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We consider the initial-boundary value problem for Benjamin-Ono equation on a half-line. We
study traditionally important problems of the theory of nonlinear partial differential equations,
such as global in time existence of solutions to the initial-boundary value problem and the
asymptotic behavior of solutions for large time.

1. Introduction

In this paper we study the large time asymptotic behavior of solutions to the initial-boundary
value problem for the Benjamin-Ono equation on a half-line:

U + Ul + Ky =0, x>0,t>0,
u(x,0) =up(x), x>0, (1.1)
u(0,t) =0, t>0,

where Hu = PVfgmu((y, t)/(y — x))dy is the Hilbert transformation, and PV means the
principal value of the singular integral. We note that in the case of the whole line we
have the relations #d% = 6x(—ai)1/2 since the operator # can be written as follows: H# =
~F1(@E/INF = (-02)?3,, where (Fp)(€) = (1/v2x) [ p(x)e"*sdx is the usual Fourier
transform, and F~! denotes the inverse Fourier transform. This equation is of great interest in
many areas of Physics (see [1, 2]). The Cauchy problem (1.1) was studied by many authors.
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The existence of solutions in the usual Sobolev spaces H*Y was proved in [3-9] and the
smoothing properties of solutions were studied in [10-14]. In paper [15] it was proved that
for small initial data in H*NH!"! solutions decay ast — oo in L norm at the same rate 1/+/
as for the case of the linear Benjamin-Ono equation, where

H™S = {qb eL?:|gll,.. = “ (1+ x2>S/2<1 - ai)m/qu < oo}. (1.2)

The initial-boundary value problem (1.1) plays an important role in the contemporary
mathematical physics. For the general theory of nonlinear equations on a half-line we refer to
the book [16], where it was developed systematically a general theory of the initial-boundary
value problems for nonlinear evolution equations with pseudodifferential operators on a
half-line, where pseudodifferential operator K on a half-line was introduced by virtue of the
inverse Laplace transformation of the product of the symbol K(p) = O(p”) which is analytic
in the right complex half-plane, and the Laplace transform of the derivative 65!5 ]u. Thus, for
example, in the case of K (p) = p*/? we get the following definition of the fractional derivative
oY%

032 = ﬁ—l{pS/Z <£¢ _ @) } (1.3)

Here and below p* is the main branch of the complex analytic function in the complex half-
plane Re p > 0, so that 17 = 1 (we make a cut along the negative real axis (-co,0)). Note that
due to the analyticity of p” for all Re p > 0 the inverse Laplace transform gives us the function
which is equal to 0 for all x < 0. In spite of the importance and actuality there are few results
about the initial-boundary value problem for pseudodifferential equations with nonanalytic
symbols. For example, in paper [17] there was considered the case of rational symbol K (p)
which have some poles in the right complex half-plane. There was proposed a new method
for constructing the Green operator based on the introduction of some necessary condition at
the singularity points of the symbol K(p). In the paper [18] one of the authors considered the
initial-boundary value problem for a pseudodifferential equation with symbol K (p) = |p|'/?
and nonlinearity |u|"u.

As far as we know the case of nonanalytic conservative symbols K(p) was not studied
previously. In the present paper we fill this gap, considering as example the Benjamin-
Ono equation (1.1) with a symbol K(p) = —p|p|. There are many natural open questions
which we need to study. First we consider the following question: how many boundary
data we should pose on problem (1.1) for its correct solvability? Also we study traditionally
important problems of a theory of nonlinear partial differential equations, such as global
in time existence of solutions to the initial-boundary value problem and the asymptotic
behavior of solutions for large time. We adopt here the approach of book [16] based on the
estimates of the Green function. The main difficulty for nonlocal equation (1.1) on a half-
line is that the symbol K(p) = —pl|p| is non analytic in the complex plane. Therefore we
cannot apply the Laplace theory directly. To construct Green operator we proposed a new
method based on the integral representation for sectionally analytic function and theory of
singular integrodifferential equations with Hilbert kernel and the discontinues coefficients
(see [18, 19]).
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To state precisely the results of the present paper we give some notations. We denote
(t) = V1+12,{t} =t/(t). Direct Laplace transformation £, _,; is

+00
mgzzyﬁu=f e *u(x)dx, (1.4)
0
and the inverse Laplace transformation ﬂg:x is defined by

{—x

u(x) = £;1 a:am)ﬁée&m@@. (1.5)

Weighted Lebesgue space is L9 (R*) = {¢ € S'; |||l 4. < oo}, where

+00 1/q
ol = ([ “xlocolax) (16)
fora>0,1<g <o and
[0l = esssup|op(x)]. (1.7)
X€ER*
Sobolev space is
H'(R") = {p € $3[[(3)¢p |,z < o0} (18)

We define a linear functional f:

@)= [ v 19

Now we state the main results.

Theorem 1.1. Suppose that the initial data ug € Z = HY(R*) N LY**1(R*) with a € (0,1) are such
that the norm

luollz < e (1.10)

is sufficiently small. Then there exists a unique global solution
uecﬁamxﬂwnw) (1.11)
to the initial-boundary value problem (1.1). Moreover the following asymptotic is valid in L*(R*) :

u= %AA(xt’1/2> + min(l, %)O(tl(“m) (1.12)
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for t — oo, where A(xt™1/%) € L®(R*), A(0) = 0 is defined below by the formula (2.191), and the
constant

A= flup) - fomfuvw))dr, -

N(u) = uyu.

Remark 1.2. Note that the time decay rate of the solution is faster comparing with the case of
the corresponding Cauchy problem. So the nonlinearity uu, in (1.1) is not the super critical
case for our problem.

Remark 1.3. In the case of the negative half line x < 0 we expect that the solutions have an
oscillation character, and the time decay rate of the solution is the same as the case of the
corresponding Cauchy problem. so the nonlinearity uu, in (1.1) will be the super critical
case.

2. Preliminaries

In subsequent consideration we will have frequently to use certain theorems of the theory
of functions of complex variable, the statements of which we now quote. The proofs can be
found in [19].

Theorem 2.1. Let ¢(g) be a complex function, which obeys the Holder condition for all finite q and
tends to a definite limit ¢, as |q| — oo, such that for large q the following inequality holds:

|$(q) -~ | <Clg[™, p>0. 2.1)
Then Cauchy type integral
1 (* 9(q)
= 5= — 2.2
FG) = 5] oodd 22)

constitutes a function analytic in the left and right semiplanes. Here and below these functions will be
denoted F*(z) and F~(z), respectively. These functions have the limiting values F*(p) and F~(p) at
all points of imaginary axis Re p = 0, on approaching the contour from the left and from the right,
respectively. These limiting values are expressed by Sokhotzki-Plemelj formula:

NN B Gl 1C) D Gy L ) B |
Fp) _zﬁ,},lgéxobri _imq—qu_ ZJriPV _iwq—pdq+2¢(p)’
(2.3)
L (™ ¢@, _ 1 (" ¢@, 1
z—p,Re 250271 _iwq—qu_ﬁpv _iwq—pdq_id)(p)'

F (p) =
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Subtracting and adding the formula (2.3) we obtain the following two equivalent
formulas:

F'(p) - F (p) = ¢(p),
“ $(q) @4
T-p

1
+ - = —_—
Fp)+F(p) = 5PV
which will be frequently employed hereafter.

Theorem 2.2. An arbitrary function ¢(p) given on the contour Re p = 0, satisfying the Holder
condition, can be uniquely represented in the form

$(p) =U"(p) -U (p), (2.5)

where U*(p) are the boundary values of the analytic functions U*(z) and the condition U, = 0 holds.
These functions are determined by formula

") 4 (26)

U = 232'1 i q — z

Theorem 2.3. An arbitrary function ¢(p) given on the contour Re p = 0, satisfying the Holder
condition, and having zero index,

1 ico
indg(t) = EJ‘ ' dlng(p) =0, (2.7)

is uniquely representable as the ratio of the functions X*(p) and X~ (p), constituting the boundary
values of functions, X*(z) and X~ (z), analytic in the left and right complex semiplane and having
in these domains no zero. These functions are determined to within an arbitrary constant factor and
given by formula

X*(z) =" @), I'(z) = _,[, q— Ing(q)dq. (2.8)

We consider the following linear initial-boundary value problem on half-line

—PVI W(y;)dy 0, t>0,x>0,
0

u(x/ O) = uO(x), x>0, (29)

u(0,6)=0, t>0.

Setting

K(q)=-|qla,  Ki(q)=-, k(&) ="?e0/ies, (2.10)
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where Re k(¢) > 0 for Re ¢ > 0, we define
609 = [ "Gl 0b)dy, @)

where the function G(x, y,t) is given by formula

1 1 £+i00 ico 1
- _ St px____—  (p7PY
G(xl yl t) 271‘1 2.71'1 g_iwdge J‘_ioodpe K] (p) + g (@ + lp(é’ y))

1 1 £+i0c0 ico
-— dgeétf dpeP*
—ioo

2i2mi) ., Y (p,$) (2.12)

_1
Ki(p) +4§

1 (™ 1 1 Ki(9-K(@9
zepl,llzlgvobrij‘_mq—ZY+(6lr§) Ki(q) +4§

X

(e +¥(¢y))dq

fore >0,x >0,y >0,t > 0. Here and below

+

Y* = el wt. (2.13)

I'*(p,¢) and I'"(p, ¢) are a left and right limiting values of sectionally analytic function I'(z, &)

given by
_ 1 K(q) +§ \w (q)
(e ] g 1“{ <K1 (a) + §> w (9) }dq’ &

where

w_(z) _ <Z+k(§)>l/2’ w+(z) _ <Z+k(§)>l/2,

- e k@y L i 1 1 Kl(CI)_K(q) -qy
¥@y) = Y-(k@),g)+2mf_mq—k<§>y+<q,é> K@ee o

(2.15)

All the integrals are understood in the sense of the principal values.

Proposition 2.4. Let the initial data be ug € L'(R"). Then there exists a unique solution u(x,t) of
the initial-boundary value problem (2.9), which has integral representation

u(x, t) = G(t)ug. (2.16)

Proof. To derive an integral representation for the solutions of the problem (2.9) we suppose
that there exists a solution u(x,t) of problem (2.9), which is continued by zero outside of
x>0

u(x,t) =0, Vx<O0. (2.17)
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Let ¢(p) be a function of the complex variable p, which obeys the Holder condition for
all finite p and tends to 0 as p — + ioco. We define the operator

ico

(2.18)

Since the operator P is defined by a Cauchy type integral, it is readily observed that
P¢(z) constitutes a function analytic in the entire complex plane, except for points of the
contour of integration Re z = 0. Also by Sokhotzki-Plemelj formula we have for Re p = 0

o 1 1
Pr¢ = Z—Jn f_iwﬁ¢(Q)dq + §¢(P)r 1)
=gtV [ | od@da-36)

Here P*¢ and P~¢ are limits of P¢ as z tends to p from the left and right semi-plane,
respectively.
We have for the Laplace transform

u(0,t u,(0,t
L{Hter ) =P{—|P|P<ﬂ{ }—Q—¥>}. (2.20)
14 p
Since £L{u} is analytic for all Re g > 0, we have
i(q,t) = L{u) = Pa(p,t). (2.21)

Therefore applying the Laplace transform with respect to x to problem (2.9) we obtain for

t>0
P{awK(p)a(p,t) -0 - L, t>}
P (2.22)
i(p,0) = io(p),
where
K(p) =-|plp- (2.23)
We rewrite (2.22) in the form
u+K(p)u(p,t) - @)wﬂ @)A0ﬂ<mnm
(2.24)

iu(p,0) = o (p),
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with some function @(p, t) such that for all Re p > 0

P{®(p,t)} =0 (2.25)
and for |p| > 1
O(p, )] < Cme (2.26)
T el '

Applying the Laplace transformation with respect to time variable to problem (2.24) we find
forRe p >0

(P) _ (P) _

u(0,¢) + ux(0,¢) +<D(p,§)> (2.27)

ﬁ(p,;>=ﬁ( () +

Here the functions ﬁ(p,(j) Cf)(p,g) 1(0,¢), and u,(0,¢) are the Laplace transforms for
u(p,t),@(p,t),u(0,t), and u,(0,t) with respect to tlme, respectively. We will find the function

®(p,¢) using the analytic properties of function # in the right-half complex planes Rep > 0
and Re ¢ > 0. We have for Re p =0

ico

u(p,¢) = ~%Pvf ﬁﬁ(q,g)dq. (2.28)

In view of Sokhotzki-Plemelj formula via (2.27) the condition (2.28) can be written as
O (p,¢) =-A"(p,¢), (2.29)

where the sectionally analytic functions ©(z,¢) and A(z,¢) are given by Cauchy type
integrals:

o q 1
O(z,¢) = 2'7”/"100‘7 Zm (q,é)dq, (2.30)
A(z,¢) = fiw o ((a) + <q) u(0,8) + —5~ (q)A 0,¢) (2.31)
271 ) oo q - ZK(q) +¢ th(q Uy .

To perform the condition (2.29) in the form of nonhomogeneous Riemann problem we
introduce the sectionally analytic function:

ico

Q(z,4) =

¢)dg, (2.32)

27r1 i~ Z
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where

K(p)

D(p,¢). 2.33
K(p) +3 (.¢) (2.33)

¥(p,¢) =

Taking into account the assumed condition (2.25) and making use of Sokhotzki-Plemel;
formula (2.3) we get for limiting values of the functions Q(z, ¢) and ©(z,¢)

Q (p,§) =207 (p,¢). (2.34)
Also observe that from (2.30) and (2.32) by formula (2.4)
K(p)(©"(p,§) -0 (p.¢)) =¥(p,§) = Q" (p. &) - (p,§)- (2.35)

Substituting (2.29) and (2.34) into this equation we obtain nonhomogeneous Riemann
problem

K(p) +¢
3

Q" (p,2) = Q@ (p,2) - K(p)A (. 2). (236)

It is required to find two functions for some fixed point ¢, Re ¢ > 0: Q% (z, ¢), analytic in
Re z < 0 and Q7(z,¢), analytic in Re z > 0, which satisfy on the contour Re p = 0 the relation
(2.36). Here, for some fixed point ¢, Re ¢ > 0, the functions

K(p) +¢
¢

W(p,¢) = ;8¢ =-K(p)A (p,¢) (2.37)

are called the coefficient and the free term of the Riemann problem, respectively.
Note that bearing in mind formula (2.33) we can find unknown function (f)(p, ¢) which
involved in the formula (2.27) by the relation

Bp4) = L@ () - () 239

The method for solving the Riemann problem A*(p) = ¢(p)A~(p) + $(p) is based on the
Theorems 2.2 and 2.3.

In the formulations of Theorems 2.2 and 2.3 the coefficient ¢(p) and the free term ¢(p)
of the Riemann problem are required to satisfy the Holder condition on the contour Re p =
0. This restriction is essential. On the other hand, it is easy to observe that both functions
W(p,¢) and g(p,¢) do not have limiting value as p — =+ ioco. The principal task now is to
get an expression equivalent to the boundary value problem (2.36), such that the conditions
of theorems are satisfied. First, let us introduce some notation and let us establish certain
auxiliary relationships. Setting

Ki(p) = -p, (2.39)
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we introduce the function

~ [ K(p)+¢\w (p)
W(p,¢) = < )+ §> o ()’ (2.40)

where for some fixed point k(¢) (Re k(&) > 0)

We make a cut in the plane z from point k(¢) to point —co through 0. Owing to the manner
of performing the cut the functions w™(z), K;(z) are analytic for Re z > 0 and the function
w*(z) is analytic for Re z < 0.

We observe that the function W (p, £) given on the contour Re p = 0 satisfies the Holder
condition and under the assumption Re K;(p) > 0 does not vanish for any Re ¢ > 0. Also we
have

Ind.W(p,¢) = Zimfw dInW (p,¢) = 0. (2.42)

Therefore in accordance with Theorem 2.3 the function W(p, ¢) can be represented in the form
of the ratio

X*(p,¢)
X=(p,¢)’

(2.43)

W(p,¢) =
where

X*(p,&) = ™ PP, T(z,¢) = —J q—an(q, )dg. (2.44)

Now we return to the nonhomogeneous Riemann problem (2.36). Multiplying and dividing
the expression (K(p) +¢)/¢ by (1/(K1(p) +¢))(w™(p)/w* (p)) and making use of the formula
(2.43) we get

W(p,¢) = (2.45)

K(p)+¢ _Y'(p.d) <K1(P) +§>
¢ Y~ (p.8) &)

where

Y=(p,¢) = X*(p, §)w*(p)- (2.46)



International Journal of Mathematics and Mathematical Sciences 11

Replacing in (2.36) the coefficient of the Riemann problem W (p,¢) by (2.45) we reduce the
nonhomogeneous Riemann problem (2.36) to the form

Q' (pd) _ <K1(P) +§> Q(pi)

1 +
Y+(pé) ¢ R (P)A" (p,$)- (2.47)

Y-(p.&) Y'(p,
Now we perform the function A(z,¢) given by formula (2.31) as
A(z,8) = Mi(z,8) + Na(2,§), (2.48)

where

1 (> 1 1 _ Ki(q) _ 1(‘7)A
M(z4) = 2mf_mq zm<uo(q>+ q #0,4)+ (0 é)> 249)

Aa(z,¢) =

L™ 1 K@-K@ o d o
5] T O SR D (@ 5H0.) 500 )da (250

Firstly we calculate the left limiting value Aj(p,§). Since there exists only one root k(&) of
equation Kj(z) = —¢ such that Re k(¢) > O for all Re ¢ > 0, therefore, taking limit z — p from
the left-hand side of complex plane, by Cauchy theorem we get

k'(¢)
- k(%)

¢

Af(p.¢) =~ (ﬁo(k(é)) - =u(0,¢) —ux(0, é)) (2.51)

The last relation implies that (K1(p) + ¢)AJ(p,¢) can be expressed by the function A3(z,¢)
which is analyticin Re z > 0 :

(Ki(p) +6)A1(p. &) = A5 (p,6), (2.52)
where
Mz d) = RO () (k) - 2300 - 509 ). (259)

By Sokhotzki-Plemelj formula (2.4) we express the left limiting value AJ(p, ¢) in the term of
the right limiting value A; (p,¢) as

A (p, &) =M (p.¢) +51(p¢), (2.54)

where

80 = oy D ® 0 o 7(0,¢) - 0, g)) (2.55)
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Bearing in mind the representation (2.48) and making use of (2.52), (2.55), and (2.45) after
simple transformations we get

CK(p)AT = - (A7 + (K (p) +2)A3] +2A" - 1(p,2), 256)
where
K -K
gi(p.&) = (K(p) +8)%1(p.¢) = % (ao (r) - %ﬁ(o,é) (8 5)). (2.57)

Replacing in (2.47) —K(p)A*(p,¢) by (2.56), we reduce the nonhomogeneous Riemann
problem (2.47) in the form

Qpé) e 1
Y*(p.&) Y- (p.&) Y (p.§)

g1(p¢), (2.58)

where

Qi (p,&) =Q"(p,¢) - A (p,2),

(2.59)
Qi (p.2) = (Ki(p) +&) (57127 (p.8) - A3 (p.8) ) = A5 (p.0).-

In subsequent consideration we will have to use the following property of the limiting values
of a Cauchy type integral, the statement of which we now quote. The proofs may be found in
[19].

Lemma 2.5. If L is a smooth closed contour and ¢(q) a function that satisfies the Holder condition
on L, then the limiting values of the Cauchy type integral

D(z) 1 !

" 2 14—z

$(q9)dq (2.60)

also satisfy this condition.

Since gi(p,¢) satisfies on Re p = 0 the Holder condition, on basis of this Lemma
the function (1/Y*(p,¢))g1(p,¢) also satisfies this condition. Therefore in accordance with
Theorem 2.2 it can be uniquely represented in the form of the difference of the functions
U*(p,¢) and U™ (p, ¢), constituting the boundary values of the analytic function U (z, ¢), given
by formula

1 (= 1 1
UG = o] g .61
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Therefore the problem (2.58) takes the form

Q (p. &)
Y- (p,¢)

Qi (p.g)
Y*+(p,¢)

+U"(p,¢) =

+U (p,¢). (2.62)

The last relation indicates that the function (Q7/Y*) + U, analytic in Re z < 0, and the
function (Q;/Y~)+U", analytic in Re z > 0, constitute the analytic continuation of each other
through the contour Re z = 0. Consequently, they are branches of unique analytic function
in the entire plane. According to generalize Liouville theorem this function is some arbitrary
constant A. Thus, bearing in mind the representations (2.59) and (2.52) we get

Q*(p,§) =Y (A-U") + A7,

(2.63)

Q (p¢) = mw‘— U™y +8(A] + A3).

Since there exists only one root k(¢) of equation K;(z) = —¢ such that Re k(¢) > 0 for all
Re ¢ > 0, therefore, in the expression for the function Q7 (z, {) the factor ¢/ (K;(z)+¢) has a pole
in the point z = k(¢). Also the function ¢A] has a pole in the point z = k({). Thus in general
case the problem (2.36) is insolvable. It is soluble only when the functions U~ (z,¢) and ¢AT
satisfy additional conditions. For analyticity of Q7 (z,¢) in points z = k(¢) it is necessary that

Resp=k(z) { mlﬁ (A-U)+ A;} =0. (2.64)
We reduce (2.64) to the form
AY"(k(8),8) =Y (k(§), U (k(3),$) + <—%ﬁ(0/§) +1ig(k(8)) — tix (0,§)> =0.  (2.65)

Multiplying the last relation by 1/Y~(k(¢),¢) and taking limit { — oo we get that A = 0.
This implies that for solubility of the nonhomogeneous problem (2.36) it is necessary and
sufficient that the following condition is satisfied:

Y (k(5), U (k(E), ) + %ﬁ(@é) —uo(k(§)) +ux(0,¢) = 0. (2.66)

Therefore, we need to put in the problem (2.9) one boundary data and the rest of
boundary data can be found from (2.66). Thus, for example, if we put u(0,¢) = 0 from (2.66)
we obtain for the Laplace transform of 1, (0, t),

= [Y7(k(§), )I(k(§),¢) - 1]1x(0,4)

L[ L) k@ -KW), 25
27i) i, = k(@) Y*(q,8)  Ki(q) +¢&

= up(k(§)) =Y (k(§),$)
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where

I(k(é),8) =

1 f‘” 1 1 Ki(q)-K(q) (2.68)

27i) i, g = k() Y*(q,8) Ki(q) +$

Now we prove that the coefficient of i, (0,¢) does not vanish for all Re ¢ > 0. We represent
the function I(k(¢),¢) in the form

I=L+D, (2.69)

where

I—ij ! L4
' 2wi) g k@) Y (q,2) i

A (2.70)
1 Jaoo 1 1 K(q) +¢
L=-—— dq.
271 ,iwq_k(é) Y+(q/§) K1<q) +¢
Since, for Re z#0,
’rm 1 dg = -ari sgn (Re z) (2.71)
—ind — % - & ’ |

making use of analytic properties of the function ((1/Y*(g,¢)) — 1) by Cauchy Theorem we
have

1 ico 1 1 ico 1 1 1
h= z—mf k@YY Z_Jnj - k@) <Y+<q,§> ) 1>d" R

where ¢ is some fixed point, Re ¢ > 0. To calculate the function I, we will use the identity
(2.43). Observe that the function 1/Y~(q,¢) is analytic for all Re g > 0. Therefore, setting the
relation (2.43) into definition of I, and making use of Cauchy Theorem we find

1 100 1 1 1 1
b e (Fres ) 'E a7

Thus, from (2.72) and (2.73) we obtain the following relation for the function I :

I(k($),¢) = 1. (2.74)

1
Y= (k) 8)
Substituting this formula into (2.67) we get

Bok@) 1 (71 () K@-K@,

Y7 (k(§),8)  27i) _inq k() Y*(q,¢) Ki(q)+¢

1x(0,¢) =
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Now we return to problem (2.36). From (2.63) under the conditions u(0, t) = 0 and (2.75) the
limiting values of solution of (2.36) are given by

Q" (p, &) =-YU" +¢A3,
¢ (2.76)

Q (p,§) = —mru_ +6A;.

From (2.76) with the help of the integral representations (2.61) and (2.50), for sectionally
analytic functions U(z,¢) and Ax(z,¢), making use of Sokhotzki-Plemelj formula (2.3) and
relation (2.45) we can express the difference limiting values of the function Q(z,¢) in the
form

Q (&) -Q (p,¢)

+71 7+ ‘; -17- + -
-Y*u +myu +¢(AS - AY)
_ v+ + _ § - + _ A-
=-Y <U —K(p)+§u >+§(A2 A7) (2.77)
1 K(p)
- ZK( )+§g1(P’§)

K() Y+ oo 1 1
CK(p)+¢ Y é)zm flmq py+(q§)g1(q,§) q.

We now proceed to find the unknown function &)(p, ¢) involved in the formula (2.27) for the

solution ﬁ(p, ¢) of the problem (2.9). Replacing the difference Q*(p,¢) Q™ (p, ¢) in the relation
(2.38) by formula (2.77) we get

Bp.4) = @ () - ()
iw (2.78)
=——gl(P,§) Y*(Pfé)zyn f_mqlpw(qlé)gl(q,é) q-

It is easy to observe that ®(p, ¢) is boundary value of the function analytic in the left complex
semi-plane and therefore satisfies our basic assumption for all Re z > 0

P{®} = 0. (2.79)
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Having determined the function (i)(p,(j) bearing in mind formula (2.27) and conditions
u(0,t) = 0 we determine required function # :

“(p8) = 2o ) Kooy g () - 5:0.8)) - ZK( ) +§g1(p,§>
1 i R (2.80)
kPO e pe @
where the function g1 (p, ¢) is given by formula (2.55):
_Ki(g)-K(q) - _
gi(p.¢) = W(uo(q) — 11x(0,8)). (2.81)

Now we prove that, in accordance with last relation, the function ﬁ(p,g) constitutes the
limiting value of an analytic function in Re z > 0.

With the help of the integral representations (2.61), (2.31), and (2.50) for sectionally
analytic functions U(z, §), A(z, ¢), and Ax(z, ¢), and making use of Sokhotzki-Plemelj formula
(2.3) we have

+ - 1 A+ A-
Ky >+§(”0(P) i (0,8)) = A" - A7, mgl(né) =A; - A,
. (2.82)
1 (= 1 1 X
V] s ),

Substituting these relations into (2.80) we express the function i in the following form:

1

= (A=A = 3 (A - A7) -

If it is taken into account that A(z, &) = A1(z,¢) + Ax(z, &) by virtue of the relation (2.45), the
last expression agrees with formula

2 1 1 1 1
u=A -A]+=(A; - —Y*LI+ --————Y u. 2.84
oo 2( A7) - 2K(p) +¢ 2Ki(p) +¢ (284)
Expressing the function U* in the last equation in terms of U~
ur=u- + 7 (K(p) +¢)(A; - AY), (2.85)
we arrive at the following relation:
S A 1 -
u=A-AN -———=Y U, (2.86)
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where by virtue of (2.49) and (2.66),

Al - A = e )+ g(uo(;?) 11 (0,¢)). (2.87)

Thus the function # is the limiting value of an analytic function in Re z > 0. Note the
fundamental importance of the proven fact that the solution it constitutes an analytic function
in Re z > 0 and, as a consequence, its inverse Laplace transform vanishes for all x < 0. We
now return to solution u(x, t) of the problem (2.9).

Under assumption u(0, t) = 0 the integral representation (2.61) takes form

U(z,é) =

1 Iiw 1L _ 1 K@-=-K@ oy 7 08)dg (2.88)

27i) iq—2Y*(q,¢) Ki(q)+¢

where 7, (0,¢) is defined by (2.75). Substituting this relation into (2.86) and taking inverse
Laplace transform with respect to time and inverse Fourier transform with respect to space
variables we obtain

u(x,t) = G(Hug = IZOG(x, v, Hu(y)dy, (2.89)

where the function G(x, y, t) was defined by formula (2.12). Proposition 2.4 is proved. O

Now we collect some preliminary estimates of the Green operator G(t). Let the
contours C; be defined as

Ci = {p € (ooe_i(”/2+€),0> U(O, ooei(”/2+5)> }, (2.90)
C = {q € (ooe‘i((”/z)+25),0> U(O, ooei((”/2)+26)> }, (2.91)
Cs= { ge (me—i(<ar+s>/2>,0> U(O’ ooei((”+£)/2)> } (2.92)

where ¢ > 0 can be chosen such that all functions under integration are analytic and Re k(¢) >
0 for ¢ € C;.

Lemma 2.6. The function G(x,y,t) given by formula (2.12) has the following representation:

G(x v, f) _ 1 II | epx—K(P)te_pydp
(2.93)

_——f dee éfjc e PP (p.8) (P~ k)

20ri 2ri K(p) +¢ I(p.&y)dp,
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where

1 (e 1 1
I rSs =5 T _qyd 7
020 e ey
(2.94)
1 (= 1 K(q) +¢\w (9)
, = — 1 d .
I(z¢) szf_imq—z n{ <K1(q) +§> w*(q) q
The functions w*(q,¢), k(&) were defined in formulas (2.13) and (2.10).
Proof. We rewrite formula (2.12) in the form
G(x,y,t) = i(x =y, t) + o(x,y,t) + J3(x,y,t) + Ja(x,y,t), (2.95)
where
Ji(x—y,t) = zimflep(x—w—Kl(P)tdp,
~ LL ico+e : ico , 1
]z(x, y’ t) - 2‘72.1 27['1 —ioo+sd§e tlp((;’ y)jiwep K1 (p) + gdp/ (296)
1 1 ico+e ico Y- , ~
Byt =5 mom) déeétf_, e’”ﬁ’;?éﬂ (p.&,y)dp,
1 1 ico+e ioo Y- ;
Ja(x,y,t) = vl dget' ¥ (¢, y)J._. e’”"ﬁﬁq (p,¢,0)dp. (2.97)
Here
1 1 1 Ki(q)-K(q) _
Y 76, = - qyd 7
1(Z§y) ZWlI_iwq—ZY’f(q,é) Kl(‘])+§ e q
e k@y (2.98)
Y vy)=—-———++Y1(k(),¢ ),
¢ y) SEENN 1(k(@),¢v)
Y = el“iwi’
1 (= 1 K(gq)+¢\w (9)
, = — 1 d . .
=0l o “{<Kl<q>+§>w+<q> 7 2%

Firstly we consider the sectionally analytic function Yi(z,¢, y) given by Cauchy type integral
(2.98).
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On basis of the definition (2.98) its limiting value can be represent in the form
Y (p.&y) =L(p.&y) +L(pLy), (2.100)

where

1 (>~ 1 1

_ ) 1 b -qy
Lip.éy) zé},{ﬁi‘pozm d -2 Y7 (9,8 aa
‘ ’ (2.101)
_ . 1 (" 1 1 K(q) +¢ —qy
Iz(p’g’y) - zﬁ,l,hr{gposz_iwq—ZY+(‘1/§) Kl(q) +§e dq

Making use of analytic properties of the functions (1/Y*(q,¢) — 1), for Re g <0, and e™%, for
Re g > 0, by Cauchy theorem we have

. 1 ico 1
L(p,¢&y) = lim —

z—p,Re 2>020T1 —iwd — 2

1 (= 1 1
] _ - { -  _ -qy _
+z~>;lj{llgelz>02ﬂ'ijiooq_Z<Y+(q/§) 1> (e 1)dq

e ¥dgq

. (2.102)
¢ lim L,f A 1)
z=pRe 202011 ) ;g — 2\ Y*(q,¢)
=—e™+ lim LJ‘ SNV 1)(e ¥ -1)dg,
Z—>p,Re Z>02.7T1 _imq_z Y+(q,§)
where ¢ is some fixed point, Re ¢ > 0.
To calculate the function I,(p, ¢, y) we will use the following identity:
1 K(q) + 1
(@)+¢ (2.103)

Y*(q,8) Ki(g) +¢ Y (q.8)

Observe that the function 1/Y (g, ¢) is analytic for all Re g > 0. Therefore, setting the relation
(2.103) into definition of I;(p, ¢, y) and making use of Cauchy theorem we find

1 (>~ 1 1 1
= — 1 J— N —qy —
Lpby)=-_ i 2 f el -2Y(9,0)° 4=y o) (2.104)

Thus from (2.102) and (2.104) we obtain the following relation:

Yi(p.&y) =P +X (p&y) + Y, (2.105)

1
[
Y (n.8)°
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where

1 (> 1 1 .
Y(Z/ ¢ ]/) = 2_.7l'l'J._iohoZ <m - 1>€ Ydg. (2.106)

In the same way (see also proof of relation (2.74)) we can prove that

1
Y;(p,¢é,0)=-1+ —. .
1(p8,0) =1+ = ) (2.107)
Also we observe that
W y) =—-e Y 1Y(k@), ¢ y). (2.108)

Inserting into definition (2.96) the expression (2.105) for Y] (p,¢,y) we obtain the function
J3(x,y,t) in the form

oyt = L (7 déegtf

e epx Y_ (p/ g)
20ri 271 ) ;0

LR T Y b y)dp=hi(x -y ).

(2.109)

Replacing in formula (2.97) the functions ¥(¢,y) and Y;(p,§,0) by (2.108) and (2.107),
respectively, we reduce the function J4(x, y,t) in the form

— 1 1 oo e x Y (p’ §) 1
Jay ) =5 o _iwdéegtm(é’y)f _imep Ki(p) +§<_1 i Y‘(P/§)>dp

_ 1 1 ico : ico . Y- (Pl g) o
= =57 7iood§e t’[iwel’ m(e &y —Y(k(é),g,y)>dp—]2(x,y)_
(2.110)

Therefore inserting into definition (2.95) expressions (2.109) and (2.110), for J3(x,y,t) and
Ja(x,y,t), respectively, we obtain the function G(x, y, t) in the form

1 1 (= oo Y~(p, &)
Gloyt)=5 o) @ étf P22 (p, ¢, y)dp, 2111
v = Tmizm) %) e Ki(p) +2 1(p,& y)dp (2.111)

where

E1(p.éy) = (e = e DY) - (Y (p,&,y) - Y (K@), & v))- 2.112)
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Also, note that since

Y (p.&y)-Y (k)& y)
. 1 (i 1 1 1 )
o i°°<‘7 = k@) ) <Y+(q,§) . 1>e i (2113)

m L7 z- k(@) A
“g‘}”‘)z’”f —im<<q—z> <q—k<§))><¥+(q,é) 1>e naa

we obtain

(e - %) - (Y~ (p,&,y) - Y (K@), )
. 1 ioco 1 1 _ 1 _
ZJ}E&»oE _im<_q—7~ + q_k(§)> [e v 4 <Y+(q’§) - 1>e qy]dq (2.114)

, 1 (i k() -z 1
1 — Ydg.
g B 027 _iw<(q—z) (q—k(g))>Y+(q,g)e q

So,
G,y t) = ——— E+i°°d§eétf°° epr_(’”'é)(p_k(é))r( &y)d (2.115)
V)= i) ) Ki(p) T & p.&,y)dp, :
where
1 (* 1
)= 5] narm ey R

Using relation

X+ vt (2117)
Ki(p)+¢ Y~
we rewrite last formula in the following form:
1 1 £+ico ioco Y+ (Pl é) (P _ k((;)) -
= ot px
G(x,y,t) 5 S de‘;e I_iwe K(p) =2 I"(p,¢,y)dp. (2.118)

On the basis of definitions (2.116) and in accordance with the Sohkotzki-Plemelj formula (2.3)
we have

1 -
(p-k@) Y*(p,¢)

I'(péy)=T"(péy) - v. (2.119)



22 International Journal of Mathematics and Mathematical Sciences

So we get

1 ioo
G(x,y,t) = 5 I ' e KPtery dp
—100

(2.120)

1 1 s+i°°d§e‘§t_[im ePx Y (P: §) (P — k(é)) r (p' & y)dp-

" 2mimi . K(p)+2

£—ico

Now we consider for Re ¢ > 0
SRR i [ L
A el
¥ 2%” ;m-m_m ; ! . ln{ <__i:22 :§> Z EZ; }dq (2.121)
' 1“{ <II<<1(<Z)>1§¢> e }
o (S20)280)

Note that I'i (p, ¢) is analytic in domain 0 < arg¢ < (or/2) + 3¢, (- /2) —3e < arg ¢ < 0, and
a/2<arg p < (wr/2)+3eand (—or/2) -3¢ <arg p < - /2. So we get

1 ioo
G(x,y,t) = EI eP KWt emry gp

—ioo

. . R0 (p,é) ) (2.122)
1 1 £+ioo ioo e 1\Ps) o~ P/é p- k(é)
55| 4 étj P I*(p, & y)dp,
2i 201 ) i Ge 71.006 Ki(p) +¢ (p.& y)dp
where
I"(p,éy) = L lim Jdoo ! ! Ki(q) + g.e"‘wdq (2.123)
" 27iz—pRez<0) i, (9 —2)(q - k(2)) wel@d K(q) +¢ . .
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Changing the contour of integration with respect to ¢ by Cauchy theorem we get

G(x’y,t) = LIJ‘ ' er*K(P)t 7pydp

T1(p6) = -
Cz

232'1 27r1 Ki(p) +¢
el () g (P, é) (P - k(g))
—res;._x f erx I'(p,¢,y)dp ¢,
: (q){ 2 Ki(p) +2 (p.év)
where
el1(pd) = (p, &) (pk(¢)) e~ y-K@t
resi—_x f eP* I"(p,¢vy)d =—J‘ e’*d f d ,q),
: <q>{C2 A0 (P, y)dp p| dg———(p,q)
s = T ) (- kK@) ( Ki(q) - K(9) >
Ki(p) - K(q) e K@w-(q) (q-k(-K(q)))
(2.125)
Since for g € C3,Re(—K(g)) <0, from (2.121)
Ki(q) -K(q) / w*(q)
and therefore
$(p.q) =0. (2.127)
Thus using relation (2.121) we get relation (2.93). Lemma is proved. O
Lemma 2.7. The estimates are true, provided that the right-hand sides are finite:
16Ol < @]l (2.128)
[5G < CHP 50 2129)

G(Hp - A(xt2) f(¢) = min (2, 1) ]| e, @ >0, (2.130)

where p > 0, (1/s) +u <n+1,n =0,1,6 € [0,1], and f(¢p) is given by (1.9). The function
A(xt™/2) € L= (R*), A(0) = 0 is defined below (see (2.191)).
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Proof. From Lemma 2.6 we have

G(xy,t) = hi(xy,t) + ]2 (x,y,1), (2.131)

where
Ji(x,y,t) = Zim ic;epx_K(P)te_pydp, (2.132)
J2(x,y,t) = _EEJ‘ dge gth w+(p’§)1i:;)$_ k(g))I(Pféry)dP/ (2.133)
00 3 G rm e 21
Mz =5 iq ! . 1n{ <11<<1((Z)):i> ZEZ; }dq, (2.135)

The functions w*(g,¢), k(&) were defined in formulas (2.13) and (2.10). The contours Cy, C,
was defined by (2.90), and (2.91).

For subsequent considerations it is required to investigate the behavior of the function
I'(z,¢). Set

1l ( KP)+E \w (p) e =0 Reé<
P(p,g) =1 {<K1(p)+§>w+(p)}¢0/ Rep =0, Re ¢ <0. (2.136)

Observe that the function ¢(p,¢) obeys the Holder condition for all finite p and tends to a
definite limit ¢, (¢) as p — Lioo:

$(c0,8) = lim 1n{<K(P) e >W‘(P) }

p— =i Ki(p) +¢ ) wt(p)
<K(P) 8 >w(P) i lim Eirg{<1<(;9) +8 >w(n§) } _ T
Ki(p) +§ ) wt(p)| posiee Ki(p) +¢ /) w*(p,8) ( . )
2.137

Also there can be easily obtained that for large p and some fixed ¢ the following inequality
holds:

= lim In
p— ioo

H
|9 (P, &) — P (&) SC<%>, u> 0. (2.138)

Therefore

|er*(z,§>

<C (2.139)
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forall ¢ € C; and

el pd) _ p1/2 O<%>, ue[0,1]. (2.140)
Ip™
Denote
2it)p = G(X)f0 Ji(x,y,t)¢(y)dy, (2.141)

By Plansherel Theorem it is easily to see that
121®¢ Ml < Clipllo- (2.142)

Now we estimate 2, (t)¢.
From the integral representation (2.134), making use the relation

Lo @ K@) +e

el R (2.143)

and the estimate (2.138) we have fory > 0, € C;,and p € C;

1 (>~ 1 1 1
I(prély) = z_ﬂ-iJ‘—ioo (q_p) (q_ k(é)) w+er+e qydq

N O 1 1 (Ki(g)+§) _
zﬁp}lf{rel Z<02”if—im (g-2) (g - k(&) we (K(q)+¢) e ¥dg (2.144)

=1+y
1

— O —1+yf |q| dq>

<y c.la-pl la-k@)]

Here y € [0,1), K(q) = —qlq| = % exp(-i0), 0 = arg g and

Cs = {q € (ooe‘i((”‘g)/z),0> U(O, ooei((”_g)/z)> }, e>0. (2.145)

After this observation in accordance with the integral representation (2.133) by the Holder
inequality we have arrived at the following estimate for n = 0, 1

o[ Rty npway|

L2
(2.146)

lp"lp-k@| ( la™" 1
|K(p)+¢| e, la—p| |9-k@)|

< Cligl e[ ap g < Cllgl-
C1 C2
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Therefore according to (2.142) and (2.146) we obtain the estimate (2.129) of the lemma. Now
we prove the second estimate of the lemma.
We rewrite the function I(p, ¢, v) (see (2.134)) for p € C,,¢ € C; in the form

— 1 1 -1/2 1 -k(Q)y _
e e o A ) L A

where

oo 1 1 B )
ey = 2xzf_lm(q p)(a- ké))<W*(qf§)er*<q"”_em>(e o 2

Here we used that since w*(g,¢)e’ @ is analytic for p € Cy,¢ € C;, and Re k(¢) > 0 by
Cauchy theorem,

1 f"w 1 1 dq = 1 1
271 ) i (9 - P) (4= k(§)) w*(q,8)e" @7 (p k() w*(p,&)e" PP
_ (2.149)
e1/2 J‘m 1
- e W -1)dg=e?——— (e *®v _1).
i) e Y ook Y
Substituting (2.147) into definition of the function J>(x, y,t) (see (2.133)) we get
11 Y*(p. &) (p - k(@)
7 /t = Yy d étf px I 1A% d
J2(x,y.1) Qi 2ori ¢ be Cze K(p)+¢ 1P y)dp
1
- St px___ -~
Yo sz dée fcze 0 +§ (2.150)
sz déeét K@y _ 1>J' R dp
2 e K(p)+¢
Since by Cauchy theorem
- ——f dée étf e ——— ! dp = - L J—ioo eP Kt gy (2.151)
20ri 20ri o K(p)+¢ 271 ) oy ’
we obtain the following form for Green function G(x, y, t) (see (2.131)):
3
G(x;]/; t) = ZFj(x/y/ t)/ (2152)

j=1



International Journal of Mathematics and Mathematical Sciences

where
Fi(x,y,t) = % iof) eP KWl (v —1)dp,
1 e 172 - X +(p’§)
Fa(xy t) = 20ri 2T fc1d§e§‘(e - 1>fc26p K(P) +§
~ Y (p8)(p - k(@)
B =gz 4y e
1 (= 1 T\ ar
Il(zlé y) 27[1[—100 (q Z)(q k(g)) <Y+(q/§> e >(€ Y 1)6117

Denote

Fip = f:oFf (x,y,t)p(v)dy.

Now we prove estimate
S ] [

We have

Fi(x,y,t) =

ioo
f elp\iﬂepxt’“2< -pyt? 1>dp

—ioo

1
27ivE

\[ Ref eipz_ipyt—l/zeipxt—l/z <1 _ eipytﬁln)dp
Jr

where ¢ > 0 is such that Re ip® > 0.

27

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)

(2.159)
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By Bonnet Theorem we get

|5§In| < Ct-1/2)(1+n)

11— eiyztfl |

y/Vi in? ipxt-1/2
’[k e’ elpxt P"dP

< CH-1/2+m) |1 _ eiyzt’l | J‘ eip2 eipxt’l/zpndp _ J‘ eipz eipxtl/zpndp' (2.160)
k y/Vt
et
< Cyét(—l/z)(1+6+n)j0 e_qp|ze_c\plxt—1/z|P|n|dp|,
where k € [0, y/+/t] is intermediate point. Therefore
coelt )
||a;Ill||Lsrl‘ < Cyﬁt(—1/2)(1+6+n—(1/s)—ﬂ)JO e—C|p\ |p|n—(1/s)—ﬂdp, (2161)
where
1
3 +pu<n+1l (2.162)
Now we get estimate for I1, from (2.159).
Using for p = [ple’?, |p| > yt1/2,C1 =sin¢ < 1,
o 1
elpz—lpyt 2| C >0
< 5 YNZK Z Y (2.163)
|IpI* - Cilplyt7|
we get
|08 (x, y, 1) | < CHE/20m f - ! e CPE 2 ||| g =Cle ™ 1| g,
* " B yt1/2 |p2 - C1Pyt_1/2|m
(2.164)
Therefore from (2.170) we obtain
© n—(1/s)—p+6

p
d
g p? = Cpyt 2 P

< Ct(—1/2)(n+2—(1/s)—y)y6 (f:pn+6(1/s);4dp+ J':Opnﬂs(l/s)”d > (2.165)

< Ct(—l/Z)(n+1—(1/s)—/1+6)y6

18712, 7, £) || e < CHCV/241-075)055) 8 f

2,
pH
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where

§+y<n+1+6. (2.166)

Therefore

02002l < CHHAECIW ], @167)

From (2.161) and (2.167) it follows estimate (2.158).
Now we estimate ¥»¢.
Making the change of variables ¢ = gt and p = vtz in (2.154) we get

|07 Fy (x, y, £)| < CH1/DAs54m) f dge MO ( (k(q) )6>f e*Clzle“Muﬂ (2.168)
x2\X, Y, = ‘. q q)y e |K(Z)+q| . .
Here we used the following estimations:
- 5
ey 1= 0((k@)y)*), 6el0,1],
s (2.169)
[roret ¥ < [}
Since
+00 1/s
||e—C\z\xt’1/2 < C(J. x‘use—Cst’l/2|z|dx)
| 0
(2.170)
-1/2 (-1/8)-n e HS —Csx e
< C<|z|t ) xy e dx ,
0
we get
" =)
”F2”L54‘ < Ct(—1/2)(1+6+n—(1/s)—ﬂ)y5f e—C|q|k6(|q|)dqf |dz|
¢ o |K(2)+4] (2.171)
< Ct(—1/2)(1+6+n—(1/s)—/4)y5/
where
% tpu<n+ ;, (6,u) €[0,1]. (2.172)

From the estimate (2.171) we have under condition (2.172)

el < CHADIEO W, 173)
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Now we estimate ¥3¢. From estimate (2.138) for y € (0,1) we have

1 Y
— 2 = Jel , (2.174)
et Ip|”

and therefore for p € C,

l9° R
—ioo |9 = Plla k@) |47

|1 (p.& y)| < Cy f dq. (2.175)

Thus after the change of variables ¢t = g1, p = z+/t,q = g2/t we get

aZF?) (x, Y, t) < Cyﬁt(—l/Z)(1+5+n)J‘ dqle—qqﬂ |q1 |Y
G

_ k(q1) |zl {1=l}"?
x | dzeClx? |z~ 2.176
e |K(z) + q1] (2176)
100 6
§ J‘ 92|
-ioo |92 = 2] |92 —k(q1)|
From (2.170) we obtain for y € [0, (1 + 6)/2),6 € [0,1]
|05 Fa |l 1. < CtT
y ~Clail| g, 1Y d f ~k(q)| . (W/9)p 151y 1/2
= CIR R
100 6_2
« f |q2| ! dqz < Ct(—l/Z)(1+5+n—(1/s)—‘u) ”¢”L15/
—ioo |92 = 2|2 = k(1) | '
where
1 3
Stus<ntg, (6,u) €[0,1]. (2.178)

Thus from (2.171), (2.177), and (2.158) it follows the second estimate (2.129) of the lemma.
Now we prove the asymptotic formula (2.130).
We will use the formula (2.115) from Lemma 2.6:

1 1 £+iood§e§tJ;ioo P Y~ (Pl é) (p - k(g))

T ) “(n,&,y)dp, .
G(x,y,t) » Ki(p) & I"(p,é,y)dp (2.179)

201 2071 ) iy
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where

1

21

I(z,¢y) = _Iim ! ! 5 (e™¥ -1)dg.

~ieo (4 -2) (9= k() Y*(q,

Since for Re ¢ > 0

Jdoo Y (p,é)(p-k()) I"(p,&,y)dp =0,

—ico Ki(p) +¢

we have G(0, y,t) = 0 and therefore
3 ~
G(x,y,t) = ZF,-(x,y, t),
=1

where

ico
F, (x, Y, t) = LJ e—K(P)t(er _ 1)(6—Py _ 1)dp,

271 ) iy

-1/2
Fo(x,y,t) = =& J’ age (0 1) [ (e -1)
27ri 271 ) ¢,

By t) = —grege | deet[ (e -1)°

el (Pd) ot (P, g)
G K(p) + g

T Pow* (p, &) (p - k()

201 201 ) ¢, c K(p) +¢

Here the function I (p, ¢, y) was defined by (2.148). Since

1

L (préry)dp'

T+ p
Lpey) =L (pey) -y k@) <er+(p,§)w+ )

where

N 1 ico 1 1
h(z4y) = ELOO (9-2)(q-k@) <€r+(q"§)w+(qf§)

x (7% -1+ qy)dg,

31

(2.180)

(2.181)

(2.182)

(2.183)

(2.184)

(2.185)
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we have
Fs (x,y,t)
e Pt (p,¢) (p - kQ)) ~
= —_—— gt pPxX _ 1 4 I+
2 2mj dee f L& K(p) +¢ 1(p&y)dp (2.186)
1 Y*(p.o)p 1 _
&t px _ _ 172
" i ZJZ'IJ‘ dee Cz(e )K(P) +¢\ el POwt (p, &) € dp-
So
y 3
G(x,y,t) = ?A<xt‘1/2> + S Re(x,y,t), (2.187)
k=1
where
-1/2 . I (pd) gt - k()
) _ € : o2\ € PPwt(p,é)(p
A7) =S j ke j (o) ROR dp,
= - e Kt (opx _ -Py _
Ri(x,y,t) = 271‘1,[ (e 1)(e 1+py)dp,
1 e1/2
St ,—k@)y _
Ra(x,y,t) = 5 =% lege (e 1+ k(g)y)
(2.188)
I (P8) 70+
XI (e’”x—l)e w (plg)d}?,
C K(p) + é
- gt
Rs(x,y,t) = 20ri Zﬂlf dge

T (pd) g+ -
XJ‘ (e”x—l)e 7ol (plé)(p k(g))ff(né,y)dp
C

K(p) +¢

Using e — 1+ py = O(p"*y'*),e ™ @Y — 1 + k(&)y = O(k(&)"y"**), u € (0,1) by the same
method as in the proof of estimate (2.129) we obtain that

f dyR; (x,y,)$(y)| < C02 min (72, 1) | §l - (2.189)

3
2
j=1
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Since
er*(p";)w+(p,§)(p—k(§)) B el/2 ~ O(é)
K(p) +¢ 2.1 \p*/’
p*+
\/7 (2.190)
-1/2 1
dget[ (et -1 dp =0,
Jose]. >\/pzT
we rewrite
-1/2 i T (D,8) 7y ’ —k 1/2
A(xt’1/2> = e_zf dgeéj‘ (epxt / _1> € w'(p.§)(p-k@) e .
zrile Cz K(p) +¢ p2+1
(2.191)

So A(xt™1/2) € L®(R*) and A(0) = 0. From (2.189),(2.187) it follows (2.130) and consequently,
||c;¢ ~FIAxtY?) f(¢)||Lw < Ct 1w/ ||x1+ﬂ¢||v. (2.192)

The lemma is proved. O

3. Proof of Theorem 1.1

By Proposition 2.4 we rewrite the initial-boundary value problem (1.1) as the following
integral equation:

t
u(t) = G(Eyuo - f Gt =T A(u(r)dr,

(3.1)
N(u) = uu,
where G is the Green operator of the linear problem (2.9). We choose the space
Z-= {qb e H'(R")nLY(R*) n L“”(R*)} (3.2)

with 0 < a < 1 being small and the space
X = {014 € C([0,00); LAR") (0,00, L™ /AR : ||l <0}, m=0,1,  (33)

where now the norm y € [0, a]

1
191l = sup <Z (LY 23 () | s + (1) P [ 32p(8) ||L2)> (3.4)

2| n=0
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reflects the optimal time decay properties of the solution. We apply the contraction mapping

principle in aball X, = {¢ € X: [|§[lx < p} in the space X of a radius

1
p = 5cluolly > 0.

For v € X,, we define the mapping M (u) by formula
t
M) = GO - [ Gt =) Au(r)dr
0
We first prove that
[A@)llx < p,

where p > 0 is sufficiently small. By virtue of Lemma 2.7 we have

16Ol < Nl
131G e < CHS A g1

forallt>0,pu <n+ (1/2). Therefore for t <1

IGuollg < Clluollz,

105 Gtto | 2y < CHTHDOFWDTD g < CE D agg .

Fort>1

||azqu0||L2 < Ct(—l/2)(n+(3/2))”uO”LL1 < Ct(_l/z)("+(3/2))||uo||z,

102Gl 2siarny < CHTH/DOHGE/2=(@I2D ||| < CECDJygg .

Thus
[Guollx < Clluollz-
Also since v € X, we get forall 7 > 0

1A < Cllullellule < Clz) ™47y ully,

I @)) e < Cllullzlluxlle: < C(7) 7 lullk.

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Therefore by Lemma 2.7 we get

t
a;zf Gt =) M(u(r))dr
0

12

t/2 t
<| (=) RO u()) padr + f (t =) 2O (7)) ||pdr
0 t/2

t/2
< Clfullx [j (=) CUD2-0/D) {14172 1y =(-(/2) g
0
t
+J‘ (f- T)(1/2)(n+1(1/2))<T>_2dT]
t/2

< C||u||§( [<t>(—l/2)(n+2—(1/2)) +<t>—2t(—1/2)(n+1—(1/2))+1]

< Cllu”i<t>(—1/2)(n+(3/2))
(3.14)

for all t > 0. In the same manner by virtue of Lemma 2.7 we have

t
azf Gt — ) Mu(r))dr
0

L2m+a/2)

t

t/2
< jo (t =) ()| dT + j (t— )4 Au(r)) || dr

t/2
(3.15)

t

t/2
scnuni[f (=) Iy () dT]
0

t/2
< C”uni[<t>(*1/2)(n+2*(1/2)*((1+a)/2)) + <t>*2t(—1/2)(n+1—(1/2))+1]

2 —(3— 4 -1/4
< Cllullx(ty 4y

for all t > 0. Thus we get

< Cllul3, (3.16)
X

t
'Uocxt — 1) A(u(r))dr

and hence in view of (3.6) and (3.9)

t
1)l < Guolly + f Gl Au()dr

X (3.17)

P

< Clluollz + Cllullx < 5+ Cp*<p
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since p > 0 is sufficiently small. Hence the mapping / transforms a ball X,, into itself. In the

same manner we estimate the difference

1
A (w) = M(@)lx < Fllw = vlix,

(3.18)

which shows that # is a contraction mapping. Therefore we see that there exists a unique
solution u € C([0, o0); L' (R*)NLY4(R*))NC((0, 00); HL ) to the initial-boundary value problem

(1.1). Now we can prove asymptotic formula
u(x, t) = A1A<xt—1/z>t—1 N min(xt‘l/z, 1>O(t‘1‘7>,
where

+00 +00
A1 = f(u) —f dTI yuyudy.
0 0

Denote

Go(t) = t’1A<xt’1/ 2).

From Lemma 2.7 we have

HIGMH$ = Got) f (Pl < Cligllz

for all t > 1. Also in view of the definition of the norm X we have
|f(A@(D)))] < 1)l < Clry ) |lullk-

By a direct calculation we have for some small y; >0,y >0

t/2
fo ¢ 7IGo(t — 7) - GO f (M(u(r)))dr

Le
t/2

< <t>‘1cnu||if0 1(Go(t =) + Go(®) - (7)™ (7) P
t/2

< C<t>-2f ()" () e < C(5) T
0

and in the same way

2
< Cllulfx-

H<t>YGo<t>f:2fuv<u<T>)>dr

L

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Also we have

t/2 t
IO G(t=7) N (u(r)=Go(t-T) f (N(u(T))))dT jt/zq(t—f)ﬂ(u(f))dT

+
L

Lee

» t (3.26)
< CJ (t= 1) Au(r)) || dT + CI A u(T)) |l dT < CEY i
0 t/2

for all t > 1. By virtue of the integral equation (3.1) we get

(B (E) = AGo 1))l < [1(G o = Golt) f (o).

t/2

+ (1! . (G(t = 1) N(a(7)) = Go(t = 7) f(N(u(T))))dT

Lo

t

(3.27)
+ () G(t-T)N(a(T))dT
t/2

+<t>}’+1

Go(t) f :2f(ﬂ(u(f)))dT

L L=

t/2
+ (1) J‘O (Go(t = 7) = Go(t)) f(N(u(T)))dT

L

The all summands in the right-hand side of (3.27) are estimated by Cllug|l, + C ||u||§( via
estimates (3.24)—(3.26). Thus by (3.27) the asymptotic (3.19) is valid. Theorem is proved.
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