

∣∣ < 1, . . . ,
∣∣fk(z)

∣∣ < 1
}

(4.11)

for some holomorphic functions fj . Now if q /∈Ω, then there is some complex constant λwith
|λ| > 1 and some j so that fj(q) = λ. That being the case, the function

ψ(z) =
1

λ − fj(z)
(4.12)

is a function that is bounded and holomorphic on Ω but singular at q. Now the proof can be
completed as in the previous propositions.

Proposition 4.7. Let Ω ⊆ C
n be a complete circular domain. Assume that Ω is pseudoconvex. Then

Ω is a domain of typeHLp, 1 ≤ p ≤ ∞.

Proof. Let q be a point that does not lie in Ω. Let q∗ be the nearest point to q in the boundary
of Ω, and let ν be the unit outward normal vector at q∗. Set

fq(z) =
(
z − q

)
· ν. (4.13)

Then fq is holomorphic, and we claim that the zero setZq of fq does not intersectΩ. Suppose
to the contrary that it does.

Let x be a point that lies in bothΩ and in Zq. Of course any point that can be obtained
by rotating the coordinates of xwill also lie inΩ. One such choice of rotations will give a point
that lies on the ray from the origin out to q. But that rotated point will be further from the
origin than q itself (by the Pythagorean theorem). Since it lies in Ω, then so does q (because
the domain is complete circular). That is a contradiction. Therefore x does not exist and Ω
and the zero set of fq are disjoint.

As a result, the function gq ≡ 1/fq is holomorphic and bounded on Ω and singular at
q. The proof may now be completed as in the preceding propositions.

The next result points in the general direction that any reasonable pseudoconvex
domain will be of typeHLp for 1 ≤ p ≤ ∞.

Proposition 4.8. Let Ω be a bounded, pseudoconvex domain with a Stein neighborhood basis. (Here
a Stein neighborhood basis for Ω is a decreasing collection of pseudoconvex domains Ωj such that
∩jΩj = Ω; see [21] for further details in this matter.) Then Ω is a domain of typeHLp for 1 ≤ p ≤ ∞.

Remark 4.9. Of course a domain with Stein neighborhood basis can have rough boundary. So
this proposition says something new and with content.

Proof of the proposition. Let ε > 0. By definition of Stein neighborhood basis, there is a
pseudoconvex domain Ω̃ so that Ω̃ ⊇ Ω. Therefore (see [1, Chapter 3]) there is a smoothly

bounded, strongly pseudoconvex domain ˜̃Ω so that Ω̃ ⊇ ˜̃Ω ⊃ Ω. Let P ∈ ∂ ˜̃Ω. Then we may
imitate the construction in the proof of Proposition 3.3 to find a function that is holomorphic
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and bounded on Ω, extends past the boundary of Ω, but is singular at P . Now the rest of the
argument—elementary functional analysis—is just as in the proof of Proposition 3.3.

The interest of Propositions 4.5, 4.6, and 4.7 is that the domains constructed there have
only Lipschitz boundary. We know for certain (thanks to Catlin and Hakim/Sibony) that
pseudoconvex domains with smooth boundary are of typeHL∞. And there are domains with
rough boundary, such as the Sibony domain, that are of typeEL∞. So the last two propositions
give examples of domains with rough boundary which are of typeHL∞.

5. Other Properties of HLp and ELp Domains

In [4] an example is given which shows that the increasing union ofHL∞ domains need not
beHL∞. Indeed, it is well known (see [22]) that any domain of holomorphy is the increasing
union of analytic polyhedra (see Proposition 3.3). Of course an analytic polyhedron is HLp

for 1 ≤ p ≤ ∞, but the Sibony domain (which is certainly the union of analytic polyhedra)
described above is pseudoconvex and not HL∞. Berg in addition shows (see his Theorem
1.15) that the decreasing intersection ofHL∞ domains isHL∞.

Now we describe some other related examples. Again see [4] for cognate ideas.

Example 5.1. There is a decreasing sequence Ω1 ⊇ Ω2 ⊇ · · · of EL∞ domains such that the
intersection domain Ω0 ≡ ∩jΩj is not EL∞.

To see this, we follow the construction of [2, page 206]. Let {aj} be a sequence in the
unit disc D with no interior accumulation point and such that every boundary point of D is
the nontangential limit of some subsequence. Let λj be a summable sequence of positive real
numbers. Define, for ε > 0 and z ∈ D,

ϕε(z) =
∑

j

ελj log
∣∣∣∣
z − aj

2

∣∣∣∣. (5.1)

Then certainly ϕε is subharmonic and negative on D. Further note that the functions ϕε

increase pointwise to the identically 0 function as ε → 0+. Now set

V ε
0 (z) = exp

(
ϕε(z)

)
. (5.2)

Then V ε
0 is also subharmonic, 0 ≤ V ε

0 < 1. The function takes the value 0 only at the points aj .
Finally define the domains

Mε(D,V ε
0

)
=
{
(z,w) ∈ C

2 : z ∈ D, w ∈ C, |w| < exp
(
−V ε

0 (z)
)}
. (5.3)

Each Mε(D,V ε
0 ) is pseudoconvex. And the argument of Sibony shows that it is a domain of

type EL∞. But notice that the function exp(−V ε
0 (z)) decreases pointwise to the function that

is identically equal to 1/e as ε → 0+. Hence the domains Mε(D,V ε
0 ) decrease to the bidisc

{(z,w) : z ∈ D, |w| < 1/e}. And the latter is a domain of typeHL∞.
So we have produced a decreasing sequence of EL∞ domains whose intersection is

HL∞.
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We now give a separate proof, which has independent interest, of the contrapositive
of Proposition 4.8.

Proposition 5.2. If Ω is a bounded domain of type ELp, 1 ≤ p ≤ ∞ then Ω does not have a Stein
neighborhood basis.

Proof. Suppose that every holomorphic Lp function on Ω analytically continues to a larger
domain Ω̂. Seeking a contradiction, we assume thatΩ has a Stein neighborhood basis. Choose
a pseudoconvex domainU ⊇ Ω so that Ω̂ \U is nonempty.

Now there is some holomorphic function g on U that does not analytically continue
to any larger open domain. Therefore the restriction of g to Ω is a holomorphic Lp function
g̃ on Ω that analytically continues to U but no further. This contradicts the fact that g̃ must
analytically continue to Ω̂. We conclude that Ω cannot have a Stein neighborhood basis.

We close with the following useful property of EL∞ domains.

Proposition 5.3. LetΩ be a bounded, EL∞ domain in C
n, so that any bounded, holomorphic function

f on Ω analytically continues to some bounded, holomorphic function f̂ on some Ω̂. Let f be a
bounded, holomorphic function on Ω so that |f | is bounded from 0 by some η > 0. Then f̂ will be
nonvanishing.

Proof. Of course g = 1/f makes sense on Ω and is holomorphic and bounded; so it
analytically continues to some bounded, holomorphic function ĝ on Ω̂. But of course 1 ≡ f ·g
analytically continues to the identically 1 function on Ω̂. So we see that f̂ · ĝ ≡ 1 on Ω̂. We
conclude then that f̂ cannot vanish.

6. Relationship with the ∂-Problem

In the paper [5], Sibony exhibits a smoothly bounded, pseudoconvex domain on which the
equation

∂u = f, (6.1)

for f a ∂-closed (0, 1) form with bounded coefficents, has no bounded solution u. This is
important information for function theory, and also for the theory of partial differential
equations.

It is natural to speculate that there is some relation between those domains on which
the ∂-equation satisfies uniform estimates and those domains which are of typeHL∞. In that
vein, we offer the following result.

Proposition 6.1. LetΩ ⊆ C
n be a bounded domain which is of finite typem and so that the ∂-equation

∂u = f satisfies uniform estimates on Ω. That is to say, there is a universal constant C > 0 so that,
given a ∂-closed (0, 1) form f with bounded coefficients, there is a solution u to the equation ∂u = f
with

‖u‖L∞ ≤ C ·
∥∥f

∥∥
L∞ . (6.2)

Then Ω is a domain of typeHL∞.



International Journal of Mathematics and Mathematical Sciences 15

Remark 6.2. It is important to notice in this last proposition that the domain Ω need not have
C∞ boundary. For type 2, it suffices for the boundary to be C2. For type m ≥ 2, it suffices for
the boundary to be Cm.

It is known that strongly pseudoconvex domains [15], finite type domains in C
2[23],

and the polydisc [24] all satisfy uniform estimates for the ∂-problem.

Proof of the proposition. It is known (see, e.g., [25, 26] or [27, 28]) that the strongly pseudo-
convex points in ∂Ω form an open, dense set. Let q ∈ ∂Ω be such a point and let ε > 0. Let ν
be the unit outward normal vector to ∂Ω at q and set q′ = q + εν. If ε is small then there is a
“bumped domain” Ω′ with these properties.

(i) There is a small neighborhood U of q so that U ∩ ∂Ω consists only of strongly
pseudoconvex points.

(ii) ∂Ω \U = ∂Ω′ \U.

(iii) ∂Ω′ ∩U is strongly pseudoconvex and lies outside Ω.

(iv) distEuclid(q, ∂Ω′) > 0.

(v) q′ ∈ ∂Ω′.

We exhibit the situation in Figure 1.
Now let Lq′ be the Levi polynomial for ∂Ω′ at q′. Let ϕ ∈ C∞c (U) be identically equal to

1 in a small neighborhood of q′.
We do not know a priori that the ∂-problem satisfies uniform estimates on the domain

Ω′. But we may apply the construction of Beatrous and Range [29] to see that this is in fact
the case (we thank Frank Beatrous and R. Michael Range for helpful remarks regarding this
device). In detail, suppose that f is a ∂ closed form on Ω′. Solve ∂u = f on Ω with uniform
estimates. Let χ be a cutoff function which is 0 on U and identically 1 in the complement of
a slightly larger strongly pseudoconvex neighborhood of q. Let u0 = χu, extended as zero
across the perturbed part of the boundary. Let f0 = f − ∂u0, which is defined and bounded
on Ω′ and vanishes in a neighborhood of ∂Ω \U. We can therefore solve ∂v = f0 in Ω′, with
uniform estimates, by [29], Theorem 1.1. The solution in Ω′ to the original equation is then
u0 + v. And that solution is bounded.

Now we use this last result to solve the equation

∂u =
(
∂ϕ

)
· 1
Lq′

(6.3)

on Ω′. The data on the righthand side is ∂-closed and has bounded coefficients. So there is a
bounded solution u by our hypothesis.

Set

h(z) = ϕ(z) · 1
Lq′(z)

− u. (6.4)

Then h is holomorphic and bounded on Ω and does not analytically continue past q′. So we
may complete the argument just as in the proofs of Proposition 3.3.
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Ω

Ω′

q q′

Figure 1: The domains Ω and Ω′.

Corollary of the proof

IfΩ is a smoothly bounded domain on which uniform estimates for the ∂-equation hold, and
if Ω′ is a domain obtained from Ω by perturbing the strongly pseudoconvex points (so that
the perturbed points are also strongly pseudoconvex), then the ∂-problem onΩ′ also satisfies
uniform estimates.

We conclude this section by noting that in fact the proof of Theorem 1.1 in [29] goes
through verbatim if “strongly pseudconvex” is replaced by “finite type” in C

2. As a result, in
view of the discussion above, we have the following proposition.

Proposition 6.3. If Ω is a smoothly bounded domain in C
2 on which uniform estimates for the ∂-

equation hold, and if Ω′ is a domain obtained from Ω by perturbing the finite type points (so that the
perturbed points are also finite type), then the ∂-problem on Ω′ also satisfies uniform estimates.

7. Peak Points

We have seen peak points and peaking functions put to good use in the proof of
Proposition 4.5. Now we will see them in a more general context.

Let Ω be a domain of type EL∞. So Ω is pseudoconvex, and there is a strictly larger
domain Ω̂ so that every bounded holomorphic function on Ω analytically continues to a
bounded holomorphic function f̂ on Ω̂. Of course the operator T : f 
→ f̂ is linear. It is
one-to-one and onto. It follows from the closed graph theorem that T continuous. Now we
have a lemma.

Lemma 7.1. The operator T has norm 1.

Proof. Of course the norm of T is at least 1. Suppose that it is actually greater than 1. Then
there is an H∞ function f on Ω so that f has norm 1, and its extension f̂ has norm greater
than 1. For k being a positive integer consider gk = fk. Then the extension of gk to Ω̂ is
ĝk = (f̂)k. As k → +∞, the norm of ĝk tends to +∞ while the norm of gk remains 1. That is a
contradiction.
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Proposition 7.2. Let Ω ⊆ C
n be a domain and let q ∈ ∂Ω be a peak point (see the proof of

Proposition 4.5). Let fq be the peaking function. Then there cannot be a domain Ω̂ which properly
contains Ω so that (i) any bounded holomorphic function on Ω analytically continues to Ω̂ and (ii)q
lies in the interior of Ω̂.

Proof. Suppose to the contrary that there is such a domain Ω̂. Then the holomorphic function
fq analytically continues to a function f̂q on Ω̂. Of course fq has H∞ norm 1. Thus the
extended function f̂q will also have norm 1. But f̂q(q) = 1. This contradicts the maximum
modulus principle unless fq ≡ 1. But that is impossible by the definition of peak function.

Remark 7.3. In fact one does not need the full force of q being a peak point in order for this
last result to hold. It is sufficient, for instance, for the nontangential limit of f at q to be 1, and
the values of f at other points of Ω have modulus smaller than 1.

It may also be noted that, by a result of Basener [30], the set of peak points for a domain
is contained in the closure of the strongly pseudoconvex points. This observation is helpful
in applying the last proposition.

8. Concluding Remarks

It would have been best if we could have given a characterization of HLp domains or ELp

domains. Unfortunately such a result is beyond our reach at this time.
We hope that the information gathered here will help to inform the situation and lead,

in future work, to increased understanding of this fascinating problem. It is clear that there
is a spectrum of domains of holomorphy, and it is in our best interest to understand the
elements of this spectrum.
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